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ABSTRACT. We give a method to describe all congruence images of a finitely generated
Zariski dense group H ≤ SL(n,Z). The method is applied to obtain efficient algorithms
for solving this problem in odd prime degree n; if n = 2 then we compute all congruence
images only modulo primes. We propose a separate method that works for all n as long
as H contains a known transvection. The algorithms have been implemented in GAP,
enabling computer experiments with important classes of linear groups that have recently
emerged.

1. INTRODUCTION

This paper further develops methods and algorithms for computing with linear groups
over infinite domains. It is a sequel to [7].

Let H be a finitely generated subgroup of SL(n,Z), n ≥ 2, that is Zariski dense in
SL(n,R). By the strong approximation theorem, H is congruent to SL(n, p) modulo p for
all but a finite number of primes p [23, p. 391]. If n > 2 and H is arithmetic, i.e., H has
finite index in SL(n,Z), then the congruence subgroup property guarantees thatH contains
a principal congruence subgroup of level m for some m, i.e., the kernel Γn,m of the reduc-
tion modulo m homomorphism ϕm : SL(n,Z) → SL(n,Zm). In that event H contains a
unique maximal principal congruence subgroup Γn,M , and we call M = M(H) the level
of H . The dense group H is contained in a uniquely defined minimal arithmetic overgroup
cl(H), namely the intersection of all arithmetic subgroups of SL(n,Z) containing H (its
‘arithmetic closure’) [7, Section 3.3]. The level of H is defined to be the level of cl(H),
and is again denoted M(H). Sarnak [29] calls dense non-arithmetic H ≤ SL(n,Z) a thin
matrix group.

In [7] we developed practical algorithms to compute the level M of a dense group H ≤
SL(n,Z) for n > 2. This was motivated by the fact that M is the key component of our
algorithms to compute with arithmetic subgroups of SL(n,Z) [6]. Once we have M , we
can find cl(H) and obtain further information about dense H via computation with cl(H).

Algorithms to compute M were implemented and used to carry out extensive computer
experiments, as detailed in [7, Section 4]. Our method requires the set Π = Π(H) of
primes p such that ϕp(H) 6= SL(n, p): essentially, a computational realization of the strong
approximation theorem.
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The aim of the present work is twofold. First, in Section 2 we establish a general method
to compute Π(H) for dense H ≤ SL(n,Z), based on the classification of maximal sub-
groups of SL(n, p) as in [2] (see also [23, p. 397]). This is then applied in Section 3 to
obtain efficient algorithms to compute Π(H) for prime degree n (in which case the types
of maximal subgroups of SL(n, p) are quite restricted). Moreover, for odd prime n, we
build on this knowledge to describe the congruence images of H modulo all positive inte-
gers. Arbitrary degrees n are treated in [9] (albeit with algorithms that are less efficient for
prime n than those herein).

We also give an algorithm to compute Π(H) for subgroups H of SL(2n,Z) that contain
a known transvection (a unipotent element t such that t − 1n has matrix rank 1). This
completes the task begun in [7, Section 3.2].

Another goal is to perform computer experiments successfully with low-dimensional
dense representations of finitely presented groups that have recently been the focus of much
attention. We compute Π and M for each group, thus enabling us to describe all of its
congruence quotients. Experimental results are presented in Section 4.

We adhere to the following conventions and notation. Congruence images are sometimes
indicated by overlining. Pre-images in H = 〈g1, . . . , gr〉 ≤ SL(n,Z) of elements of H̄
written as words in the ḡi are found by ‘lifting’: ḡm1

k1
· · · ḡms

ks
has pre-image gm1

k1
· · · gms

ks
.

The set of prime divisors of a ∈ N is denoted π(a). Throughout, F is a field.

2. STRONG APPROXIMATION AND RECOGNITION OF CONGRUENCE IMAGES

The core idea of our approach to computing Π(H) is to find all primes p such that ϕp(H)

lies in a maximal subgroup of SL(n, p). Here we provide general methods for this purpose.

2.1. Large congruence images. Let H be infinite. Given a positive integer k, we find all
primes p such that ϕp(H) has elements of order greater than k (cf. [32, Chapter 4] and [10,
Section 3.5]).

Since a periodic linear group is locally finite, the finitely generated group H has an
element h of infinite order. We can find h quickly by random selection (see [10, Section 4.2,
p. 107], and the discussion in Subsection 3.3 on randomly selecting elements with specified
properties). For 1 ≤ i ≤ k, let mi be the greatest common divisor of the non-zero entries
of hi−1n, and let l = lcm(m1, . . . ,mk). If p /∈ π(l) then |ϕp(H)| > k. For each p ∈ π(l)

we check whether |ϕp(H)| < k. The preceding steps define a procedure PrimesForOrder
that accepts k and infinite H ≤ SL(n,Z), and returns the (finite) set of primes p such that
|ϕp(H)| < k.

We will also need the following.

Lemma 2.1. Suppose that ϕp(H) = SL(n, p) for some prime p.

(i) If n ≥ 3 then H is infinite.
(ii) If n = 2 and p ≥ 3 then H is infinite.

