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in GAP.
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In [8–10] we established methods for computing with finitely generated linear groups 
over an infinite field, based on the use of congruence homomorphisms. These have been 
applied to test virtual solvability and answer questions about solvable-by-finite (SF) 
linear groups.

Computing with finitely generated linear groups that are not SF is a largely unex-
plored topic. Significant challenges exist: these groups comprise a wide class in which 
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certain algorithmic problems are undecidable [6, Section 3]. We may be more confident 
of progress if we restrict ourselves to arithmetic subgroups of linear algebraic groups. 
Decision problems for such groups were investigated by Grunewald and Segal [14]; see 
also [7]. We note renewed activity focussed on deciding arithmeticity [28].

This paper is a starting point for computation with semisimple arithmetic groups that 
have the congruence subgroup property (CSP). A prominent example is Γn = SL(n, Z)
for n ≥ 3. Recall that H ≤ SL(n, Q) is arithmetic if Γn∩H has finite index in both H and 
Γn (in particular, finite index subgroups of Γn are arithmetic). Each arithmetic group 
H ≤ SL(n, Q) contains a principal congruence subgroup Γn,m for some m, namely the 
kernel of the congruence homomorphism Γn → SL(n, Zm) induced by natural surjection 
Z → Zm := Z/mZ [3,23]. So if we know that Γn,m ≤ H then we can transfer much 
of the computing to SL(n, Zm), for which efficient machinery is available [17]. We give 
a method to construct Γn,m in H. This implies decidability of membership testing and 
other fundamental problems.

We pay special attention to subnormality and the orbit-stabilizer problem. Aside 
from their computational importance, these were the earliest questions considered for 
arithmetic groups. The study of subnormal subgroups of Γn originated in the late 19th 
century and led up to formulation of the Congruence Subgroup Problem. In turn, the 
solution of that problem used knowledge of Γn-orbits in Qn [18, §17].

The paper is organized as follows. Section 1 provides background on arithmetic groups: 
basic facts; material about principal congruence subgroups (their generating sets, con-
struction, and maximality); and subnormal structure. Section 2 details relevant theory 
of matrix groups over Zm and computing in GL(n, Zm). Then in Section 3 we give a 
suite of algorithms for arithmetic groups in Γn. After verifying decidability, we describe 
computing a maximal principal congruence subgroup; membership testing; and aspects 
of subnormality, e.g., testing whether an arithmetic group H ≤ Γn is subnormal or nor-
mal, and constructing the normal closure of a subgroup of Γn. In Section 4 we solve the 
orbit-stabilizer problem for arithmetic groups in Γn acting on Qn. Our solution draws on 
a comprehensive description of Zn-orbits and stabilizers for a principal congruence sub-
group. Section 5 shows how to extend results from Γn to SL(n, Q). Finally, we examine 
the performance of our GAP [13] implementation of the algorithms.

We remark that the scope of this paper may be widened to other groups with the 
CSP, such as Sp(2m, OP) or SL(n, OP) for m ≥ 2 and n > 2, where OP is the ring of 
integers of a number field P that is not totally imaginary [3].

1. Arithmetic subgroups of SL(n, QQQ): background

1.1. Preliminaries

Let R be a commutative ring with 1, and I ⊆ R be an ideal. The natural surjection 
R → R/I induces a congruence homomorphism ϕI : Mat(n, R) → Mat(n, R/I). Let 
Gn = GL(n, R) and Γn = SL(n, R). The kernel of ϕI on Γn or Gn is a principal con-
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gruence subgroup (PCS) of level I. Such a subgroup of Γn will be denoted Γn,I . We set 
Γn,R = Γn. If R = Z then R/I = Zm for some non-negative integer m, and the subscript 
‘I’ is replaced by ‘m’.

For computational purposes, Γn and Gn should be finitely generated, and proper 
quotients of R should be finite. The latter is true if n > 2 and R = OP or R is the 
univariate polynomial ring Fq[x] over the finite field Fq of size q. These are two major 
types of ambient ring R encountered when computing with finitely generated linear 
groups.

Define tij(a) = 1n + eij(a), where eij(a) ∈ Mat(n, R) has a in position (i, j) and zeros 
everywhere else. The matrices tij(a) for distinct i, j are transvections. The subgroup

En,I =
〈
tij(a) : a ∈ I, 1 ≤ i, j ≤ n, i �= j

〉
of Γn,I is the elementary group of level I. We write eij, tij , En for eij(1), tij(1), En,R

respectively.

Lemma 1.1.

(i) For all i �= j, [tij(a), tji(b)] = 1n + eij(a2b) − eji(ab2) + eii(ab + a2b2) − ejj(ab).
(ii) If i, j, k are pairwise distinct then [tij(a), tjk(b)] = tik(ab) and [tij(a), tki(b)] =

tkj(−ab).
(iii) If i �= l and j �= k then tij(a) commutes with tkl(b).

Proposition 1.2. In each of the following situations, Γn = En: (i) n ≥ 2 and R is 
Euclidean or semi-local; (ii) n ≥ 3 and R is a Hasse domain of a global field.

Proof. See [16, 4.3.9, pp. 172–173]. �
Remark 1.3. OP is a Hasse domain of a global field, Fq[x] is Euclidean, and Zm is 
semi-local.

Proposition 1.2 implies that ϕm maps SL(n, Z) onto SL(n, Zm). However,
ϕI : GL(n, R) → GL(n, R/I) may not be surjective.

Proposition 1.4. Let R = OP or Fq[x]. If n > 2 or R = OP then En, Γn, and Gn are 
finitely generated. None of the groups E2, Γ2, or G2 is finitely generated when R = Fq[x].

Proof. If n ≥ 3 then Γn = En is finitely generated by [16, 4.3.11, p. 174]; hence so too 
is Gn, by [16, 1.2.17, p. 29] and Dirichlet’s unit theorem. See [16, 4.3.16, p. 175] and 
subsequent comments for the remaining claims. �

The notation A ≤f B means that A is of finite index in the group B. For n ≥ 3, 
Γn = SL(n, Z) has the congruence subgroup property: H ≤f Γn is equivalent to H
containing some Γn,m [3,23]. On the other hand, Γ2 does not have the CSP [31, §1.1].
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1.2. Generators of congruence subgroups

Let R = Z. We first discuss generating sets for Gn and Γn, and thus for their homo-
morphic images Gn = GL(n, Zm), Γn = SL(n, Zm).

By Lemma 1.1 (ii), the transvections t12, . . . , t1n, t21, . . . , tn1 constitute a generating 
set for Γn = En. In fact Γn has a generating set of minimal size 2: t12 and

(
0 1n−1

(−1)n−1 0

)
;

see [27, p. 107]. Adding the diagonal matrix diag(−1, 1, . . . , 1) produces a generating 
set for Gn of size 3. Similarly, two generators of Γn, together with all diagonal matrices 
diag(α, 1, . . . , 1) as α runs over a generating set for the unit group Z∗

m of Zm, generate Gn. 
If m = 2 or an odd prime power then Gn is 2-generated. For all k ≥ 3, GL(n, Z2k) is 
4-generated, and GL(n, Z4) is 3-generated.

The normal closure of A in B is denoted AB. Let (k, l) be the permutation matrix 
obtained by swapping rows k and l of 1n.

Lemma 1.5. For any i �= j, EΓn
n,m = 〈tij(m)〉Γn .

