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Abstract. We classify all the cocyclic Butson Hadamard matrices BH(n, p) of
order n over the pth roots of unity for an odd prime p and np ≤ 100. That
is, we compile a list of matrices such that any cocyclic BH(n, p) for these n,
p is equivalent to exactly one element in the list. Our approach encompasses
non-existence results and computational machinery for Butson and generalized
Hadamard matrices that are of independent interest.

1 Introduction

We present a new classification of Butson Hadamard matrices within the framework
of cocyclic design theory [9, 16]. New non-existence results are also obtained. We ex-
tend MAGMA [1] and GAP [13] procedures implemented previously for 2-cohomology
and relative difference sets [12, 21, 23] to determine the matrices and sort them into
equivalence classes.

Cocyclic development was introduced by de Launey and Horadam in the 1990s, as
a way of handling pairwise combinatorial designs that exhibit a special symmetry. It
has turned out to be a powerful tool in the study of real Hadamard matrices (see [21]
for the most comprehensive classification). A basic strategy, which we follow here, is to
use algebraic and cohomological techniques in systematically constructing the designs.

Butson Hadamard matrices have applications in disparate areas such as quantum
physics and error-correcting codes. So lists of these objects have value beyond design
theory. We were motivated to undertake the classification in this paper as a first step
towards augmenting the available data on complex Hadamard matrices (and we did find
several matrices not equivalent to any of those in the online catalog [3]).

Specifically, we classify all Butson Hadamard matrices of order n over pth roots of
unity for an odd prime p and np ≤ 100. The restriction to pth roots is a convenience that
renders each matrix generalized Hadamard over a cyclic group of order p; for these we
? Corresponding Author (dane.flannery@nuigalway.ie)

2010 Mathematics Subject Classification: 05B20, 20B25, 20J06
Keywords: automorphism group, Butson Hadamard matrix, cocyclic, relative difference set
This paper is in final form and no similar paper has been or is being submitted elsewhere.



have a correspondence with central relative difference sets that enables us to push the
computation to larger orders. It must be emphasized that most of the techniques that we
present apply with equal validity to generalized Hadamard matrices over any abelian
group—but are not valid for Butson Hadamard matrices over kth roots of unity with k
composite. Moreover, the tractability of the problem considered in this paper suggests
avenues for investigation of other cocyclic designs, such as complex weighing matrices
and orthogonal designs.

The paper is organized as follows. In Section 2 we set out background from design
theory: key definitions, our understanding of equivalence, and general non-existence
results. Section 3 is devoted to an explanation of our algorithm to check whether two
Butson Hadamard matrices are equivalent. We recall the necessary essentials of cocyclic
development in Section 4. Then in Section 5 we specialize to cocyclic Butson Hadamard
matrices. The full classification is outlined in Section 6. We end the paper with some
miscellaneous comments prompted by the classification.

For space reasons, the listing of matrices in our classification is not given herein. It
may be accessed at [10].

2 Background

Throughout, p is a prime and G, K are finite non-trivial groups. We write ζk for e2πi/k.

2.1 Butson and generalized Hadamard matrices

A Butson Hadamard matrix of order n and phase k, denoted BH(n, k), is an n × n
matrix H with entries in 〈ζk〉 such that HH∗ = nIn over C. Here H∗ is the usual
Hermitian, i.e., complex conjugate transpose.

For n divisible by |K|, a generalized Hadamard matrix GH(n,K) of order n over
K is an n× n matrix H = [hij ] whose entries hij lie in K and such that

HH∗ = nIn +
n

|K|
(
∑
x∈Kx)(Jn − In)

where H∗ = [h−1
ji ], Jn is the all 1s matrix, and the matrix operations are performed

over the group ring ZK.
The transpose of a BH(n, k) is a BH(n, k); the transpose of a GH(n,K) is not

necessarily a GH(n,K), except when K is abelian [9, Theorem 2.10.7]. However, if H
is a Butson or generalized Hadamard matrix then so too is H∗.

For the next couple of results, see Theorem 2.8.4 and Lemma 2.8.5 in [9] (the former
requires a theorem from [18]).

Theorem 2.1. If there exists a BH(n, k), and p1, . . . , pr are the primes dividing k, then
n = a1p1 + · · ·+ arpr for some a1, . . . , ar ∈ N.