Proof. Theorem A of [12] states the largest order of a finite subgroup of GL(n,Z). In both
cases (i) and (ii), this maximal order is less than |SL(n, p)|. �
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2.2. Irreducibility. This subsection recaps an argument from [7, Section 3.2].
We test whether H ≤ SL(n,Z) is absolutely irreducible by computing a Q-basis A =

{A1, . . . , Am} of the enveloping algebra 〈H〉Q, where the Ai are words over a generating
set of H . If m = n2 then H is absolutely irreducible, and ϕp(H) is absolutely irreducible
for any prime p not dividing ∆ := det[tr(AiAj)]; here tr(x) is the trace of a matrix x.
Hence we have the following.

Lemma 2.2. If H is absolutely irreducible then ϕp(H) is absolutely irreducible for almost
all primes p.

If p |∆ then ϕp(H) might be absolutely irreducible. Testing for this is the last step in
PrimesForAbsIrreducible(H), which returns the set of all primes p such that ϕp(H) is
not absolutely irreducible.

Note that if H̄ is absolutely irreducible (e.g., H̄ = SL(n, p)), and Ā is a basis of 〈H̄〉Zp ,
then A is a basis of 〈H〉Q.

2.3. Primitivity. Next, we give conditions for the congruence image of an (irreducible)
primitive subgroup of SL(n,Z) to be imprimitive. The main concern is prime n; in such
degrees an irreducible linear group is either primitive or monomial.

Lemma 2.3. If H ≤ SL(n,Z) is not solvable-by-finite then ϕp(H) is not monomial for
almost all primes p.

Proof. Since H has a free non-abelian subgroup by the Tits alternative, given k ≥ 1 there
exist g, h ∈ H such that c := [gk, hk] 6= 1n. Then [ḡk, h̄k] = c̄ 6= 1n for almost all primes
p. The lemma follows by taking k to be the exponent of Sym(n). �

Lemma 2.4. For prime n, an infinite solvable-by-finite primitive (irreducible) subgroup H
of SL(n,Z) is solvable.

Proof. Let K EH be solvable of finite index. Since n is prime, K is scalar or irreducible.
If K were scalar then H would be finite. Thus K is irreducible. If K were monomial over
Q then it would be finite once more; so K is primitive.

Let A be a maximal abelian normal subgroup of K. Then A is irreducible, and K =

〈A, g〉 for some g because the field 〈A〉Q is a cyclic extension of Q1n of degree n. If H
normalizes 〈A〉Q then H is solvable. Suppose on the contrary that hah−1 = bgk for some
h ∈ H , a, b ∈ A, and k coprime to n. Conjugation by bgk induces a Q-automorphism of
〈A〉Q that fixes (bgk)n. Hence (bgk)n is scalar, implying that a has finite order. But there
is an infinite order element in A. We conclude that H must normalize 〈A〉Q. �

Corollary 2.5. Let n be prime. If H ≤ SL(n,Z) is infinite, non-solvable, and primitive,
then ϕp(H) is primitive for almost all primes p.

Given an input group H that is not solvable-by-finite, PrimesForMonomial returns the
set of primes p such that ϕp(H) is monomial. The proof of Lemma 2.3 furnishes a method
to compute this finite set. First we find g, h ∈ H such that [gk, hk] 6= 1n, where k is
the exponent of Sym(n). (In our experiments g, h are found by random selection; cf. [1],
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and see Subsection 3.3.) Let d be the gcd of the non-zero entries of [gk, hk] − 1n. Then
ϕp(H) is non-monomial if p 6∈ π(d). Finally, we test whether ϕp(H) is monomial for each
p ∈ π(d), using, e.g., [26].

Although we can detect whetherH has a free non-abelian subgroup [11], we do not have
an algorithm to locate one. Indeed, as far as we know, the problem of deciding freeness of
a finitely generated linear group is not known to be decidable.

2.4. Solvability. Zassenhaus’s theorem [31, p. 136] implies existence of a bound δ = δ(n)

on the derived length of solvable subgroups of SL(n,F) that depends only on n, not on F.
See, e.g., [31, p. 136] for an estimate of δ due to Dixon.

LetH ≤ SL(n,Z) be non-solvable. We sketch a procedure PrimesForSolvable(H, δ)

that returns the set of primes p such that ϕp(H) is solvable and ϕp(H) 6= SL(n, p). Take a
non-trivial iterated commutator in H . As usual, we do this by random selection in H , or by
lifting to H from a (non-solvable) congruence image: pick [h̄1, . . . , h̄δ+1] 6= 1n in H̄; then
g = [h1, . . . , hδ+1] ∈ H is as required. Let d be the gcd of the non-zero entries of g − 1n.
Then ϕp(H) is non-solvable if p 6∈ π(d). Solvability of ϕp(H) for p ∈ π(d) can be tested
using [26]. We have proved the following.

Lemma 2.6. If H is non-solvable then ϕp(H) is non-solvable for almost all primes p.

We get better bounds on derived length for irreducible groups in prime degree.