Proof. Put N = 〈tij(m)〉Γn . We prove that tkl(m) ∈ N for all k �= l. By Lemma 1.1 (ii),

tkj(m) = tij(m)tij(−m)tki , k �= j, i;

so tkj(m) ∈ N . Then tkl(m) = [tkj(m), tjl] ∈ N if k, l �= j. Since tkl(m) = tlk(−m)(k,l)d
where d = diag(1, . . . , 1, −1, 1, . . . , 1) with −1 in position k, this concludes the proof. �
Proposition 1.6. If n ≥ 3 and i �= j then Γn,m = 〈tij(m)〉Γn = EΓn

n,m (hence Γn,m =
EGn

n,m).

Proof. See [3], [4], or [23]. �
Remark 1.7. For n, m > 1, En,m is not normal in Γn.

Remark 1.8. En,m1 ≤ En,m2 ⇔ Γn,m1 ≤ Γn,m2 ⇔ m2 | m1.

A PCS in Γn for n ≥ 3 is the image under ϕm of a PCS in Γn.

Corollary 1.9. Let I be an ideal of Zm, so Zm/I ∼= Za for some divisor a of m. If n ≥ 3
then the kernel Γn,a of ϕI on Γn = SL(n, Zm) is

{
1n + ax ∈ Γn | x ∈ Mat(n,Zm)

}
= ϕm(Γn,a) = EΓn

n,a.

Furthermore, Γn,a = 〈tij(a)〉Γn = 〈tij(a)〉Gn for any i and j �= i.
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Proposition 1.10. If n ≥ 3 then Γn,m has generating set

{
tij(m)g | 1 ≤ i < j ≤ n, g ∈ Σ

}
(1)

where

Σ =
{
1n, (k, l), 1n − 2ekk − 2ek+1,k+1 + ek+1,k | 1 ≤ k < l ≤ n

}
.

Proof. See [32]. �
We emphasize that the number of generators in (1) does not depend on m. The 

minimal size of a generating set for Γn,m is unknown. However, by Lemma 2.10 below, 
this size can be no less than n2 − 1. As Professor A. Lubotzky has pointed out to us, 
[29, Theorem 1] and Lemma 2.10 imply that Γn,m has a generating set of size n2 + 2. In 
[20] it is conjectured that Γn,m for n ≥ 3 contains a 2-generator subgroup of finite index 
(cf. [19, p. 412]). If the conjecture is true then Γn,m is (n2 + 1)-generated.

Let min(H) denote the size of a minimal generating set of H. Although min(H) can 
be arbitrarily large [32, pp. 355–356], we have

Lemma 1.11. Suppose that n ≥ 3 and Γn,m ≤ H ≤ Γn. Then min(H) is bounded above 
by a function of n, m only.

Proof. This is clear from Proposition 1.10 and the fact that |H : Γn,m| ≤ |SL(n, Zm)|. �
1.3. Constructing a PCS in an arithmetic subgroup

Let n ≥ 3. Our overall strategy rests on knowing some Γn,m in the arithmetic group 
H ≤ Γn. We show that such a PCS can always be constructed.

Proposition 1.12. Γn,m2 ≤ En,m; so |Γn : En,m| is finite.

Proof. Let pij = tij(m) and sij = tij(m2). Then Γn,m2 is generated by the sij for i < j

and their conjugates as in Proposition 1.10. Our goal is to prove that these all lie in En,m, 
i.e., that they can be expressed as words in the pij . Since s(k,l)

ij = pmi′j′ where i′ = i(k,l)

and j′ = j(k,l), it suffices to consider conjugation by cl = 1n − 2ell − 2el+1,l+1 + el+1,l
for l < n. Furthermore, if l, l + 1 /∈ {i, j} then sij and cl commute: thus it suffices to 
consider conjugation of sij by ci, ci−1, cj , cj−1.

First we suppose that the conjugating element has index i or i − 1. For j = i + 1 and 
a /∈ {i, i + 1},

sciij = p−1
ai pajp

−1
ia p−1

ja p
−1
aj paipjapia =

[
p−1
aj pai, pjapia

]
. (2)

If j �= i + 1 we have
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sciij =
(
p−1
i+1,j

)m−1
pi,i+1p

−1
i+1,jp

−1
i,i+1. (3)

For j �= i − 1,

s
ci−1
ij = pi,i−1p

−1
i−1,jp

−1
i,i−1pi−1,j =

[
p−1
i,i−1, pi−1,j

]
, (4)

while si,i−1 and ci−1 commute.
Now suppose that the index of the conjugating element is j or j − 1. For j �= i + 1,

s
cj−1
ij = pj−1,jpi,j−1p

−1
j−1,jp

m−1
i,j−1. (5)

If j = i + 1 then cj−1 = ci and (2) applies.
If i �= j + 1 then

s
cj
ij = p−1

j+1,jp
−1
i,j+1pj+1,jpi,j+1 = [pj+1,j , pi,j+1], (6)

and if i = j + 1, again as noted above, sij = si,i−1 and cj = ci−1 commute. �
The group Γn has a (finite) presentation 〈tij, 1 ≤ i, j ≤ n, i �= j | R〉 where R consists 

of all commutator relations [tij, tkm] = 1, [tij , tjk] = tik from Lemma 1.1 (ii) and (iii), 
with a single extra relation (t12t−1

21 t12)4 = 1 [25, Corollary 10.3].

Lemma 1.13. Given H ≤f Γn we can find an elementary group in H.

Proof. Express each generator of H as a product of transvections (for which see, e.g., [18, 
p. 99]). Then the Todd–Coxeter procedure with input Γn and H terminates, returning 
m = |Γn : H|. So for all i, j and known l we have tij(l) = tij(1)l ∈ H (l = lcm{1, . . . , m}
say). Hence En,l ≤ H. �

Using Proposition 1.12, we rescue one item (slightly generalized) from the proof of 
Lemma 1.13.

Lemma 1.14. If |Γn : H| ≤ m then Γn,l2 ≤ H where l = lcm{1, . . . , m}.

Proposition 1.12 and Lemma 1.13 yield the promised

Corollary 1.15. Construction of a PCS in H ≤f Γn is decidable.

1.4. Maximal congruence subgroups

In this subsection n ≥ 3 and Gn = GL(n, Z).

Lemma 1.16. Let m1, m2 be positive integers, m = gcd(m1, m2), and l = lcm(m1, m2). 
Then
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(i) Γn,m1Γn,m2 = Γn,m.
(ii) Γn,m1 ∩ Γn,m2 = Γn,l.

Proof. (i) For x ∈ Γn and integers a, b such that am1 + bm2 = m,

tij(m)x =
(
tij(m1)x

)a · (tij(m2)x
)b ∈ Γn,m1Γn,m2 .

Thus Γn,m = Γn,m1Γn,m2 by Proposition 1.6.
(ii) Certainly Γn,l ≤ Γn,m1 ∩ Γn,m2 . The reverse containment is just the Chinese 

Remainder Theorem. �
Corollary 1.17. If H ≤f Gn then H contains a unique maximal PCS (of Γn): there is a 
positive integer m such that Γn,m ≤ H, and Γn,k ≤ H ⇒ Γn,k ≤ Γn,m.

Remark 1.18. If H has maximal PCS Γn,m and gcd(k, m) = 1 then ϕk(H) = SL(n, Zk). 
Hence we know ν such that ϕp(H) = SL(n, p) for all primes p > ν; cf. the query raised 
at the foot of [21, p. 126].

Remark 1.19. Although H similarly contains a unique maximal elementary subgroup 
En,m, the Γn-normal closure of En,m need not be the maximal PCS in H, nor even be 
in H.

Remark 1.20. Lemma 1.14 provides an upper bound on m such that Γn,m is the maximal 
PCS of an arithmetic group in Γn; cf. [22, Proposition 6.1.1, p. 115].

Lemma 1.21. Each subgroup of Gn = GL(n, Zm) contains a (perhaps trivial) unique 
maximal PCS of Γn = SL(n, Zm). In more detail, suppose that Γn,m ≤ H ≤ Γn and Γn,r

is the maximal PCS in H; then Γn,r = ϕm(Γn,r) is the maximal PCS in H = ϕm(H).