One consequence of Theorem 2.1 is that BH(n, pt) can exist only if p |n.

Lemma 2.2. Let ω be a primitive pth root of unity. Then
∑n
i=0 aiω

i = 0 for n < p and
a0, . . . , an ∈ N not all zero if and only if n = p− 1 and a0 = · · · = an.



Let C = 〈x〉 ∼= Ck and define ηk : ZC → Z[ζk] by ηk
(∑k−1

i=0 cix
i
)

=
∑k−1
i=0 ciζ

i
k.

The map ηk extends to a ring epimorphism Mat(n,ZC)→ Mat(n,Z[ζk]).

Lemma 2.3. If M is a GH(n,Ck) then ηk(M) is a BH(n, k); if M is a BH(n, p) then
η−1
p (M) is a GH(n,Cp).

Proof. The first part is easy, and the second uses Lemma 2.2. ut

Thus, a BH(n, p) is the same design as a GH(n,Cp). Butson’s seminal paper [4]
supplies a construction of BH(2apb, p) for 0 ≤ a ≤ b.

Example 2.4. For composite n, the Fourier matrix (more properly, Discrete Fourier
Transform matrix) of order n is a BH(n, n) but not a GH(n,Cn).

Example 2.5. There are no known examples of GH(n,K) when K is not a p-group.
Indeed, finding a GH(n,K) with |K| = n not a power of p would resolve a long-
standing open problem in finite geometry; namely, whether a finite projective plane
always has prime-power order.

2.2 Equivalence relations

Let X , Y be GH(n,K)s. We say that X and Y are equivalent if MXN = Y for
monomial matrices M , N with non-zero entries in K. If X , Y are BH(n, k)s then they
are equivalent if MXN = Y for monomials M , N with non-zero entries from 〈ζk〉.
Equivalence in either situation is denoted X ≈ Y , whereas if M , N are permutation
matrices then X , Y are permutation equivalent and we write X ∼ Y . The equivalence
operations defined above are local, insofar as they are applied entrywise to a single
row or column one at a time. We will not regard taking the transpose or Hermitian as
equivalence operations.

If H is a GH(n,K) then H ≈ H ′ where H ′ is normalized (its first row and column
are all 1s) and thus row-balanced: each element of K appears with the same frequency,
n/|K|, in each non-initial row. Similarly, H ′ is column-balanced. Unless k is prime,
neither property is necessarily held by a normalized BH(n, k).

2.3 Non-existence of generalized Hadamard matrices

Certain number-theoretic conditions exclude various odd n as the order of a generalized
Hadamard matrix; see, e.g., [5, 6, 25]. The main general result of this kind that we need
is due to de Launey [6].

Theorem 2.6. Let K be abelian, and r, n be odd, where r is a prime dividing |K|. If a
GH(n,K) exists then every integer m 6≡ 0 mod r that divides the square-free part of
n has odd multiplicative order modulo r.

Remark 2.7. BH(n, p) do not exist for (n, p) ∈ {(15, 3), (33, 3), (15, 5)}.

We shall derive non-existence conditions for cocyclic BH(n, p) later.



3 Deciding equivalence of Butson Hadamard matrices

In this section we give an algorithm to decide equivalence of Butson Hadamard matri-
ces. The problem is reduced to deciding graph isomorphism, which we carry out using
Nauty [19]; and subgroup conjugacy and intersection problems, routines for which are
available in MAGMA.

3.1 Automorphism groups, the expanded design, and the associated design

The direct product Mon(n, 〈ζk〉) ×Mon(n, 〈ζk〉) of monomial matrix groups acts on
the (presumably non-empty) set of BH(n, k) via (M,N)H = MHN∗. The orbit of H
is its equivalence class; the stabilizer is its full automorphism group Aut(H).

Example 3.1. ([9, Section 9.2].) Denote the r-dimensional GF(p)-space by V . Then
D = [xy> ]x,y∈V is a GH(pr,Cp), written additively. In fact D is the r-fold Kronecker
product of the Fourier matrix of order p (so when p = 2 we get the Sylvester matrix).
If r 6= 1 or p > 2 then Aut(D) ∼= (Cp × Crp) o AGL(r, p).