Lemma 2.7. Let n be prime. An irreducible solvable subgroup G of GL(n,F) has derived
length d ≤ 6.

Proof. A monomial group G is an extension of its subgroup of diagonal matrices by a
solvable transitive permutation group of prime degree. Such permutation groups are meta-
cyclic, so d ≤ 3. Suppose that G is primitive.By [32, Theorem 3.3, p. 42], there exists
EEG of derived length at most 2, such that G/E is isomorphic to a subgroup of SL(2, n).
Since δ(SL(2, n)) ≤ 4 (see, e.g., [31, §21.3]), we get d ≤ 6 as required. �

Remark 2.8. If n = 2, 3 and G ≤ SL(n,F) then d ≤ 4, d ≤ 5, respectively.

2.5. Isometry. We say that G ≤ GL(n,F) is an isometry group if it preserves a non-
degenerate bilinear (symmetric or alternating) form. On the other hand, since SL(2,F) =

Sp(2,F), we say that G is not an isometry group if G does not preserve a non-degenerate
bilinear form for n > 2.

Lemma 2.9. Let G ≤ GL(n,F) be absolutely irreducible. Then G is an isometry group if
and only if tr(g) = tr(g−1) for all g ∈ G.

Proof. Suppose that tr(g) = tr(g−1) for all g ∈ G. As their characters are equal, the iden-
tity and contragredient representations ofG are therefore equivalent; i.e., g = Φ(g>)−1Φ−1

for some Φ ∈ GL(n,F). Rearranging this equality, we see that G preserves the form with
matrix Φ. �
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The procedure PrimesForIsometry accepts an absolutely irreducible subgroup H of
SL(n,Z) that is not an isometry group. It selects h ∈ H such that a := tr(h)−tr(h−1) 6= 0,
and (using [26]) returns those p ∈ π(a) such that ϕp(H) is an isometry group.

We will need to check not only whether a congruence image of H preserves a form, but
whether it lies in the similarity group generated by a full isometry group and all scalars.
This is achieved with PrimesForSimilarity(H), which selects h = [h1, h2] ∈ H such
that a := tr(h)− tr(h−1) 6= 0. Clearly ϕp(H) is in a similarity group only if p ∈ π(a).

Lemma 2.10. Suppose that H ≤ SL(n,Z) is absolutely irreducible and not an isometry
group. Then for almost all primes p, ϕp(H) does not lie in a similarity group over Zp.

3. ALGORITHMS FOR STRONG APPROXIMATION

We proceed to formulate an algorithm that realizes strong approximation in prime degree
n. That is, the algorithm computes Π(H) for any dense input H ≤ SL(n,Z). We also
compute Π for dense subgroups of SL(2n,Z) containing a transvection.

3.1. Density in prime degree. For the entirety of this subsection, n is prime.
By [2] (cf [23, p. 397]), the set C of maximal subgroups of SL(n, p) is a union of certain

subsets C1, . . . , C9. For each i, we determine all primes p such that ϕp(H) could be in a
group in Ci. Hence, we provide criteria for H to surject onto SL(n, p) for almost all primes
p. These conditions turn out to be equivalent to density. They constitute the background
of our main algorithm and obviate any need to test density of the input (as in, say, [7,
Section 5]).

We start with an auxiliary statement for C9 (called class S in [3, Chapter 8]).

Lemma 3.1. There is a bound in terms of n on the order of subgroups of SL(n, p) that are
contained solely in groups in C9.

Proof. Suppose that U ≤ SL(n, p) lies only in C9 and not in Ci for i 6= 9. The perfect
residuum U∞ (i.e., the last term of the derived series of U ) is therefore a simple absolutely
irreducible subgroup of SL(n, p). If we show that the order of U∞ is bounded, then U ≤
Aut(U∞) also has bounded order. Thus, without loss of generality, U = U∞ from now
on.

Prime degree faithful representations of quasisimple groups are classified in [25, Theo-
rem 1.1]. The orders of the groups in classes (10)–(27) of this classification are bounded
absolutely (i.e., by a bound not depending on n or p). The orders of groups in classes
(2)–(9) are bounded by a function of n.

Class (1) groups are of Lie type in characteristic p in the Steinberg representation [16],
whose degree n is the p-part of the group order. For each class of groups of Lie type Gm(p),
this p-part is pa with a ≤ 1 for only finitely many values of m. So class (1) is finite for
prime n.

Finally we come to the case excluded by [25, Theorem 1.1], namely U/Z(U) ∼= Alt(m)

for m > 18. As a consequence of [17, 19], there are only finitely many degrees l such that
Sym(l) and thus Alt(l) has a faithful (projective) representation of degree m. �



6 A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

The main procedure, PrimesForDense(H), combines the subsidiary procedures of Sec-
tion 2. Its output is the union of

• PrimesForAbsIrreducible(H)

• PrimesForMonomial(H)

• PrimesForSolvable(H, δ), where δ is a bound on the derived length of a solvable
linear group of degree n
• PrimesForSimilarity(H)

• PrimesForOrder(H, k) where k is a bound on element orders for groups of degree
n in C6 ∪ C9.

