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ABSTRACT. Let p be a prime and let C be the complex field. We explicitly classify the

finite solvable irreducible monomial subgroups of GL(p,C) up to conjugacy. That is,

we give a complete and irredundant list of GL(p,C)-conjugacy class representatives

as generating sets of monomial matrices. Copious structural information about non-

solvable finite irreducible monomial subgroups of GL(p,C) is also proved, enabling

a classification of all such groups bar one family. We explain the obstacles in that

exceptional case. For p ≤ 3, we classify all finite irreducible subgroups of GL(p,C).
Our classifications are available publicly in MAGMA.

1. INTRODUCTION

Classifying finite subgroups of GL(n,F) for various fields F and degrees n is an
enduring problem in linear group theory. Early results are due to Jordan, Klein,
Maschke, and Schur. Subsequently contributions were made by Dickson, Blichfeldt,
Brauer, and Feit, to name just a few.

Special degrees (‘small’, prime, product of two primes) have received the most
attention. We focus on prime degree p, which eases the workload somewhat. For
example, an irreducible subgroup of GL(p,F) can be imprimitive in only one way
(monomial). Furthermore, classifications for prime degrees may be needed to classify
groups of composite degree.

The term classify has disparate meanings in linear group theory. By classification,
we mean a list of groups of the declared kind in GL(n,F) that contains every group
of that kind exactly once up to GL(n,F)-conjugacy; also, each listed group is given
explicitly, as a generating set of matrices.

D. A. Suprunenko classified several kinds of linear groups over finite and infinite
fields. In [36, Theorem 6, p. 167] and [36, §22.1], the maximal irreducible solvable
linear groups of prime degree over finite fields and algebraically closed fields are
listed up to conjugacy. This was extended to other classical groups by Detinko [11,

2010 Mathematics Subject Classification. 20H20, 20E99, 20-04.
1



2 Z. BÁCSKAI, D. L. FLANNERY, AND E. A. O’BRIEN

12]. Many more classifications of finite linear groups have been published, some of
which are surveyed in [18, §8], [37], and [38, §§4.5–4.7].

For our classifications, we take F to be the complex field C. The list of groups in
each degree is thus infinite. By contrast, the number of conjugacy classes of finite
primitive subgroups of SL(n,C) is finite (hence the popularity of these restrictions
in the literature). Each group in our lists has a unique label: an integer parameter
string that specifies the non-zero entries of matrix generators.

In [8, 9] Conlon classified the non-abelian finite p-subgroups of classical groups
of degree p over a field of characteristic not p. These papers set a benchmark of
thoroughness, demonstrating that imprimitive groups in the full general linear group
could be handled without too much difficulty.

L. G. Kovács initiated and guided a research program aimed at classifying finite
linear groups to the standard of [8, 9]. Work within this program includes that
by Bácskai [1], Flannery [20], Höfling [25], Short [34], and Sim [35]. Our paper
is a development of [1]. We emphasize again the scale of all these classifications:
they are complete and irredundant up to conjugacy in the relevant GL(n,F), with
representatives given as generating sets of matrices.

One motivation for the Kovács program has origins in computational group theory.
A certain maximal subgroups algorithm proposed by Kovács, Neubüser, and Newman
requires lists of irreducible linear groups over finite fields, based on an equivalence
with primitive permutation groups (see [34, pp. 2–4], and [10, 17] for later progress
in this direction). Classifications of finite linear groups over C also serve as a resource
for classifying linear groups over finite fields (see the use of [21] in [22]).

A comparable classification, of finite non-solvable irreducible monomial subgroups
of SL(p,C), was achieved by Dixon and Zalesskii [16]. While our work inevitably
has overlaps with [16], there are significant differences. First, a classification up
to conjugacy in GL(p,C) is remote from an analogous classification in SL(p,C); the
restriction to SL(p,C) affords various simplifications that are not applicable in the
full general linear group. Moreover, we have completely classified the solvable finite
irreducible monomial subgroups of GL(p,C) for all p—a notable accomplishment in
its own right. The non-solvable case lacks a complete solution for arbitrary p, as we
explain in Section 10.