Proof. Since Γn,m ≤ Γn,r, we have that r divides m, and so Γn,r is a PCS in H. 
Corollary 1.9 tells us that each PCS in H has the form Γn,k = ϕm(Γn,k) for some k | m. 
Moreover Γn,k ≤ H, because H contains kerϕm. Hence Γn,r is as claimed. �
1.5. Subnormal structure

Let Zn,I denote the full preimage of the center (scalar subgroup) of GL(n, R/I) in 
Gn = GL(n, R) under ϕI . As per [33, p. 166], the level �(h) of h = (hij) ∈ Gn is the 
ideal of R generated by

{hij | i �= j, 1 ≤ i, j ≤ n} ∪ {hii − hjj | 1 ≤ i, j ≤ n}.

Then �(A) :=
∑

a∈A �(a) for A ⊆ Gn. So �(A) is the smallest ideal I such that A ⊆ Zn,I . 
When R is a principal ideal ring we write b in place of I = bR. For R = Z or Zm, �(A)
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may be defined unambiguously as the non-negative integer or integer modulo m that 
generates �(A); e.g., �(Zn,k) = �(Γn,k) = k.

Lemma 1.22. If H = 〈S 〉 ≤ Gn then �(H) = �(S).

Proof. It is evident from the definitions that �(S) ⊆ �(H) and �(ab) ⊆ �(a) + �(b) for 
a, b ∈ Gn. Since also �(a) = �(a−1) by [33, Lemma 1], �(H) ⊆ �(S) as required. �

From now on in this subsection, n ≥ 3 and R = Z or Zm. We write H snG to denote 
that H ≤ G is subnormal. The defect of H is the least d such that there exists a series 
H = H0 � H1 � · · · � Hd−1 � Hd = G.

Theorem 1.23. H snGn if and only if

Γn,ke ≤ H ≤ Zn,k (7)

for some k, e. If (7) holds then d ≤ e +1 where d is the defect of H, and the least possible 
e is bounded above by a function of n and d only.

Proof. See [33, Corollary 3]. �
Although non-scalar subnormal subgroups of GL(n, Z) have finite index, this is not 

true for n = 2; the normal closure of E2,m in SL(2, Z) has infinite index [23, p. 31].

Theorem 1.24. Let H be a subgroup of Gn of level l ≥ 1, with maximal PCS Γn,r. Then 
H snGn if and only if r | le for some e. In that event, the defect of H is bounded above 
by e′ + 1 where e′ is the least such e.

Proof. If H is subnormal then lR ⊆ kR and Γn,ke ≤ Γn,r for k, e as in Theorem 1.23; 
so k | l and r | ke. Conversely, if r | le then H satisfies (7) with k = l. �
Lemma 1.25. (See [33, p. 165].) Zn,l/Γn,le is nilpotent of class at most e.

We now consider normality.

Lemma 1.26. If Γn,l ≤ H ≤ Zn,l then H � Gn and l = �(H) = the level of the maximal 
PCS in H.

Proof. We first observe that l = �(Γn,l) ≥ �(H) ≥ �(Zn,l) = l. Let Γn,r be the maximal 
PCS in H. Then r | l; and l | r because Γn,r ≤ Zn,l. �
Lemma 1.27. Suppose that H ≤ Gn has level l. Then

(i) Γn,l ≤ HGn ≤ Zn,l.
(ii) HGn = 〈H, Γn,l〉.
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Proof. (i) The inclusion HGn ≤ Zn,l is clear. If h ∈ H has level a then t12(a) ∈ 〈h〉Gn

by Theorems 1 and 4 of [5]. As a consequence, t12(l) ∈ HGn . Now this part is assured 
by Proposition 1.6 and Corollary 1.9.

(ii) Let L = 〈H, Γn,l〉. Since L �Gn (Lemma 1.26), HGn ≤ L. Also L ≤ HGn by (i). �
Corollary 1.28. H � Gn if and only if �(H) is the level of the maximal PCS in H.

Proposition 1.29. Lemma 1.27 remains true with Gn replaced by Γn = SL(n, R). That 
is, HΓn = HGn , and so H ≤ Γn is normal in Γn precisely when it is normal in Gn.

2. Matrix groups over ZZZm

2.1. Relevant theoretical results

Let m = pk1
1 · · · pkt

t where the pi are distinct primes and ki ≥ 1. We define a ring 
isomorphism χ : Zm → Z

p
k1
1

⊕ · · · ⊕ Z
p
kt
t

by χ(a) = (a1, . . . , at) where 0 ≤ a ≤ m − 1, 
0 ≤ ai ≤ pki

i − 1, and ai ≡ a mod pki
i .

Lemma 2.1.

(i) The map χ extends to an isomorphism of Mat(n, Zm) onto 
⊕t

i=1 Mat(n, Z
p
ki
i

), 
which restricts to isomorphisms GL(n, Zm) →×t

i=1 GL(n, Z
p
ki
i

) and SL(n, Zm) →
×t

i=1 SL(n, Z
p
ki
i

).
(ii) Let I = 〈a〉 be an ideal of Zm, and let Ii be the ideal of Z

p
ki
i

generated by ai ≡
a mod pki

i . Denote by KI , KIi the kernels of ϕI , ϕIi on GL(n, Zm), GL(n, Z
p
ki
i

)
respectively. Then

χ(KI) =
t×

i=1
KIi and χ

(
KI ∩ SL(n,Zm)

)
=

t×
i=1

(
KIi ∩ SL(n,Zm)

)
.

For i ≥ 1,

Mp,i =
{
h ∈ GL(n,Zpk) | h ≡ 1n mod pi

}
, Np,i = SL(n,Zpk) ∩Mp,i

are normal subgroups of GL(n, Zpk).

Lemma 2.2. (Cf. Corollary 1.9.) If I is the ideal of Zpk generated by pi, then
ϕI : GL(n, Zpk) → GL(n, Zpi) and ϕI : SL(n, Zpk) → SL(n, Zpi) are surjective, with 
kernels Mp,i, Np,i respectively.

The notation Mp,i, Np,i supersedes earlier notation for principal congruence subgroups 
in this special case. Let dj(a) = 1n + aejj ∈ Mat(n, Zm).
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Lemma 2.3. Suppose that i < j ≤ 2i and j ≤ k. Then Mp,i/Mp,j
∼= Cn2

pj−i , and Np,i/Np,j

has a subgroup isomorphic to Cn2−1
pj−i .

Proof. Treating Mat(n, Zpj−i) as an additive group, we confirm that θj : Mp,i →
Mat(n, Zpj−i) defined by θj(1n + pix) = ϕpj−i(x) is a homomorphism with kernel 
Mp,j . Now trs(pi) ∈ Np,i and dr(pi) ∈ Mp,i, so θj is surjective. Since Np,i contains 
1n + pi(err − er+1,r+1 + er,r+1 − er+1,r), the second assertion follows too. �
Lemma 2.4. [Mp,i, Mp,j ] = [Np,i, Np,j ] = Np,i+j.

Proof. (Cf. Lemma 1.25.) Let a = 1n + pix ∈ Mp,i and b = 1n + pjy ∈ Mp,j . For some z, 
and x̄, ȳ such that a−1 = 1n + pix̄ and b−1 = 1n + pj ȳ, we have

[a, b] =
(
1n + pix̄ + pj ȳ + pi+j x̄ȳ

)(
1n + pix + pjy + pi+jxy

)
= 1n + pi(x + x̄) + p2ix̄x + pj(y + ȳ) + p2j ȳy + pi+jz

= 1n + pi+jz.