Theorem 3.2. Assuming termination for input H , PrimesForDense(H) returns Π(H).

Proof. Each prime returned must lie in Π(H). Conversely, let p be a prime such that
ϕp(H) 6= SL(n, p). Then ϕp(H) is in a group in some Ci, 1 ≤ i ≤ 9. For each i, we show
that (at least) one of the subsidiary procedures returns p.
C1: here ϕp(H) is reducible, so p is returned by PrimesForAbsIrreducible(H).
C2: p is returned by PrimesForMonomial(H).
C3: for prime n, the stabilizers of extension fields are solvable, so p is returned by

PrimesForSolvable(H, δ).
C4, C7: since the degree of a tensor product is the product of the factor degrees, and n is

prime, these classes are empty.
C5 is empty over fields of prime size.
C6 consists of groups whose structure depends on n but not on p [3, Section 2.2.6]. The

number of such groups (and thus the largest order of an element in any one of them) is
bounded, and so PrimesForOrder(H, k) returns p.
C8: the groups in this class preserve a form modulo Z(SL(n, p)). Hence the derived

group of ϕp(H) preserves a form and p is returned by PrimesForSimilarity(H).
C9: by Proposition 3.1, the number of groups in this class is finite. Thus (as with C6)

PrimesForOrder(H, k) returns p. �

Remark 3.3. Using GAP and tables in [3, Chapter 8], we can calculate bounds on the order
of groups in C6 ∪ C9 (and hence bounds on their element orders) for small n. For n = 2, 3,
5, 7, 11, these bounds are 10, 21, 60, 84, 253, respectively.

Remark 3.4. PrimesForDense simplifies in small degrees. If n ≤ 3 then the groups in
C2 are solvable, so PrimesForSolvable overrides PrimesForMonomial. In degree 2,
PrimesForSimilarity is also redundant.

If PrimesForDense(H) terminates then Π(H) is finite, i.e., H is dense [27, p. 3650].
Next we prove the converse. This leads to a characterization of density in SL(n,Z).

Lemma 3.5. If H is irreducible, not solvable-by-finite, and not an isometry group, then
Π(H) is finite.

Proof. Each constituent output set is finite by Lemmas 2.2, 2.3, 2.6, 2.10, and 3.1. �
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Lemma 3.6. IfH is infinite, non-solvable, primitive, and not an isometry group, then Π(H)

is finite.

Proof. As the previous proof, but relying on Corollary 2.5 instead of Lemma 2.3. �

Lemma 3.7. Suppose that ϕp(H) = SL(n, p) for some prime p, where p > 3 if n = 2.
Then H is infinite, non-solvable, and primitive. Furthermore, H is not an isometry group.

Proof. Since SL(n, p) is absolutely irreducible and non-solvable, the same is true of H . A
monomial subgroup of SL(n,Z) cannot surject onto SL(n, p) because it has an abelian nor-
mal subgroup whose index is too small. The remaining assertion follows from Lemmas 2.1
and 2.9. �

Lemmas 3.6 and 3.7 yield

Corollary 3.8. If ϕq(H) = SL(n, q) for one prime q > 3, then ϕp(H) = SL(n, p) for
almost all primes p.

Remark 3.9. Corollary 3.8 should be compared with [23, p. 396], [24, Proposition 1], and
[33].

Corollary 3.10. The following are equivalent.

(i) H is dense.
(ii) H surjects onto SL(n, p) modulo some prime p, where p > 3 if n = 2.

(iii) H is infinite, non-solvable, primitive, and not an isometry group.
(iv) H is irreducible, not solvable-by-finite, and not an isometry group.

Remark 3.11. Let n = 2. Then H is dense if and only if H is not solvable-by-finite; which
is equivalent to H being infinite and non-solvable.

To round out the subsection, we give one more set of criteria for density in odd prime
degree.

Lemma 3.12. Let n > 2. IfH contains an irreducible element and is not solvable-by-finite
then H is dense.

Proof. We appeal to Lemma 3.5. Let h ∈ H be irreducible. Suppose that H preserves
a form with (symmetric or skew-symmetric) matrix Φ. Then x 7→ Φx>Φ−1 defines a Q-
automorphism of 〈h〉Q of order 2. But 〈h〉Q is a field extension of odd degree n. Hence H
is not an isometry group. �

Corollary 3.13. For n > 2, a finitely generated subgroup of SL(n,Z) is dense if and only
if it contains an irreducible element and is not solvable-by-finite.

Remark 3.14. Lemma 3.6 allows us to replace ‘not solvable-by-finite’ in Lemma 3.12 and
Corollary 3.13 by ‘infinite non-solvable primitive’, or by ‘infinite non-solvable’ if n = 3

(cf. [20, p. 415], [21, Theorem 2.2]).
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3.2. Algorithms for groups with a transvection. In [7, Section 3.2] we gave a straight-
forward procedure PrimesForDense to compute Π(H) if H is dense in SL(2n+ 1,Z) or
Sp(2n,Z) and contains a known transvection. The case H ≤ SL(2n,Z) was left open.
Now we close that gap.