Let Perm(n) be the group of all n × n permutation matrices. The permutation
automorphism group PAut(X) of an n × n array X consists of all pairs (P,Q) ∈
Perm(n)2 such that PXQ> = X . Clearly PAut(H) ≤ Aut(H). The array X is
group-developed over a group G of order n if X ∼ [h(xy)]x,y∈G for some map h.
We readily prove that X is group-developed over G if and only if G is isomorphic to
a regular subgroup (i.e., subgroup acting regularly in its induced actions on the sets of
row and column indices) of PAut(X).

The full automorphism group Aut(H) has no direct actions on rows or columns of
H . Rather, it acts on the expanded design EH = [ζi+jk H] via a certain isomorphism Θ
of Aut(H) onto PAut(EH): see [9, Theorem 9.6.12].

Proposition 3.2 (Corollary 9.6.10, [9]). If H1 and H2 are equivalent BH(n, k)s then
EH1 ∼ EH2 ; therefore PAut(EH1) and PAut(EH2) are isomorphic as conjugate sub-
groups of Perm(nk)2.

A converse of Proposition 3.2 also holds, which we might use as a criterion to
distinguish Butson Hadamard matrices. For computational purposes it is preferable to
work with the (0, 1)-matrix AH (the associated design of H) obtained from EH by
setting its non-identity entries to zero. Then we need an analog of Proposition 3.2
for the associated design. Before stating this, we say a bit more about the embed-
ding Θ : Mon(n, 〈ζk〉)2 → Perm(nk)2. It maps (P,Q) to (θ(1)(P ), θ(2)(Q)) where
θ(1) (resp. θ(2)) replaces each non-zero entry by the permutation matrix representing
that entry in the right (resp. left) regular action of 〈ζk〉 on itself. Denote the image of
Mon(n, 〈ζk〉)2 under Θ by M(n, k).

Proposition 3.3. Let H1, H2 be BH(n, k)s. We have H1 ≈ H2 if and only if AH1 =
XAH2Y

> for some (X,Y ) ∈M(n, k).



Proof. Suppose that θ(1)(P )AH2θ
(2)(Q)> = AH1 , and write EHi

=
∑
r∈〈ζk〉 rHi,r

(so AHi
= Hi,1). By Theorem 9.6.7 and Lemma 9.8.3 of [9],

H1,r = θ(1)(P )H2,rθ
(2)(Q)>.

Therefore EH1 = EPH2Q∗ by [9, Lemma 9.6.8]. This implies that H1 = PH2Q
∗. ut

We also use the following simple fact.

Lemma 3.4. Let A, B be subgroups and x, y be elements of a group G. Then either
xA ∩ yB = ∅, or xA ∩ yB = g(A ∩B) for some g ∈ G.

We now state our algorithm to decide equivalence of Butson Hadamard matricesH1

and H2 of order n and phase k.

1. Compute G1 = PAut(AH1) with Nauty.
2. Attempt to find σ ∈ Perm(nk)2 such that σAH1 = AH2 .

If no such σ exists then return false.
3. Compute U = G1 ∩M(n, k) and a transversal T for U in G1.
4. If there exists t ∈ T such that σt ∈M(n, k) then return true;

else return false.

If H1 ≈ H2 then σG1 ∩M(n, k) 6= ∅ by Proposition 3.3, so by Lemma 3.4 we must
find a t as in step 4. A report of false is then correct by Proposition 3.3; a report of
true is clearly correct. Note that if the algorithm returns true then we find an element
Θ−1(σt) mapping H1 to H2.

Step 1 is a potential bottleneck, although it remains feasible for graphs with several
hundred vertices. Equivalence testing is therefore practicable for many BH(n, k) that
have been considered in the literature.

Example 3.5. The authors of [20] construct a series of BH(2p, p) but cannot decide
whether their matrices are equivalent to those of Butson [4, Theorem 3.5]. Our method,
which has been implemented in MAGMA, shows that the BH(10, 5) denoted S10 in
[20] is equivalent to Butson’s matrix in less than 0.1s (an explicit equivalence is given
at [10]).

4 Cocyclic development

Since our main concern is Butson Hadamard matrices, we recap the essential ideas of
cocyclic development solely for this type of design.