Therefore [Mp,i, Mp,j ] ≤ Mp,i+j ∩ SL(n, Zpk) = Np,i+j . Also t21(pi+j) = [t23(pi),
t31(pj)] ∈ [Np,i, Np,j ] � SL(n, Zpk); thus Np,i+j ≤ [Np,i, Np,j ] by Corollary 1.9. �
Lemma 2.5.

(i) |Mp,i| = pn
2(k−i).

(ii) |GL(n, Zpk)| = |GL(n, p)| · pn2(k−1).

Proof. Lemma 2.3 takes care of (i). By Lemma 2.2, we then get (ii). �
Corollary 2.6. If 2i > k then Mp,i is abelian of exponent pk−i.

The next two corollaries use Lemma 2.1. Let a = pj11 · · · pjtt where 0 ≤ ji ≤ ki. Note 
that ai ≡ a mod pki

i generates the ideal 〈pjii 〉 of Z
p
ki
i

. Set Mpi,0 = GL(n, Z
p
ki
i

) and 

Npi,0 = SL(n, Z
p
ki
i

).

Corollary 2.7.

(i) |GL(n, Zm)| =
∏t

i=1(|GL(n, pi)| · pn
2(ki−1)

i ).
(ii) The PCS of GL(n, Zm) of level a has order 

∏t
i=1 |Mpi,ji |.

Lemma 2.8.

(i) |SL(n, Zpk)| = |SL(n, p)| · p(n2−1)(k−1).
(ii) For i ≥ 1, Np,i/Np,i+1 ∼= Cn2−1

p and |Np,i| = p(n2−1)(k−i).



244 A.S. Detinko et al. / Journal of Algebra 421 (2015) 234–259
Proof. The unit group of Zpk has order (p − 1)pk−1, so (i) follows from Lemma 2.5 (ii). 
Lemma 2.3 implies that |Np,i/Np,i+1| ≥ pn

2−1. Thus, if |Np,j/Np,j+1| �= pn
2−1 for some 

j then |Np,1| > p(n2−1)(k−1), which contradicts (i) by Lemma 2.2. �
Corollary 2.9.

(i) |SL(n, Zm)| =
∏t

i=1(|SL(n, pi)| · p(n2−1)(ki−1)
i ).

(ii) The PCS of SL(n, Zm) of level a has order 
∏t

i=1 |Npi,ji |.

Define subsets

Sc =
{
trs(c), 1n + c(euu + eu,u+1 − eu+1,u − eu+1,u+1) | r �= s, 1 ≤ r, s ≤ n,

1 ≤ u ≤ n− 1
}

of SL(n, Zm) and

Tc =
{
trs(c), d1(c), . . . , dn(c) | r �= s, 1 ≤ r, s ≤ n

}
of Mat(n, Zm). We see that Tc ≤ GL(n, Zm) if and only if 1 + c is a unit of Zm.

Lemma 2.10. Suppose that 1 ≤ i < k.

(i) Np,i has minimal generating set Spi , so min(Np,i) = n2 − 1.
(ii) Unless p = 2, k ≥ 3, and i = 1, min(Mp,i) = n2 and Mp,i has minimal generating 

set Tpi .
(iii) M2,1 for k ≥ 3 has minimal generating set T2 ∪ {diag(−1, 1, . . . , 1)} of size n2 + 1.

Proof. In the proof of Lemma 2.3 we saw that Np,i = 〈Spi , Np,2i〉. Since Np,i is nilpo-
tent with derived group Np,2i by Lemma 2.4, we have Np,i = 〈Spi〉. So min(Np,i) =
min(Np,i/Np,i+1) = n2 − 1 by Lemma 2.8 (ii).

The rest of the proof is along similar lines. Note that Mp,i = 〈Tpi , Mp,2i〉, and 
Mp,2i/Np,2i is trivial when 2i ≥ k, or cyclic of order pk−2i generated by the coset of 
d1(p2i) otherwise. Also 1 + p2i ∈ 〈1 + pi〉 ≤ Z∗

pk unless p = 2, k ≥ 3, and i = 1; 
whereas 5 ∈ 〈−1, 3〉 = Z∗

2k for k ≥ 3. Therefore Mp,i = 〈Tpi , Np,2i〉 = 〈Tpi〉 in (ii). Since 
|Tpi | = n2 and Mp,i/Mp,i+1 has rank n2, this proves (ii). The verification of (iii) is left 
as an exercise. �
Proposition 2.11. Let H, K be non-trivial principal congruence subgroups of level a =
pj11 · · · pjtt in GL(n, Zm), SL(n, Zm) respectively. Suppose further that 1 ≤ ji < ki for 
some i. Then
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(i) min(H) = n2 unless k2 ≥ 3 and the Sylow 2-subgroup of χ(H) is M2,1; in the latter 
case min(H) = n2 + 1.

(ii) min(K) = n2 − 1.

Proof. If X, Y are groups of coprime order with minimal generating sets {x1, . . . , xr1} ⊆
X and {y1, . . . , yr2} ⊆ Y , where r1 ≤ r2, then min(X × Y ) = r2. Indeed

X × Y =
〈
(xi, yi), (1, yj) : 1 ≤ i ≤ r1; r1 + 1 ≤ j ≤ r2

〉
.

Therefore min(H) ≥ n2 or n2 + 1 and min(K) ≥ n2 − 1 by Lemmas 2.1 (ii) and 2.10. 
For those indices i such that 1 ≤ ji < ki does not hold, the Sylow pi-subgroups of 
χ(H) and χ(K) are either trivial or GL(n, Z

p
ki
i

), SL(n, Z
p
ki
i

) respectively. As GL(n, Zb)
is 4-generated and SL(n, Zb) is 2-generated, we are done. �
Remark 2.12. The proof of Proposition 2.11 shows how to construct minimal generating 
sets for H and K with the aid of Lemma 2.10. Note that we get a generating set for a 
PCS in SL(n, Zm) by reducing (1) in Proposition 1.10 modulo p.

2.2. Computing in GL(n, Zm)

As above, suppose that m ≥ 2 has prime factorization 
∏t

i=1 p
ki
i . Let χ be the isomor-

phism introduced just before Lemma 2.1. We identify H ≤ GL(n, Zm) with χ(H).
To compute with H, we use composition tree methods and the data structure from [17]. 

The latter consists of an effective homomorphism into ×t
i=1 GL(n, pi) whose kernel K

is the solvable radical of H, and a polycyclic generating sequence (PCGS) for K. Data 
structures for the images of the projections of H modulo pki

i can be combined into a 
data structure for H. We therefore assume that m = pk.

Clearly H/K is isomorphic to a quotient of ϕp(H) ≤ GL(n, p), and a PCGS for the 
radical of ϕp(H) gives the initial terms of a PCGS for K; the rest are found by reductions 
modulo pe (cf. Subsection 2.1). As we have seen, if M is the kernel of reduction modulo 
pe and N the kernel of reduction modulo pe+1, then M/N is described by matrices 
1n + pex for x ∈ Mat(n, p), which multiply by addition of their x-parts. A PCGS for the 
elementary abelian group M/N can be determined easily by linear algebra.

2.3. Subnormal structure

Let n ≥ 3. We adhere to previous notation and conventions.
Let Level be a function that returns �(H) for a subgroup H = 〈S 〉 of Gn =

GL(n, Zm); see Lemma 1.22.

MaxPCS(H)

Input: H ≤ Gn.
Output: a generating set for a maximal PCS of Γn = SL(n, Zm) in H.

(1) l := Level(H).
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(2) If l = 0 then return 1n,
else return a generating set L for the PCS of level a in Γn as given by Propo-
sition 2.11, where a is minimal subject to a dividing m, l dividing a, and 
L ⊆ H.