Lemma 3.15. Suppose that H ≤ SL(2n,Z) contains a transvection t. Then H is dense if
and only if N := 〈t〉H is absolutely irreducible and tr(h) 6= tr(h−1) for some h in N .

Proof. Suppose that H is dense. Then N is absolutely irreducible by [7, Corollary 3.5]. If
tr(h) = tr(h−1) for all h ∈ N , then by Lemma 2.9 there is a form with matrix Φ such that
hΦh> = Φ. Since N EH and N is absolutely irreducible, hΦh> = αΦ for all h ∈ H and
some α ∈ Q (see, e.g., [3, Lemma 1.8.9, p. 41]). This contradicts density of H .

Now suppose that N is absolutely irreducible and tr(h) 6= tr(h−1) for some h ∈ N .
Then ϕp(N) is absolutely irreducible and ϕp(tr(h)) 6= ϕp(tr(h

−1)) for almost all primes
p. So there are p > 3 and g ∈ ϕp(N) such that ϕp(N) is absolutely irreducible and tr(g) 6=
tr(g−1). Since ϕp(N) is generated by transvections, the theorem of [34, p. 1] implies that
ϕp(N) = SL(2n, p) or Sp(2n, p). Since the latter possibility is ruled out by Lemma 2.9,
we must have ϕp(H) = SL(2n, p) and so H is dense (see [24, Proposition 1]). �

The procedure PrimesForDense(H, t), based on Lemma 3.15, accepts dense H ≤
SL(2n,Z) containing a transvection t, and returns Π(H). It combines PrimesForAbs-
Irreducible(N) and PrimesForIsometry(N), checking whether ϕp(H) = SL(2n, p)

for each p in the union of their outputs. See [7, Section 3] for an algorithm to compute a
basis of 〈N〉Q without computing (a full generating set of) the normal closureN . Similarly,
the application of PrimesForIsometry does not require computing N , and just randomly
selects h ∈ N such that tr(h) 6= tr(h−1).

3.3. General considerations. We comment further on the operation of our algorithms.
When selecting (pseudo-)random elements of SL(n,Z) for some subprocedures, we seek

just one element with a nominated property. These will be plentiful in dense subgroups.
Hence we do not aim for any semblance of a uniform distribution (cf. [28, Section 5]), but
randomly take words of length 5 in the given generators. If these repeatedly fail to have the
desired property then we gradually increment the word length. We do not have a theoretical
bound on the runtime for this process; but in practice we observe that it is very fast.

At the start of the calculation we also select (e.g., by computing the orders, or invoking
composition tree on images of H modulo different primes [26]) a prime p0 > 3 such
that ϕp0(H) = SL(n, p0). The properties of elements that we are seeking may then be
maintained modulo p0. That is, instead of searching in H , we search for an element h̄ in
ϕp0(H) that has the desired properties (over Zp0) and lift to the pre-image h ∈ H .

Each of the subsidiary procedures for PrimesForDense(H) returns a positive integer d
divisible by every prime p such that ϕp(H) is in the relevant class of maximal subgroups of
SL(n, p). However, d can have prime factors not in Π(H). Furthermore, these factors might
be so large as to make factorization of d impractical, or make the test of the congruence
image overly expensive. Thus we do not factor d fully, but only attempt a cheap partial
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factorization (e.g., by trial division and a Pollard-ρ algorithm). If d does not factorize, or
has large prime factors (magnitudes larger than the entries of the input matrices), then we
compute another positive integer d′ using the same algorithm but with different choices of
random elements, and replace d by gcd(d, d′).

Our computational realization of strong approximation stands in contrast to Breuillard’s
quantitative version [4, Theorem 2.3]. His bound on the primes that can appear in Π(H) is
not explicit. We compute all of Π(H); and can do so quickly, as shown in the next section.

4. EXPERIMENTING WITH LOW-DIMENSIONAL DENSE SUBGROUPS

In this section we present experimental results obtained from our GAP implementation
of the algorithms. We demonstrate the practicality of our software and how it can be used
to obtain important information about groups. In particular we describe all congruence
images, as explained in the next subsection.

4.1. Computing all congruence images. Let H ≤ SL(n,Z) be dense. As in [7, Sec-
tion 2.4.1], let Π̃(H) = Π(H) ∪ {2} if ϕ2(H) = SL(n, 2) and ϕ4(H) 6= SL(n, 4); let
Π̃(H) = Π(H) otherwise. The disparity between Π̃(H) and Π(H) can arise only when
n ≤ 4, and M(H) is even but 2 6∈ Π(H). By [7, Theorem 2.18], Π̃(H) = π(M(H)).
If n > 2 then ϕk(H) = ϕk(cl(H)) for all k; so Π̃(H) = Π̃(cl(H)). We may there-
fore assume that H is arithmetic, of level M . Let a = gcd(k,M), so k = abc, π(b) ⊆
π(a), and gcd(c, a) = 1. Then ϕk(H) ∼= H/(H ∩ Γk) ∼= HΓk/Γk is a subgroup of
Γab/Γk × Γc/Γk. It is not difficult to show that ϕk(H) splits as a direct product of Γab/Γk
with Q := ((HΓk) ∩ Γc)/Γk. Since Γab/Γk ∼= SL(n,Z)/Γc, this expresses ϕk(H) as a
direct product of Q with a subgroup isomorphic to SL(n,Zc). Hence the task in describ-
ing all congruence images of H boils down to computing with the quotient Q of ϕk(H) in
SL(n,Zk); in effect, ranging over all divisors ofM . If n = 2 then the congruence subgroup
property does not hold, and we can only handle k = p prime.