4.1 Second cohomology and designs

Let H be a BH(n, k), and let W be the k× k block circulant matrix with first row (0n,
. . . , 0n, In). A regular subgroup of PAut(EH) containing the central element (W>,W )
is centrally regular. By [9, Theorem 14.7.1], PAut(EH) has a centrally regular sub-
group if and only if H ≈ [ψ(x, y)]x,y∈G for some G and cocycle ψ : G × G → 〈ζk〉;



i.e.,ψ(x, y)ψ(xy, z) = ψ(x, yz)ψ(y, z) ∀ x, y, z ∈ G. We say thatH ≈ [ψ(x, y)]x,y∈G
is cocyclic, with indexing group G and cocycle ψ. A cocycle of H is orthogonal.

Let U be a finite abelian group and denote the group of all cocycles ψ : G × G →
U by Z(G,U). Our cocycles are normalized, meaning that ψ(x, y) = 1 when x or y
is 1. If φ : G → U is a normalized map then ∂φ ∈ Z(G,U) defined by ∂φ(x, y) =
φ(x)−1φ(y)−1φ(xy) is a coboundary. These form a subgroup B(G,U) of Z(G,U),
and H(G,U) = Z(G,U)/B(G,U) is the second cohomology group of G.

For each ψ ∈ Z(G,U), the central extension E(ψ) of U by G is the group with el-
ements {(g, u) | g ∈ G, u ∈ U} and multiplication given by (g1, u1)(g2, u2) = (g1g2,
u1u2ψ(g1, g2)). Conversely, let E be a central extension of U by G, with embedding
ι : U → E and epimorphism π : E → G satisfying ker π = ι(U). Choose a normal-
ized map τ : G → E such that πτ = idG. Then ψτ (x, y) = ι−1(τ(x)τ(y)τ(xy)−1)
defines a cocycle ψτ , and E(ψτ ) ∼= E. Different choices of right inverse τ of π do not
alter the cohomology class of ψτ .

A BH(n, k), H , is cocyclic with cocycle ψ if and only if E(ψ) is isomorphic
to a centrally regular subgroup of PAut(EH) by an isomorphism mapping (1, ζk) to
(W>,W ). IfH is group-developed overG thenH is equivalent to a cocyclic BH(n, k)
with cocycle ψ ∈ B(G, 〈ζk〉) and extension group E(ψ) ∼= G× Ck.

Example 4.1. The Butson Hadamard matrix D in Example 3.1 is cocyclic, with index-
ing group Crp and cocycle ψ 6∈ B(Crp,Cp) defined by ψ(x, y) = xy>. Note that ψ is
multiplicative and symmetric. If p is odd then E(ψ) ∼= Cr+1

p . The determination of all
cocycles, indexing groups, and extension groups of D would be an interesting exercise;
cf. the account for p = 2 in [9, Chapter 21].

4.2 Computing cocycles

We compute Z(G, 〈ζk〉) by means of the Universal Coefficient theorem:

H(G,U) = I(G,U)/B(G,U)× T (G,U)/B(G,U)

where I(G,U)/B(G,U) is the isomorphic image under inflation of Ext(G/G′, U) and
T (G,U)/B(G,U) ∼= Hom(H2(G), U). Here G′ = [G,G] and H2(G) is the Schur
multiplier of G.

We describe the calculation of I(G,U) for U = 〈u〉 ∼= Cp as this is used in a later
proof. Let

∏
i〈giG′〉 be the Sylow p-subgroup ofG/G′, where |giG′| = pei . DefineMi

to be the pei × pei matrix whose rth row is (1, . . . , 1, u, . . . , u), the first u occurring in
column pei − r + 2. Let Ni be the |G| × |G| matrix obtained by taking the Kronecker
product of Mi with the all 1s matrix. Up to permutation equivalence, the Ni constitute
a complete set of representatives for the elements of I(G,U)/B(G,U) displayed as
cocyclic matrices. For more detail see [12].

4.3 Shift action

In a search for orthogonal elements of Z(G,Cp), it is not enough to test a single ψ
from each cohomology class [µ] ∈ H(G,Cp): if ψ is orthogonal then ψ′ ∈ [µ] need



not be orthogonal. Horadam [16, Chapter 8] discovered an action of G on each [ψ]
that preserves orthogonality, defined by ψ · g = ψ∂(ψg) where ψg(x) = ψ(g, x). This
‘shift’ action induces a linear representation G → GL(V ) where V is any G-invariant
subgroup of Z(G,Cp), allowing effective computation of orbits in V [11].