Step (2) requires membership testing. As an application of MaxPCS, we have

IsSL(H)

Input: H ≤ Γn.
Output: true if H = Γn; false otherwise.

If Level(MaxPCS(H)) = 1 then return true
else return false.

The following reiterates Theorem 1.24.

IsSubnormal(H)

Input: H ≤ Gn.
Output: true and an upper bound d on the defect of H if H snGn; false otherwise.

(1) l1 := Level(H), l2 := Level(MaxPCS(H)).
(2) If �e such that l2 | le1 then return false,

else return true and d := e′ + 1 where e′ := the least e such that l2 | le1.

Remark 2.13. Let H ≤ Γn. Obviously H snΓn if and only if H snGn. The defect of H as 
a subnormal subgroup of Γn is either equal to or one less than its defect as a subgroup 
of Gn.

NormalClosure(H) returns the normal closure of H in Gn according to Lemma 1.27. 
IsNormal tests whether H � Gn, returning true if and only if l2 = l1 (Corollary 1.28).

By Proposition 1.29, NormalClosure also returns the normal closure in Γn of H ≤ Γn, 
and IsNormal tests whether H � Γn.

We can list the subnormal subgroups of Gn in H.

NormalSubgroups(H, l)

Input: H ≤ Gn and a positive integer l.
Output: all normal subgroups of Gn in H of level l.

(1) r := Level(MaxPCS(H)).
(2) If r does not divide l then return ∅.
(3) L := a list of all subgroups of ϕl(H) ∩ ϕl(Zn,l).
(4) Return the full preimage of L in H under ϕl.
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We next sketch a more general method. Let La,b be the list of all K such that Γn,b ≤
K ≤ H∩Zn,a. Define L =

⋃
k Lk,kt where k ranges over the multiples of �(H) dividing m, 

and t = t(k) is maximal subject to r | kt. Then L is a complete list of the subnormal 
subgroups of Gn in H. By Lemma 1.25, Lk,kt consists of preimages of subgroups of the 
nilpotent group ϕkt(Zn,k). Redundancies in L are removed using Lk1,k

t1
1

∩ Lk2,k
t2
2

=
Llcm(k1,k2),gcd(k1,k2)t where t = min(t1, t2), by Lemma 1.16.

3. Computing with arithmetic groups in SL(n, ZZZ)

3.1. Decision problems

An arithmetic subgroup H of an algebraic Q-group G ≤ GL(n, C) is ‘explicitly given’ 
if (i) an upper bound on |GZ : H| is known, and (ii) membership testing in H is possible; 
i.e., for any g ∈ GZ it can be decided whether g ∈ H [14, pp. 531–532]. Conditions (i) 
and (ii) were assumed in [14] to prove decidability of algorithmic problems for H. As 
the next lemma shows, for G = GL(n, C) and n > 2, these conditions are equivalent to 
knowing a PCS in H. Such a PCS can always be found: see Corollary 1.15.

Lemma 3.1. Let H ≤f Γn. The following are equivalent.

(i) A positive integer m such that Γn,m ≤ H is known.
(ii) An upper bound on |Γn : H| is known, and testing membership of x ∈ Γn in H is 

decidable.

Proof. (i) ⇒ (ii). |Γn : H| ≤ |SL(n, Zm)|, and x ∈ H if and only if ϕm(x) ∈ ϕm(H).
(ii) ⇒ (i). Suppose that |Γn : H| ≤ r. For g ∈ Σ as in Proposition 1.10 and each pair 

i, j, after no more than r rounds we are guaranteed to find positive integers rg,i,j ≤ r

such that tij(rg,i,j)g = (tgij)rg,i,j ∈ H. Thus, if m is any common multiple of the rg,i,j
then Γn,m ≤ H. �
Proposition 3.2. If H is a finite index subgroup of Γn specified by a finite generating set 
then testing membership of any g ∈ Γn in H is decidable.

Proof. This follows from Corollary 1.15 and Lemma 3.1. �
A key problem that arose naturally in our research is

(AT) Arithmeticity testing: if H is a finitely generated subgroup of Γn,

determine whether |Γn : H| is finite.

We are unaware of any proof that (AT) is decidable—although it seems not to be [24]. 
Nonetheless, (AT) is decidable when G is solvable [7]. See also [28] for an indication of 
the significance of (AT).
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3.2. Algorithms for arithmetic groups

Now we design algorithms for arithmetic groups H ≤ Γn = SL(n, Z), n ≥ 3, given by 
a finite generating set.

By Corollary 1.15 (and the proof of Lemma 1.13), we obtain a procedure LevelPCS(H)
that returns the level of a PCS in H. It depends on representing elements of Γn as 
products of transvections. Say LevelPCS(H) = m; then GeneratorsPCS(m) returns a 
generating set for Γn,m as in Proposition 1.10.

Let H = ϕm(H) ≤ Γn = SL(n, Zm). Lemma 1.21 underpins the following, which 
finds the maximal PCS Γn,r in H. (To improve efficiency we could substitute r for m in 
algorithms of this section.)

MaxPCS(H, m)

Input: H ≤ Γn such that Γn,m ≤ H.
Output: a generating set for the maximal PCS in H.

(1) r := Level(MaxPCS(H)).
(2) Return GeneratorsPCS(r).

Remember that the level of a finitely generated subgroup of Γn is calculated straightfor-
wardly by Lemma 1.22. IsSL(H, m) returns true if MaxPCS(H, m) has level 1 and false
otherwise.

We mention a few more sample procedures.

Index(H, Γ, m) returns |Γn : H| = |Γn : H|.

IsSubgroup(H, L, m) tests whether a finitely generated subgroup L of Γn is contained 
in H, returning true if and only if L ≤ H.

Intersect(H1, H2, m). Suppose that Γmi
≤ Hi ≤ Γn, i = 1, 2. Let l = lcm(m1, m2). 

This procedure returns H1 ∩ H2, which by Lemma 1.16 (ii) is the full preimage in Γn

under ϕl of ϕl(H1) ∩ ϕl(H2).

IsSubnormal(H, m) returns true and a bound on the defect of H if H snΓn; otherwise 
it returns false. The steps mimic those of IsSubnormal(H) from Subsection 2.3, but 
are now carried out over Z. The same comment applies to normality testing of H.

NormalClosure(H): as before, immediate from Lemma 1.27. We do not need to know 
a PCS in H.

Normalizer(H, m) returns NΓn
(H), the full preimage in Γn of NΓn

(H). Note that 
CΓn

(H) is either trivial if n is odd or 〈−1n〉 if n is even, because H is absolutely irre-
ducible over Q.

NormalSubgroups(H, m) returns all normal subgroups of Γn in H containing Γn,m: 
this is the full preimage of the list 

⋃
l NormalSubgroups(H, l) as l ranges over the divisors 
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of m. All subnormal subgroups of Γn in H containing Γn,m are extracted similarly from 
the corresponding list in Γn.

4. The orbit-stabilizer problem

Let R be a commutative ring with 1, and let H = 〈S 〉 ≤ GL(n, R). This section 
addresses the orbit-stabilizer problem: for arbitrary u, v ∈ Rn,

(I) decide whether there is g ∈ H such that gu = v, and find a g if it exists;
(II) determine StabH(u) = {g ∈ H | gu = u}.

The element g and a generating set for StabH(u) should be written as words over S∪S−1. 
We solve (I) and (II) for R = Q and H ≤f Γn = SL(n, Z). Along the way, partial results 
for subgroups of Γn = SL(n, Zm) are proved as well.

4.1. Preliminaries

Suppose that Γn,m ≤ H ≤ Γn. Denote images under ϕm by overlining.