In some of the examples below we describe the congruence quotient modulo the level
M , exhibiting which parts of its structure arise for various prime powers. We give this as
an ATLAS-style composition structure [5] (separating composition factors by dots; cf. [3]),
marked up to show the prime powers for which each factor first arises. We emphasize
that these have been generated ‘semiautomatically’ using some composition series that re-
fines the congruence structure, not necessarily the best possible series. One example from
Table 1 is a group of level 345·19 with quotient structure

34

34

.33

33

.33

32

.52.2.2.2
5

.3.3
3,5

.L2(19)
19

In the standard notation Lm(q) := PSL(m, q), this has congruence image L2(19) modulo
19, which is a simple direct factor not interacting with the other primes. The quotient
modulo 3 has structure 3.3 (and is almost certainly the group 32). The quotient modulo
5 is 52.2.2.2.3.3, forming a subdirect product with the quotient of order 3 in which the
full factor 3.3 is glued together. Modulo 9 the group possesses a factor 33 (of the possible
33·3−1 = 38), modulo 27 another factor 33, and modulo 81 a factor 34. (Since 34 is the



10 A. S. DETINKO, D. L. FLANNERY, AND A. HULPKE

prime power dividing the level, the quotient modulo 243 would contain a full 38.) The
structural analysis in [7, Section 2] proves that the exponent for pi+1 cannot be smaller
than the exponent for pi. The name indicates all proper prime powers dividing the level.
Thus ‘empty’ factors

pa
are possible if the group has no elements on that level.

Experimental results are displayed in Tables 1 and 2 (writing Am for Alt(m) and Sm
for Sym(m)). Our actual implementation computes Π̃ = π(M) rather than Π(H). We do
not state Π(H); as noted above, this set almost always coincides with π(M).

Experiments were performed on a 2013 MacPro with a 3.7 GHz Intel Xeon E5 uti-
lizing up to 8GB of memory. The software can be accessed at http://www.math.
colostate.edu/˜hulpke/arithmetic.g. Some documentation [8] is also avail-
able.

4.2. Low-dimensional dense subgroups. Our examples in this subsection come from a
family of integral representations of finitely presented groups, as defined in [20, 21, 22]. For
each test group H we compute Π(H), incidentally justifying that H is dense. Thereafter
we compute M(H), |SL(n,Z) : H|, and the congruence quotients of H .

4.2.1. The fundamental group of the figure-eight knot complement. Adopting the notation
of [20, p. 414], let

Γ := 〈x, y, z | zxz−1 = xy, zyz−1 = yxy〉;

this is the fundamental group of the figure-eight knot complement. Put F = 〈x, y〉. In [20],
two families of representations βT , ρk of Γ in SL(3,Z) were constructed. Section 4 of [7]
reports on experiments with βT for a range of T and ρk for k = 0, 2, 3, 4, 5. The groups
ρk(Γ), ρk(F ) for k 6= 0, 2, 3, 4, 5 are of special interest (see [20, Section 5]). However,
neither the methods of [20] nor those of [7] facilitate proper study of ρk for such k.

We have

ρk(x) =

 1 −2 3

0 k −1− 2k

0 1 −2

 , ρk(y) =

 −2− k −1 1

−2− k −2 3

−1 −1 2

 ,

ρk(z) =

 0 0 1

1 0 −k
0 1 −1− k

 .

The results of experiments with ρk(Γ) and ρk(F ) are collected in Table 1; here M is the
level (which turns out to be the same for both Γ and F ), IndexΓ is |SL(3,Z) : cl(ρk(Γ))|,
and IndexΓ,F is |cl(ρk(Γ)) : cl(ρk(F ))|. The last column is the congruence image of ρk(F )

modulo M . For k = 1, 6, 10, the groups surject modulo 2 but not modulo 4.
Determination of the exceptional primes was instantaneous. The time to calculate level

and index increased roughly with level, from a few seconds for k = 1 to about 15 minutes
for k = 20.

http://www.math.colostate.edu/~hulpke/arithmetic.g
http://www.math.colostate.edu/~hulpke/arithmetic.g
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k M IndexΓ IndexΓ,F StructureF
1 2234 21031513 22 34

34

.33

33

.
22

.33

32

.3.3
3

.L3(2)
2

6 2231·43 210337·432331·631 2·3·5
22

.31.31.2
31

.L2(43)
43

.L2(31)
31

.L3(2)
2

7 345·19 263175·13·19231·127 2232 34

34

.33

33

.33

32

.52.2.2.2
5

.3.3
3,5

.L2(19)
19

10 223411·37 2143167213·19·37267 22325 34

34

.33

33

.
22

.33

32

.11.11.2
11

.3
3

. 3
3,11

.L2(37)
37

.L2(11)
11

.L3(2)
2

15 229·241 26335·97·181·241219441 2·3·19 229.229.2
229

.L2(241)
241

.L2(229)
229

20 409·421 24335·7·421255897·59221 223·17 409.409.2
409

.L2(421)
421

.L2(409)
409

TABLE 1.