Classifications such as the ones in this paper are dense with intricacies that may
increase the likelihood of error. To address this issue, we have made the classifications
publicly available as part of the computer algebra system MAGMA [6]; they can be
incorporated into other systems. Output is a list of groups over an algebraic number
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field prescribed by an input bound on group order. Measures to verify correctness are
discussed in Section 12.

Initially we deal with solvable monomial subgroups of GL(p,C). The treatment
is then widened to non-solvable groups, culminating in a classification of the finite
irreducible monomial subgroups of GL(p,C) for p ≤ 11. Additionally, for p ≤ 3, we
classify all finite irreducible subgroups of GL(p,C). To classify finite non-solvable
primitive subgroups of GL(p,C) for p > 3, one might utilize the description in [15]
of the finite primitive subgroups of SL(p,C) up to isomorphism.

As noted above, our development of the classification and its exposition follow
[1]. Recently, the second and third authors revisited the topic, with a long-held aim
of making these results accessible to the wider research community. We discovered
errors in [1] which impact on the correctness of that work. Consequently, we pre-
pared a new self-contained account that resolves these errors, and, for the first time,
provides the classification in a format suitable for further computation.

2. PRELIMINARIES

Unless stated otherwise, F denotes an arbitrary field. The group M(n,F) of all
monomial matrices in GL(n,F) splits over the subgroup D(n,F) of diagonal matrices:
M(n,F) = D(n,F) o P(n), where P(n) is the group of permutation matrices. We
identify P(n) with Sym(n); say, under the isomorphism that maps α ∈ Sym(n) to
[δiα,j ]i,j ∈ P(n) where δ is the Kronecker delta. Each G ≤ M(n,F) is an extension of
its diagonal subgroup G ∩D(n,F) by its permutation part D(n,F)G ∩ P(n).

Definition 2.1. Let φ be the natural surjection M(n,F)→ Sym(n) defined by φ : dt 7→
t for d ∈ D(n,F) and t ∈ P(n).

Note that G has permutation part φ(G). We speak of the diagonal subgroup G ∩
kerφ as a φ(G)-module; x ∈ M(n,F) acts by conjugation on D(n,F) as φ(x) does,
permuting diagonal entries as φ(x) permutes {1, . . . , n}.

Lemma 2.2. If G ≤ M(n,F) is irreducible then φ(G) is transitive.

So we must first solve a classification problem for permutation groups: classify the
transitive groups of prime degree.

Notation 2.3. M̃(n,F) denotes the group of all n × n monomial matrices over the
roots of unity in F.

Lemma 2.4. If G ≤ M(n,F) is finite and φ(G) is transitive then G is M(n,F)-conjugate
to a subgroup of M̃(n,F).
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Proof. Let ek ∈ Fn be the vector with 1 in position k and 0s elsewhere. The orbit Ge1
contains a basis {b1, . . . , bn} of Fn. For each g ∈ G and i, we have gbi = λbj for some
j and λ ∈ F×. Since λe1 ∈ Ge1, the scalar λ has finite order. Thus, if b ∈ M(n,F) is
the matrix with kth column bk, then Gb ≤ M̃(n,F). �

In view of Lemma 2.4, we classify subgroups of M̃(p,C). That is, listed groups will
be given by generating sets of monomial matrices, and the non-zero entries of each
generator are roots of unity.

The key steps in our approach are as follows.

(1) Classify the transitive T ≤ Sym(p) up to conjugacy.

(2) For each permutation part T , list the candidate diagonal subgroups A, i.e.,
the finite T -submodules A of D(p,F).

(3) For pairs (T,A) drawn from (1) and (2), solve the extension problem in
M(p,F) up to GL(p,F)-conjugacy, ensuring that each retained extension of A
by T is irreducible.