Lemma 4.1. Let u, v ∈ Zn, and let K be the full preimage of StabH(u) in H. Then

(i) v ∈ Hu if and only if v ∈ Hu and hv ∈ Ku for any h ∈ H such that hv = u.
(ii) StabH(u) = StabK(u).

Proposition 4.2. If we can solve the orbit-stabilizer problem for Γn,m (acting on Zn), 
then we can solve it for H.

Proof. (Cf. [11, p. 255] and [12, Lemma 3.1].) First, note that K permutes the Γn,m-orbits 
in Zn. Let {y1, . . . , yk} be a set of representatives for the K-orbit of Γn,mu. In the notation 
of Lemma 4.1,

v ∈ Hu ⇐⇒ hv ∈ Ku ⇐⇒ hv, yiu are in the same Γn,m-orbit for some i.

Secondly, we can find (Schreier) generators h1, . . . , hs of StabK(Γn,mu); and also find 
gi ∈ Γn,m such that giu = hiu, 1 ≤ i ≤ s. Then

StabH(u) = StabK(u) =
〈
g−1
1 h1, . . . , g

−1
s hs, StabΓn,m

(u)
〉
. �

As suggested by Proposition 4.2, we aim initially to solve the orbit-stabilizer problem 
for a PCS in Γn.
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Let u = (u1, . . . , un)� ∈ Rn, and let 〈u〉 denote the ideal of R generated by the ui.

Lemma 4.3. 〈xu〉 = 〈u〉 for any x ∈ GL(n, R); thus, 〈u〉 = 〈v〉 if u and v are in the same 
GL(n, R)-orbit.

A vector u ∈ Rn such that 〈u〉 = R is said to be unimodular. By Lemma 4.3, GL(n, R)
permutes the unimodular vectors among themselves.

4.2. Γn-orbits in Zn
m

Suppose that m has prime factorization pe11 · · · pess , and write a ∈ Zm as (a1, . . . , as), 
ai ∈ Zp

ei
i

.

Lemma 4.4. If (u1, . . . , un)� ∈ Zn
m is unimodular then u1 +

∑n
i=2 biui is a unit of Zm

for some b2, . . . , bn ∈ Zm.

Lemma 4.4 is proved in [18, p. 104]. We summarize the proof as follows.

Auxiliary1(u)

Input: unimodular u = (u1, . . . , un)� ∈ Zn
m.

Output: b2, . . . , bn as in Lemma 4.4.
(1) For j = 1, . . . , s do

let k be the least index such that pej−1
j ukj �≡ 0 mod p

ej
j ;

bkj := 1 and bij := 0 for i �= k.
(2) Return b2 := (b21, b22, . . . , b2s), . . . , bn := (bn1, bn2, . . . , bns).

Lemma 4.5. If u ∈ Zn
m is unimodular then gu = (1, 0, . . . , 0)� for some g ∈ Γn.

Proof. By Lemma 4.4,

t12(b2) · · · t1n(bn)u = (v1, u2, . . . , un)�

where v1 = u1 +
∑n

i=2 biui is a unit of Zm. Further,

tn1
(
−v−1

1 un

)
· · · t21

(
−v−1

1 u2
)
(v1, u2, . . . , un)� = (v1, 0, . . . , 0)�.

Finally,

t21(−1)t12(1 − v1)t21
(
v−1
1

)
(v1, 0, . . . , 0)� = (1, 0, . . . , 0)�. �

Corollary 4.6. The set of all unimodular vectors is a Γn-orbit in Zn
m.
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Proposition 4.7. Non-zero vectors u, v ∈ Zn
m are in the same Γn-orbit if and only if 

〈u〉 = 〈v〉.

Proof. Suppose that 〈u〉 = 〈v〉; so u = aũ and v = aṽ for some a dividing m, 1 ≤ a < m, 
and unimodular ũ, ṽ. Now the result is apparent by Lemma 4.3 and Corollary 4.6. �
Corollary 4.8. The map defined by Γnu �→ 〈u〉 is a bijection between the set of Γn-orbits 
in Zn

m and the set of ideals of Zm.

4.3. Orbits in Zn

4.3.1. Γn-orbits

Lemma 4.9. Let u = (u1, . . . , un)� ∈ Zn \{0} and let d be the gcd of the non-zero entries 
of u. Then tu = (d, 0, . . . , 0)� for some t ∈ Γn.

Proof. (Cf. [30, Lemma 3, pp. 72–73].) Say the non-zero entries of u are uj1 , . . . , ujl

where j1 < · · · < jl. If ui = 0 then

tjii(−1)tiji(1)u = (u1, . . . , ui−1, uji , ui+1, . . . , uji−1, 0, uji+1, . . . , un)�.

So the lemma holds for l = 1, and we may assume that ji = i and l ≥ 2.
Formally, the proof is by induction on l. We manufacture t by applying the Euclidean 

algorithm repeatedly to pairs of adjacent nonzero entries of u. To begin, put r0 = ul−1, 
r1 = ul; then for i ≥ 0 and while ri+1 �= 0, let qi+1, ri+2 be the integers such that 
ri = ri+1qi+1 + ri+2 and 0 ≤ ri+2 < |ri+1|. If rk is the last non-zero remainder then

t∗u = (u1, . . . , ul−2, rk, 0, 0, . . . , 0)�

where

t∗ =
{

tl,l−1(−1)tl−1,l(1)tl−1,l(−qk) · · · tl,l−1(−q2)tl−1,l(−q1) k odd,
tl,l−1(−qk) · · · tl,l−1(−q2)tl−1,l(−q1) k even.

At the next stage we put r0 = ul−2, r1 = rk, and repeat the above. Continuing in this 
fashion ultimately gives t as desired. �
Proposition 4.10. (Cf. [30, Corollary 1, p. 73].) Vectors u, v ∈ Zn belong to the same 
Γn-orbit if and only if 〈u〉 = 〈v〉.

Proof. In the notation of Lemma 4.9, 〈u〉 = dZ. �
Corollary 4.11. There is a one-to-one correspondence between the set of Γn-orbits in Zn

and the set of ideals of Z.
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Orbit1Gamma accepts u ∈ Zn \{0} and (as per the proof of Lemma 4.9) returns a pair 
(d, t) where t ∈ Γn, d is the gcd of all non-zero entries of u, and tu = (d, 0, . . . , 0)�.

By Proposition 4.10, the next procedure solves the orbit problem for Γn acting on Zn.

OrbitGamma(u, v)

Input: u, v ∈ Zn \ {0}.
Output: g ∈ Γn such that gu = v, or false if u, v are not in the same Γn-orbit.

(1) (d1, t1) := Orbit1Gamma(u),

(d2, t2) := Orbit1Gamma(v).

(2) If d1 �= d2 then return false,

else return t−1
2 t1.

4.3.2. Γn,m-orbits

Lemma 4.12. (See [18, Lemma 2, p. 105].) Let u, v ∈ Zn. Suppose that there is a non-
empty subset I ⊆ {1, . . . , n} such that ui = vi for i ∈ I and ui ≡ vi mod mm′ for i /∈ I, 
where m′Z = 〈uj : j ∈ I〉. Then u, v are in the same Γn,m-orbit.

We outline the proof of Lemma 4.12 in the form of an algorithm.

Auxiliary2(u, v, I)

Input: u, v ∈ Zn, I as in Lemma 4.12.
Output: g ∈ Γn,m such that gu = v.

(1) For i ∈ I and j ∈ {1, . . . , n} \ I, find cji ∈ Z such that vj = uj + m 
∑

i∈I cjiui.
(2) Return g :=

∏
i∈I,j /∈I tji(mcji).