4.2.2. Triangle groups. Next we look at triangle groups ∆(p, q, r) = 〈a, b | ap = bq =

(ab)r = 1〉.
In [21], representations of ∆(3, 3, 4) in SL(3,Z) are defined by

a 7→ a1 =

(
0 0 1

1 0 0

0 1 0

)
, b 7→ b1(t) =

(
1 2− t+ t2 3 + t2

0 −2 + 2t− t2 −1 + t− t2

0 3− 3t+ t2 (−1 + t)2

)
.

These representations are faithful for all t ∈ R, and if t ∈ Z then the images are dense and
non-conjugate for different t [21, Theorem 1.1]. If t = 1 then the group is conjugate to the
one constructed by Kac and Vinberg [20, p. 422]. Put H1(t) = 〈a1, b1(t)〉.

In [21, p. 8], the following faithful dense representationsH2(t) = 〈a2(t), b2〉 of ∆(3, 4, 4)

were constructed:

a 7→ a2(t) =

(
1 4 + 3t2/4 3(6− t+ t2)/2

0 −(4 + t+ t2)/2 −3− t2

0 (4 + 2t+ t2)/4 (2 + t+ t2)/2

)
, b 7→ b2 =

(
0 0 1

1 0 −1

0 1 1

)
.

In [22, p. 13], faithful representations of ∆(3, 3, 4) in SL(5,Z) are defined by

a 7→ a3(k) =


1 0 −3− 2k − 8k2 −1 + 10k + 32k3 −5− 16k2

0 4(−1 + k) −13− 4k 3 + 16(1 + k)2 −4 + 16k

0 1− k + 4k2 3− 2k + 8k2 −2(1 + 3k + 16k3) 3 + 16k2

0 k 2k 1− 2k − 8k2 1 + 4k

0 0 3k 3(−1 + k − 4k2) −2

,

b 7→ b3(k) =


0 0 −3− 2k − 8k2 −1 + 10k + 32k3 −5− 16k2

0 1 3 + 4k −13− 8k − 16k2 4− 16k

0 0 −2(1 + k + 4k2) 6k + 32k3 −3− 16k2

1 0 −2(1 + k) −1 + 2k + 8k2 −1− 4k

2k 0 1− 2k −4k 1

.
As k ranges over Z, the H3(k) = 〈a3(k), b3(k)〉 are dense and pairwise non-conjugate.
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It is known that H1(t), H2(t), H3(k) are thin [21, 22]. For each of these groups we
computed its level M and the index of its arithmetic closure in SL(n,Z) for several values
of the parameters. See Table 2.

For t ≡ 1 (mod 4), the H1(t) as far as we tested surject onto SL(3, 2) but not onto
SL(3,Z4).

Runtimes for degree 3 groups were consistent with the previous example. In degree 5,
identification of primes was again instantaneous, while the calculation of level and index
took about 6 minutes for H3(0) and 20 minutes for H3(3). So we did not try larger k.

4.2.3. Random generators. We constructed subgroups of SL(n,Z) for n = 3, 5 generated
by a pair of pseudo-random matrices (via the GAP command RandomUnimodularMat).
More than half of the groups so generated surject onto SL(n, p) modulo all primes p (and
modulo 4). We attempted to verify whether each group is arithmetic by expressing its
generators as words in standard generators of SL(n,Z) and running a coset enumeration
with the presentation from [30]. As the enumeration never terminated, we suspect that
these groups are not arithmetic (note that a random finitely generated subgroup of SL(n,Z)

is likely to be thin [13, 27]).

4.2.4. Further experimentation. Comparing congruence images with finite quotients (ob-
tained, e.g., by the low-index algorithm of [15, Section 5.4]) may help to decide whether
a dense representation of a finitely presented group is faithful, or justify that a group is
thin. For example, low-index calculations with the finitely presented group Γ as in Sub-
section 4.2.1 expose quotients (such as Sym(23), Sym(29), Alt(11) o C2, to name just a
few) that cannot be congruence images of any ρk(Γ), as they do not have representations
of suitably small degree. Thus ρk cannot be faithful on Γ if ρk(Γ) is arithmetic (cf. [20,
Question 5.1]). This fact has a clear explanation: F is free and normal in Γ; hence a repre-
sentation of Γ in SL(3,Z) is arithmetic precisely when its restriction on F is arithmetic [20,
p. 420]; but any virtually free group cannot have a faithful arithmetic representation in
SL(n,Z) for n > 2.