4.4 Further equivalences for cocyclic matrices

Equivalence operations preserving cocycle orthogonality, apart from local ones, arise
from the shift action or natural actions on Z(G, 〈ζp〉) by Aut(G) × Aut(Cp). The
action by Aut(Cp) alone furnishes a global equivalence operation. Together with the
local operations these generate the holomorph Cp o Cp−1 of 〈ζp〉 [9, Theorem 4.4.10].

4.5 Central relative difference sets

Theorem 4.2. There exists a cocyclic BH(n, p) with cocycle ψ if and only if there is
a relative difference set in E(ψ) with parameters (n, p, n, n/p) and central forbidden
subgroup 〈(1, ζp)〉.

Proof. This follows from [9, Corollary 15.4.2] or [22, Theorem 4.1]. ut

We explain one direction of the correspondence in Theorem 4.2. Let E be a central
extension of U ∼= Cp by G. Say ι embeds U into the center of E, and π : E → G
is an epimorphism with kernel ι(U). Suppose that R = {d1 = 1, d2, . . . , dn} ⊆ E is
an (n, p, n, n/p)-relative difference set with forbidden subgroup U ; i.e., the multiset of
quotients did−1

j for j 6= i contains each element of E \ ι(U) exactly n/p times, and
contains no element of ι(U). Since R is a transversal for the cosets of ι(U) in E, we
have G = {gi := π(di) | 1 ≤ i ≤ n}. Put τ(gi) = di. Then [ψτ (x, y)]x,y∈G is a
BH(n, p).

5 Cocyclic Butson Hadamard matrices

Theorem 5.1. Let K be abelian, n = |G| be divisible by |K|, ψ ∈ Z(G,K), and H =
[ψ(x, y)]x,y∈G. Then H is a GH(n,K) if and only if it is row-balanced. In that event
H is column-balanced too.

Proof. This follows from [16, Lemma 6.6], which generalizes a phenomenon observed
for cocyclic Hadamard matrices [9, Theorem 16.2.1]. ut

So we begin our classification by searching for balanced cocycles in the relevant
Z(G,Cp). When k is not prime, a cocyclic BH(n, k) need not be balanced; by [16,
Lemma 6.6] again, [ψ(x, y)]x,y∈G for ψ ∈ Z(G, 〈ζk〉) is a BH(n, k) if and only if each
non-initial row sum is zero.

We mention extra pertinent facts about Fourier matrices.

Lemma 5.2. The Fourier matrix of order n is a cocyclic BH(n, n) with indexing group
Cn. If n is odd then it is equivalent to a group-developed matrix.



Proposition 5.3 ([14]). Every circulant BH(p, p) is equivalent to the Fourier matrix of
order p.

Proposition 5.4 ([15]). For p ≤ 17, the Fourier matrix of order p is the unique BH(p, p)
up to equivalence.

5.1 Non-existence of cocyclic Butson Hadamard matrices

As we expect, there are restrictions on the order of a group-developed Butson Hadamard
matrix.

Lemma 5.5. Set rj = Re(ζjk) and sj = Im(ζjk). A BH(n, k) with constant row and
column sums exists only if there are x0, . . . , xk−1 ∈ {0, 1, . . . , n} satisfying(∑k−1

j=0rjxj
)2 +

(∑k−1
j=0sjxj

)2 = n (1)

and
∑k−1
j=0 xj = n.

Proof. LetH be a BH(n, k) with every row and column summing to s =
∑k−1
j=0 xjζ

j
k =

a+ bi. Then
nJn = JnHH

∗ = sJnH
∗ = ssJn

implies n = a2 + b2, which is (1). ut

Remark 5.6. If k = 2 then (1) just gives that n must be square, which is well-known.
If k = 4 then n is the sum of two integer squares. As a sample of other exclusions, the
following cannot be the order of a group-developed BH(n, k).

(i) k = 3, n ≤ 100: 6, 15, 18, 24, 30, 33, 42, 45, 51, 54, 60, 66, 69, 72, 78, 87, 90, 96,
99.

(ii) k = 5, n ≤ 25: 10, 15.

Some of these orders are covered by general results (see Remark 2.7).

Henceforth p is odd.

Lemma 5.7. Let k = pt and n = prm where p - m. Suppose that H is a cocyclic
BH(n, k) with indexing group G such that G/G′ has a cyclic subgroup of order pr.
Then any cocycle ψ ∈ I(G,Ck) of H is in I(G,Ck)p.