Theorem 4.13. Let u, v ∈ Zn \ {0} where 〈u〉 = aZ. Then u and v are in the same 
Γn,m-orbit if and only if 〈u〉 = 〈v〉 and ui ≡ vi mod am, 1 ≤ i ≤ n.

Proof. See the theorem on p. 101 of [18] for n > 2. Suppose that n = 2, 〈u〉 = 〈v〉, 
and ui ≡ vi mod am. Then tv = (a, 0)� and tu = a(1 + mr, ms)� for some t ∈ Γ2 and 
r, s ∈ Z such that 〈1 + mr, ms〉 = Z, say x(1 + mr) + yms = 1. Consequently htu = v

where

h =
(

1 −mrx −mry

−ms 1 + mr

)
. �

The procedure below incorporates the method for n > 2 in [18, pp. 105–106]. Lines 
beginning ‘#’ contain explanatory comments.
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OrbitGamma_m(u, v)

Input: u, v ∈ Zn, n ≥ 2.
Output: g ∈ Γn,m such that gu = v, or false if u, v are not in the same Γn,m-orbit.

(1) If OrbitGamma(u, v) = false then return false.
(2) If ui �≡ vi mod am for some i, where (a, t) := Orbit1Gamma(v), then return 
false,

else u := 1
a tu.

# u is now unimodular, u1 ≡ 1 mod m, and ui ≡ 0 mod m for i > 1.
(3) Apply Auxiliary1 to find b3, . . . , bn ∈ Z such that c := u2 + r

∑n
i=3 biui is 

coprime to u1, where u1 = 1 − r, r ∈ mZ.

# u unimodular =⇒ (u2, ru3, . . . , run)� unimodular mod u1.

(4) If n ≥ 3 then
s1 := Auxiliary2(u, (u1, c, u3, . . . , un)�, {3, . . . , n}),

# u, (u1, c, u3, . . . , un)�, and I = {3, . . . , n} satisfy the hypotheses of Lemma 4.12.
s2 := Auxiliary2((u1, c, u3, u4, . . . , un)�, (u1, c, r, 0, . . . , 0)�, {1, 2}).

# Lemma 4.12 again, with m′ = gcd(u1, c) = 1.

(5) If n = 2 then s := h as in the proof of Theorem 4.13,
else s := s3s2s1 where s3 := t13(−1)t31(−r)t21(−c)t13(1).

# s3 ∈ Γn,m because Γn,m � Γn.

(6) Return g := st.

# st ∈ Γn,m and s 1
a tu = (1, 0, . . . , 0)� = t 1

av for the original input u, v.

4.4. Stabilizers in Γn and Γn,m

Suppose that Γn,m ≤ H ≤ Γn and u ∈ Zn \ {0}. As an arithmetic subgroup of an 
algebraic group, StabH(u) is finitely generated [15, p. 744]. Indeed, StabΓn

(u) = Λt
n

where Orbit1Gamma(u) = (d, t) and Λn is the affine group⎛
⎜⎜⎜⎜⎝

1 ∗ · · · ∗
0
... Γn−1
0

⎞
⎟⎟⎟⎟⎠ .

Hence StabΓn
(u) is generated by t12(1)t, . . . , t1n(1)t, diag(1, x)t, and diag(1, y)t, where 

x, y are the generators of Γn−1 given in Subsection 1.2. Next,

StabΓn,m
(u) = StabΓn

(u) ∩ Γn,m = (Λn ∩ Γn,m)t.
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Plainly Λn ∩Γn,m is generated by diag(1, x) as x ranges over a generating set of Γn−1,m

(see Proposition 1.10), together with t12(m), . . . , t1n(m). We denote by StabGamma_m
the procedure that returns the set of t-conjugates of these matrices for input u.

4.5. Solution of the orbit-stabilizer problem for arithmetic groups

Recalling Proposition 4.2 and its proof, we now describe the main algorithms.
As Γn,m � H, the orbits of Γn,m form a block system for H. All vectors in a block 

have the same reduction modulo m (but vectors with equal reduction may not be in the 
same block). We first check for equivalence of vectors under the action by H = ϕm(H), 
and compute generators for stabilizers in H. Then we represent each Γn,m-orbit by a 
vector in Zn and use OrbitGamma_m to test orbit equality. We shall write u for Γn,mu; 
that is, u = v if and only if OrbitGamma_m(u, v) is not false.

To determine stabilizers (and thereby eliminate surplus generators) in H we calculate 
the induced action of H and then take preimages.

If h ∈ H stabilizes u then we put gh = OrbitGamma_m(u, hu). Hence StabH(u) is 
generated by StabGamma_m(u) together with the corrected elements g−1

h h.
We state the algorithms below.

Orbit(u, v, S)

Input: u, v ∈ Zn \ {0} and S ⊆ Γn such that Γn,m ≤ H = 〈S 〉.
Output: h ∈ H such that hu = v, if v ∈ Hu; false otherwise.

(1) Determine StabH(u) and Hu.

If v /∈ Hu then return false,

else select h1 ∈ H such that h1v = u and replace v by h1v.

(2) Determine the K-orbit of u, where K is the full preimage of StabH(u) in H.

If v /∈ Ku then return false,

else select h2 ∈ K such that h2v = u and replace v by h2v.

(3) g := OrbitGamma_m(u, v).
(4) Return h−1

1 h−1
2 g.

Stabilizer(u, S)

Input: u ∈ Zn \ {0} and S ⊆ Γn such that Γn,m ≤ H = 〈S 〉.
Output: a generating set for StabH(u).

(1) K := the full preimage of StabH(u) in H.
(2) L := StabK(u).
(3) gh := OrbitGamma_m(u, hu) for each generator h of L,

A := {g−1
h h | h a generator of L}.

(4) Return A ∪ StabGamma_m(u).
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4.6. Remarks on and refinements of the algorithms

The stabilizer calculations for u and u are done in H via the data structure of Sub-
section 2.2. We use the solvable radical of H to deal with orbits, as in [17]. Typically the 
main obstacle is that Hu can be very long. To ameliorate this we take orbits of ϕr(u)
for an increasing sequence of divisors r of m.

A further refinement (as with any linear action) is given by the imprimitivity system 
arising from the relation of vectors being unit multiples of each other. Here H acts 
on blocks projectively; i.e., as HZ/Z where Z = Z(SL(n, Zr)) = {a1n | a ∈ Z∗

r}. We 
implement this action by representing each block by a normalized vector. For prime r, 
this means scaling the vector so that its first nonzero entry is 1. If the original entry has 
a common divisor with r greater than 1, then a minimal associate will be different from 
1 and will usually have a nontrivial stabilizer. This stabilizer is then used to minimize 
entries in subsequent positions.

4.7. Preimages under ϕm

A basic operation when utilizing congruence homomorphisms is to find preimages: for 
b ∈ Γn find c ∈ Γn such that ϕm(c) = b (any preimage will do because Γn,m ≤ H). We 
cannot simply treat b as an integer matrix; it need not have determinant 1 over Z.

Matrix group recognition [1] maintains a history of how each element of H was ob-
tained as a word in congruence images of generators of H. Long product expressions tend 
to build up when constructing a composition tree for H using pseudo-random products. 
Evaluating these expressions back in characteristic 0 leads to large matrix entries.

We could write b as a product of transvections in Γn and then form the same product 
over Z. Similarly, suppose that c has Smith Normal Form cLcDcR where cL, cR ∈ Γn

and cD = 1n. Thus cLcR = c = b and cLcR is a suitable preimage. Still, these approaches 
sometimes produced larger matrix entries than in the following heuristic.