To illustrate another potential application of our algorithms, we show that faithful dense
representations of the triangle groups ∆(3, 3, 4), ∆(3, 4, 4) in SL(3,Z) or SL(5,Z) are
not arithmetic; this includes H1(t), H2(t), H3(k) as in Subsection 4.2.2 (cf. [21, 22]).
Indeed, ∆(3, 3, 4) and ∆(3, 4, 4) each have a quotient isomorphic to Alt(20). This is not a
congruence quotient of an arithmetic group in SL(3,Z) or SL(5,Z), because Alt(20) does
not have a faithful representation in SL(3, p) or SL(5, p) for any p.

We also use this example to compare the capability of our algorithm with that of the low-
index algorithm. Congruence quotients of ρk(Γ) (modulo any integer m > 1, including m
not dividing the level) produced by our algorithms expose quotients of Γ (such as SL(n, p)

for large p) that are infeasible to find through a low-index computation, because these
groups do not have a faithful permutation representation of sufficiently small degree. Using
a homomorphism search [15, Section 9.1.1], we find that Γ has 34 normal subgroups N
such that Γ/N ∼= SL(3, 5). Applying our algorithm, we identify 80 values of k in the range
1, . . . , 100, such that 5 6∈ Π(ρk(Γ)). For these k, the kernels of the induced surjections
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Γ → ρk(Γ) → SL(3, 5) expose just 4 of the 34 normal subgroups. This prompts us to
conjecture that the ρk will not expose all SL(n, p) quotients of Γ.
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ternational Centre for Mathematical Sciences, Edinburgh, for hosting our visits in 2017
under their Research-in-Pairs and Research in Groups programmes, respectively. This
work was additionally supported by a Marie Skłodowska-Curie Individual Fellowship grant
(Horizon 2020, EU Framework Programme for Research and Innovation), and Simons
Foundation Collaboration Grant 244502.
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Group Level Index Quotient

H1(1) 223·5219 213335513·19331·127
22

.56

52

.3
19

.2.2
5,19

.32.2
3

. 22.3
3,5

.A6
19

.L3(2)
2

H1(2) 23 277 25

23

.25

22

.22.3
2

H1(5) 237·19·31 223365272192313127·331
23

.
22

.3
31

.192.2.2.2
19

. 3
7,19, 31

.A6
31

.L2(7)
7

.L3(2)
2

H1(9) 2267 29327211217·31·67
22

.672.2.22.3
67

.L3(2)
2

H1(10) 233·7 216347213·19 25

23

.24

22

.7.7
7

.3.3.2
3,7

.22.3
2,3,7

H1(12) 237·31 21635527319·31·331 25

23

.24

22

.31.31.2
31

.22

2,31

. 3
2,7,31

.L2(7)
7

H1(50) 23601 21433547213·43·601·9277 25

23

.24

22

.601.601.2
601

.22.3
2,601

H1(100) 233·19·43 219395·7311·13·19·43·127·631 25

23

.24

22

.43.43
43

.19.19
19,43

.3.3.2
3,19,43

. 22.3
2,3,19,43

H2(2) 2213 27327·61 22

22

.13.13.2.2
13

.22.3
2,13

.L2(13)
13

. 2
2,13

H2(10) 225·109 21034527231·571 22

22

.109.109.2.2
109

. 22

2,109

.3
2

.L2(109)
109

.A5
5

. 2
2,5,109

H2(12) 283417 2383157·13·307 26

28

.26

27

.25

26

.23

25

.23

24

.34

34

.22

23

.33

33

.
22

.33

32

.172.2
17

.3.3.2
3,17

. 22

2,3,17

. 3
2,17

. 2
2,3,17

.L2(17)
17

H2(50) 225213·193 21634577231·61·1783 22

22

.53

52

.193.193.2
193

.13.13.2.2
13,193

. 22

2,193

.3
2

.L2(193)
193

.L2(13)
13

.A5
5

. 2
2,5,13,193

H3(0) 2373192 25231455732192131·127·151·181·911·2801 28

23

.718
73

.26

22

.78

72

.1912

192

.192.2.2.2
19

.26.3
2,19

.L3(2)
2,7

H3(1) 26672 2873652731141723126720 · 449·761·26881 221

26

.211

25

.28

24

.25

23

.24

22

.6712

672

.67.67.2
67

.22.3
2,67

H3(2) 2313·2112 23339567513531237·53261·113·197

·21120 · 1361·30941·292661

216

23

.214

22

.21112

2112

.2112.2.2.2
211

.13.13.13.13
13,211

. 26.3
2,13,211

.L2(169)
13

.L3(2)
2

H3(3) 267·112412 210638513781120192 · 29231·412061

·1723·2801·3221·579281

221

26

.211

25

.28

24

.25

23

.24

22

.1112

112

.4112

412

.41.41
41

.11.11.2
11,41

.

7.7.7.7.2
7,11,41

. 22.3
2,7,11,41

.L2(7).L2(7)
7

TABLE 2.
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