Proof. (Cf. [16, Corollary 7.44].) By Subsection 4.2, ψ = ψ1∂φ for some ψ1 inflated
from Z(G/G′,Ck) and map φ. Assume that ψ1 6∈ I(G,Ck)p. Then [ψ1(x, y)]x,y∈G
has a row with m occurrences of ζk and every other entry equal to 1. Label this row a.
Now ∏

y∈G∂φ(a, y) =
(∏

y∈Gφ(a)−1
)(∏

y∈Gφ(y)−1
)(∏

y∈Gφ(ay)
)

= φ(a)−n ∈ 〈ζpk〉.



So, if we multiply along row a of [ψ(x, y)]x,y∈G then we get an element of 〈ζk〉 \ 〈ζpk〉.
But this is a contradiction. For suppose that

∑k−1
i=0 ciζk

i = 0. Since the kth cyclo-
tomic polynomial

∑p−1
i=0 xi(p

t−1) divides
∑k−1
i=0 cix

i, we have cj = cpt−1+j = · · · =
c(p−1)pt−1+j , 0 ≤ j ≤ pt−1 − 1. It is then straightforward to verify that

∏k−1
i=0 ζ

ici

k ∈
〈ζpk〉. ut

Corollary 5.8. If n is p-square-free then a cocyclic BH(n, p) is equivalent to a group-
developed matrix.

Proof. Let G be the indexing group of a cocyclic BH(n, p). Either p divides |G′| or
Lemma 5.7 applies, and thus I(G,Cp) = B(G,Cp). Also Hom(H2(G),Cp) = 1 by
[17, Theorem 2.1.5]. ut

Proposition 5.3 then yields

Corollary 5.9. A cocyclic BH(p, p) is equivalent to the Fourier matrix of order p.

Remark 5.10. By Remark 5.6 and Corollary 5.8, for (n, p) = (10, 5) or p = 3 and n ∈
{6, 24, 30}, there are no cocyclic BH(n, p) at all (so Butson’s construction [4] is not
cocyclic). Furthermore, a cocyclic BH(12, 3), BH(21, 3), BH(20, 5), or BH(14, 7) is
equivalent to a group-developed matrix.

5.2 Existence of cocyclic BH(n, p), np ≤ 100

The table below summarizes existence of matrices in our classification.

p \ n
p

1 2 3 4 5 6 7 8 9 10 11

3 F NC E E N S2 S1 NC E NC N
5 F NC N S1

7 F S1

Table 1: Existence of BH(n, p)

N: no Butson Hadamard matrices by Remark 2.7.
NC: no cocyclic Butson Hadamard matrices by Remark 5.10.
E: cocyclic Butson Hadamard matrices exist. See Section 6.
S1: no cocyclic Butson Hadamard matrices according to a relative difference set search.
S2: no cocyclic Butson Hadamard matrices according to an orthogonal cocycle search.
F: the Fourier matrix is the only Butson Hadamard matrix by Proposition 5.4 (or Corollary 5.9).

Remark 5.11. There are non-cocyclic BH(6, 3) and BH(10, 5) by [4]. Non-existence
of cocyclic BH(6, 3) is established by computer in [16, Example 7.4.2].

We relied on computation of relative difference sets only for parameter values that
we could not settle otherwise. Nevertheless, those calculations were not onerous. The
search for a relative difference set with parameters (14, 7, 14, 2) ran in under an hour;



the test for an RDS(20, 5, 20, 4) took about a day, with most of the time being spent on
C100. We note additionally that there are theoretical obstructions to the existence of an
RDS(21, 3, 21, 7): the system of diophantine signature equations that such a difference
set must satisfy does not admit a solution [24].

6 The full classification

The only cases left to deal with are (n, p)∈{(9, 3), (12, 3), (27, 3)}. In this section we
discuss our complete and irredundant classification of such BH(n, p).

Our overall task splits into two steps. We first compute a set of cocyclic BH(n, p)
containing representatives of every equivalence class. Then we test equivalence of the
matrices produced. Since our method for the second step was given in Section 3, and
the orders involved pose no computational difficulties, we say nothing further about this
step. Two complementary methods were used for the first step: checking shift orbits
for orthogonal cocycles, and constructing relative difference sets. See Subsections 4.2
and 4.3; also, we refer to [21, Section 6], which discusses a classification of cocyclic
Hadamard matrices via central relative difference sets. The algorithm for constructing
the difference sets in this paper is identical to the one there, and was likewise carried
out using M. Röder’s GAP package RDS [23].