Let x be the transposed adjugate det(c)(c−1)�. Adding 1 to cij for i �= j adds xij

to det(c). If det(c) �= 1 and det(c) + amxij is positive of smaller absolute value, then 
add am to cij . Repeat with updated x. If no such xij exists (all entries of x are larger 
in absolute value than det(c)), then we can try to use instead the gcd of two entries of 
x in the same row or column. Eventually det(c) = 1, or we have to defer to the other 
methods.

5. Generalizing to any arithmetic group in SL(n, QQQ)

Let H ≤ SL(n, Q) be arithmetic. We explain how to compute g ∈ GL(n, Q) such that 
Hg ≤ Γn. Our algorithms may therefore be modified to accept any arithmetic group in 
SL(n, Q); i.e., not necessarily given by a generating set of integer matrices.

Lemma 5.1. The following are equivalent, for a finitely generated subgroup H of GL(n, Q).
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• HZ := H ∩ Γn has finite index in H.
• H is GL(n, Q)-conjugate to a subgroup of GL(n, Z).
• There exists a positive integer d such that dH ⊆ Mat(n, Z).
• tr(H) = {tr(h) | h ∈ H} ⊆ Z.

Proof. See [7, Section 3] and [2, Theorem 2.4]. �
An integer d = d(H) as in Lemma 5.1 is a common denominator for H. Suppose that 

H = 〈S 〉 ≤ SL(n, Q) is arithmetic. Hence d exists. Let A = {a1, . . . , an2} ⊆ H be a basis 
of the enveloping algebra 〈H〉Q, and let c be a common multiple of the denominators of 
all entries in the ai. By the proof of [2, Theorem 2.4] we can take d = c det([tr(aiaj)]ij). 
A basis A can be found by, e.g., a standard ‘spinning-up’ process. However, when we 
know m such that Γn,m is in the finite index subgroup HZ of Γn, we can write down A
directly. Let bk(m) be the block diagonal matrix with

(
1 + m m

−m 1 −m

)

in rows/columns k, k + 1, and 1s elsewhere on the main diagonal. Then

{
1n, tij(m), bk(m) | 1 ≤ i, j ≤ n, i �= j, 1 ≤ k ≤ n− 1

}
is a basis A ⊆ H with c = 1.

With a common denominator d = d(H) in hand, we invoke BasisLattice from 
[7, Section 3] with input S, d. If g is any matrix whose columns are the elements of 
BasisLattice(S, d) then g ∈ GL(n, Q) and Hg ≤ Γn.

6. Implementation

Our algorithms have been implemented in GAP [13]. For matrix group recognition, 
we rely on the recog package [26] developed by Max Neunhöffer and Ákos Seress.

To demonstrate practicality, and the effect that parameters of the input (degree n, 
number of generators, size of matrix entries, index in Γn) have on performance, we ran 
experiments on a range of arithmetic groups. Except for the elementary groups (see 
Proposition 1.12), we chose a value of m that exposed a nontrivial quotient but which 
we cannot yet prove to be maximal; that is, the groups all contain Γn,m.

In Table 1, ‘# gens’ is the number of generators outside Γn,m, and l is the decadic 
logarithm of the largest generator entry. Times (in seconds on a 3.7 GHz Quad-Core 
late 2013 Mac Pro with 32 GB memory) are for computing the index in Γn.

The RANi are generated by Γn,m and products of transvections of level dividing m, 
but seem to be different from any elementary group. Explicit matrices are given at 
http :/ /www .math .colostate .edu /~hulpke /examples /arithmetic .html.

http://www.math.colostate.edu/~hulpke/examples/arithmetic.html
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Table 1
Runtimes for setting up the initial data structure.

Group # gens n m l Index in Γn Time
E4,12 12 4 2432 1 235311527·13 0.8
E4,53 12 4 532 2 29365·7·133539281·409 0.1
E4,3267 12 4 36114 4 216347547·112713·19·61 2
E8,7 56 8 72 1 222395473519229·43·1201·2801·4733 13
RAN1 5 4 2532 21 250318527·13 1
RAN2 3 4 2834 21 274330527·13 6
RAN3 2 4 2552112 4 245345127211713·19·31 9
RAN4 10 6 2252 4 254385417311·13·31371 0.5
β−2 3 3 26 1 2197 0.6
β−1 3 3 11 1 7·19 1.2
β1 3 3 5 1 31 0.4
β2 3 3 25 1 2177 0.3
β3 3 3 3373 2 2331113·1801 2
β4 3 3 2723 2 2317279 2
β5 3 3 53367 3 243251013·31·3463 14
β6 3 3 28335 3 2293107·13·31 3
β7 3 3 731021 3 25345·71019·347821 40
ρ0 3 3 11 1 7·19 1
ρ1 3 3 34 1 2231513 0.2
ρ2 3 3 5·7 1 24325·7219·31 1
ρ3 3 3 13 1 223·13261 1
ρ4 3 3 337 1 243117213·19 2
ρ5 3 3 19·31 2 22335·312127·331 3

Table 2
Runtimes for stabilizer computations.

Group m u l1 l2 Time
E4,12 2432 (1, 0, 0, 0) 2633 1 1
E4,12 2432 (3, 3, 9, 9) 28 34 1.6
E4,12 2432 (6, 6, 6, 6) 24 2434 158
RAN1 2532 (0, 0, 0, 1) 21033 1 1
RAN1 2532 (0, 0, 0, 6) 26 2433 31
RAN1 2532 (0, 0, 0, 12) 23 2733 2346
RAN2 2834 (0, 0, 0, 1) 222310 1 6.5
RAN2 2834 (0, 0, 0, 2) 218310 24 7.5
RAN2 2834 (0, 0, 0, 3) 22236 34 315
RAN2 2834 (0, 0, 0, 6) 21836 2·2334 –
β−2 26 (1, 0, 0) 2133 1 0.6
β−2 26 (4, 0, 0) 273 26 1.1
β−2 26 (8, 0, 0) 243 29 32
β3 3373 (1, 0, 0) 253637·73 1 2
β3 3373 (9, 9, 9) 263237·73 36 86
β5 53367 (1, 0, 0) 26325323·61·367 1 16
β5 53367 (0, 0, 5) 26325·23·61·367 52 17
ρ1 34 (1, 0, 0) 311 1 0.3
ρ1 34 (3, 0, 0) 38 33 0.35
ρ1 34 (9, 0, 0) 35 36 61
ρ1 34 (9, 9, 9) 35 36 72

The βT and ρk are Γ3,m-closures of their namesakes from [19, p. 414]. Apart from ρ1, 
these are known to be arithmetic [19, Theorems 3.1 and 4.1], although a PCS is not 
known. We discovered that β7 has larger index than the lower bound in [19].
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For a second family of examples we tested our orbit-stabilizer algorithms. Because of 
their similarity, in Table 2 we only give timings for Stabilizer(u, S).

The groups H = 〈S 〉 are as in Table 1. Times include the setup for H. Here l1 is 
the length of Hu, and l2 is the length of the orbit of u = Γn,mu under the preimage of 
StabH(u). While the u look rather specific, random choices of u do not alter runtimes 
appreciably. The magnitude of m also has minor impact; if m is composite then the 
calculation of Hu can be separated into orbits modulo divisors of m.

What does have an impact is divisibility of entries in u by divisors of m, which yields 
longer orbits of u. The reason that this affects runtime appears to be twofold. First, we 
need to compare representatives for u using OrbitGamma_m. The number of comparisons 
is quadratic in orbit length. Moreover, integer entries grow quickly even for modest 
examples (it can happen that stabilizer elements have entries with 10–20 digits). As 
the auxiliary operations entail iterated gcd calculations and integer factorization, each 
equivalence test becomes relatively expensive.

We do not report on other procedures from Subsection 3.2 that are essentially com-
putations in GL(n, Zm). Timing these would not give further information about the 
practicality of computing with arithmetic groups.
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