(4) Eliminate GL(p,F)-conjugacy among all subgroups of M(p,F) found in (3).

These steps are carried out in Section 2.1; Section 3; Sections 2.3 and 4–9; and
Sections 2.2 and 4–9, respectively.

The final lists are complete (every finite irreducible monomial subgroup of GL(p,F)

is represented) and irredundant (no GL(p,F)-conjugacy class is represented more
than once). We justify completeness by proving that step (4) does not remove any
conjugacy class. Most of the taxonomic complication arises in step (2), especially
when T is solvable.

2.1. Transitive subgroups of Sym(p). Permutation groups of prime degree have
been studied from the time of Galois. We recap some of the essential theory.

A transitive group T ≤ Sym(p) has a unique simple normal transitive subgroup U .
The quotient NSym(p)(U)/U is cyclic of order dividing p− 1. Thus T is solvable if and
only if U is solvable, i.e., |U | = p.

Notation 2.5. Throughout, s = (1, 2, . . . , p) ∈ Sym(p). Let t ∈ Sym(p) be defined by
i 7→ iu mod p where u is the least primitive element modulo p in {1, . . . , p − 1}. So
|s| = p, |t| = p− 1, and st = su.

Since T contains a conjugate of s in Sym(p), we assume that s ∈ T henceforth.

Lemma 2.6. If T is solvable then T ≤ NSym(p)(〈s〉) = 〈s, t〉 ∼= Cp o Cp−1.
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A solvable irreducible monomial subgroup of GL(p,F) is therefore conjugate to
a subgroup of M(p,F) with permutation part 〈s, ta〉 where a | (p − 1). On the other
hand, 〈s〉 is not normal in non-solvable T .

Proposition 2.7. A non-trivial normal subgroup of T is transitive. Hence the Fitting
subgroup Fit(T ) is non-trivial if and only if T is solvable, in which case |Fit(T )| = p.

Table 1 (extracted from [30, Table 1]; see also [16, §1.1]) displays facts about all
non-solvable U .

U NSym(p)(U) Degree # rep.s

Alt(p) Sym(p) p ≥ 7 1

SL(d, q) ΣL(d, q) p = qd−1
q−1

1 (d = 2)

2 (d ≥ 3)

Mp Mp p = 11, 23 1

PSL(2, 11) PSL(2, 11) p = 11 2

TABLE 1. Non-abelian simple transitive permutation groups of degree p

The fourth column states the number of inequivalent faithful representations of U
in Sym(p); M11 and M23 are Mathieu groups; d is prime and gcd(d, q − 1) = 1, so
SL(d, q) ∼= PSL(d, q). The normalizer ΣL(d, q) is SL(d, q)oAut(Fq) where Fq denotes
the field of size q. Of course, Alt(5) appears as U twice.

Observe that Sym(p) always has transitive subgroups of the following kinds: the
solvable ones, Alt(p), and Sym(p); these we call compulsory. All but three non-
compulsory transitive permutation groups of degree p belong to the ‘projective’ family
(i.e., with U as in row 2 of Table 1). Bateman and Stemmler [2, Theorem 4] show
that for large n there are at most 50

√
n/(log n)2 primes of this form not exceeding n.

So there are infinitely many ‘non-projective’ primes.
The next fact does not seem to be widely known.

Theorem 2.8. Transitive subgroups of Sym(p) are conjugate if and only if they are
isomorphic.

Proof. If U is Cp, Alt(p), SL(2, q), or Mp, then there is only one faithful permutation
representation of U of degree p up to equivalence, and hence a single conjugacy class
of groups in Sym(p) isomorphic to U .

Suppose that U ∼= PSL(2, 11) and θ is a transitive embedding of U in Sym(p)

inequivalent to idU . If α ∈ Aut(U) and θα(u)a = θ(u) for some a ∈ Sym(p) and all
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u ∈ U , then a ∈ θ(U) because θ(U) is self-normalizing. Since Out(U) 6= 1, there will
be an α such that idU and θα are equivalent; whence U is conjugate to θ(U).