Example 6.1. Table 2 lists the number t of orthogonal elements of Z(G,C3) for |G| =
9 or 12.

G C9 C2
3 C12 C3 o C4 Alt(4) D6 C2

2 × C3

t 18 144 0 288 48 0 96

Table 2: Counting orthogonal elements of Z(G,C3)

If |G| ∈ {6, 15, 18} then t = 0.

6.1 BH(9, 3).

There are precisely three equivalence classes of cocyclic BH(9, 3).
One class contains BH(3, 3)⊗BH(3, 3), which has indexing group C2

3 and cocycle
that is not a coboundary. Some matrices H1 in this class are group-developed over C2

3.
No H1 has indexing group C9. See Examples 3.1 and 4.1.

Another equivalence class contains group-developed matrices with indexing group
C9. No matrix H2 in this class has indexing group C2

3; hence the cocycles of H2 are all
coboundaries by Lemma 5.7. This class is not represented in [3], but happens to be an
example of the construction in [7] (cf. [2]). A representative is the circulant with first
row (1, 1, 1, 1, ζ3, ζ2

3 , 1, ζ
2
3 , ζ3).

The third class contains matrices H3 ≈ H∗2 that are cocyclic with indexing group
C9. Again, H3 is equivalent to a circulant, does not have indexing group C2

3, all of its
cocycles are coboundaries, and it is not in [3].



By Proposition 3.2, PAut(EH2) ∼= PAut(EH3), and this is solvable. We described
PAut(EH1) in Example 3.1.

6.2 BH(12, 3).

Each cocyclic BH(12, 3) is equivalent to a group-developed matrix (Remark 5.10) over
one of C3 o C4, C2

2 o C3, or C2
2 × C3. There are just two equivalence classes, which

form a Hermitian pair. The automorphism groups have order 864.
This is the only order n in our classification which is not a prime power and for

which cocyclic BH(n, p) exist.

6.3 BH(27, 3).

Predictably, order 27 was the most challenging one that we faced in our computations.
An exhaustive search for orthogonal cocycles was not possible, so this order was clas-
sified by the central relative difference sets method.

There are sixteen equivalence classes of cocyclic BH(27, 3) in total. Some are Kro-
necker products of cocyclic BH(9, 3) with the unique BH(3, 3), but the majority are
not of this form. Each matrix is equivalent to its transpose. There are two classes that
are self-equivalent under the Hermitian; the rest occur in distinct Hermitian pairs.

Except for the generalized Sylvester matrix, whose automorphism group as stated
in Example 3.1 is not solvable, the automorphism group of a BH(27, 3) has order 2a3b.

Every non-cyclic group of order 27 is an indexing group of at least one BH(27, 3).
There are no circulants.

7 Concluding comments

It is noteworthy that all matrices in our classification are equivalent to group-developed
ones (non-trivial cohomology classes appear too). This may be compared with [21],
which features many equivalence classes not containing group-developed Hadamard
matrices. Also, while there exist circulant BH(pr, p) for all odd p and r ≤ 2 [2, 7], we
have not yet found a circulant BH(n, p) when n is not a p-power.

A few composition results should be given. Let ψi ∈ Z(Gi,Ck) for i = 1, 2, and
define ψ ∈ Z(G1 × G2,Ck) by ψ((a, b), (x, y)) = ψ1(a, x)ψ2(b, y). It is not hard to
show that ψ ∈ B(G1 ×G2,Ck) if and only if ψ1, ψ2 are coboundaries.

Lemma 7.1. Suppose thatHi is a cocyclic BH(ni, k) with cocycle ψi, 1 ≤ i ≤ 2. Then
H1 ⊗H2 is a cocyclic BH(n1n2, k) with cocycle ψ.

Corollary 7.2. For a ≥ 1, b ≥ a, and G ∈ {C3 o C4,C2
2 o C3,C2

2 ×C3}, there exists
a group-developed BH(22a3b, 3) with indexing group Ga × Cb−a3 .

Corollary 7.2 was proved by de Launey [8, Corollary 3.10], albeit only for indexing
groups C2a

2 × Cb3.
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