If U ∼= SL(d, q) for d ≥ 3 then the graph (inverse transpose) automorphism of U
swaps the two inequivalent transitive representations of U in Sym(p) [30, p. 523].

Now let S and Ŝ be isomorphic transitive subgroups of Sym(p), with simple normal
transitive subgroups U , Û respectively. By the above, Uw = Û for some w ∈ Sym(p).
Thus Sw normalizes Û . Since NSym(p)(Û)/Û is cyclic, Sw = Ŝ. �

2.2. Conjugacy. Already we witness a division of the classification into mutually
disjoint families: groups with permutation parts that are not conjugate in Sym(p) are
not M(p,F)-conjugate. Such groups cannot even be isomorphic.

Theorem 2.9. Suppose that G,H ≤ M(p,F) are isomorphic, with φ(G) and φ(H) tran-
sitive. Then φ(G) and φ(H) are Sym(p)-conjugate. If G is non-solvable, then D(p,F) ∩
G maps onto D(p,F) ∩H under any isomorphism G→ H.

Proof. The theorem follows (with a little effort) from Lemma 2.6, Proposition 2.7,
and Theorem 2.8. �

Theorem 2.9 is vital in our solution of the conjugacy problem: groups with differ-
ent permutation parts are not conjugate, and conjugacy that does not respect diago-
nal subgroups can only occur between (irreducible) solvable groups.

Theorem 2.10. Let G be an irreducible subgroup of M̃(p,F) with non-scalar diagonal
subgroup A. Suppose that Gw ≤ M̃(p,F) and Aw ≤ D(p,F) for some w ∈ GL(p,F).
Then w is monomial; furthermore, w ∈ M̃(p,F) up to scalars if F is algebraically closed.

Proof. By Clifford’s Theorem, the A-submodules of Fn are exactly the 1-dimensional
subspaces Fei. Then wei ∈ Fej for some j, because Awei ⊆ Fei. Hence w is mono-
mial. We may assume that w is diagonal. Fix g ∈ G; the map defined by b 7→ [b, g]

is an endomorphism of D(p,F). Since [w, g] ∈ M̃(p,F), we have [wn, g] = [w, g]n = 1

for some n and all g. By Schur’s Lemma, wn is scalar. Taking nth roots, we see that a
scalar multiple of w has finite order. �

In other words, GL(p,C)-conjugacy that respects (non-scalar) diagonal subgroups
is effected by a monomial matrix. So our priority is to sort out the conjugacy classes
of M̃(p,C). Moreover, Theorems 2.9 and 2.10 are frequently used to show that
GL(p,C)-conjugacy among non-solvable groups is the same as M̃(p,C)-conjugacy.
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Remark 2.11. The isomorphism question for a set S of subgroups of GL(n,F) asks: if
G, H ∈ S are (abstractly) isomorphic, are G and H linearly isomorphic (GL(n,F)-
conjugate)? The answer is “yes” for non-abelian finite p-subgroups of GL(p,C) by [8,
Proposition 4.2], but “no” more generally for finite irreducible subgroups of M(p,C).
Cf. Theorem 2.8. Corollary 11.2 gives another answer to the isomorphism question.

2.3. Irreducibility. We prove the next theorem using Ito’s result that the irreducible
ordinary character degrees of a finite group divide the index of each abelian normal
subgroup.

Theorem 2.12. Let G be a finite subgroup of M(p,C) such that φ(G) is transitive. If
D(p,C) ∩G is non-scalar, then G is irreducible. Conversely, if G is solvable irreducible,
then D(p,C) ∩G is non-scalar.

Corollary 2.13. If G is a finite irreducible subgroup of M(p,C) then D(p,C) ∩ G is a
maximal abelian normal subgroup of G.

Remark 2.14. Let G = A o T for scalar A ≤ D(n,F) and T ≤ Sym(n). Then G fixes
the all 1s vector, so is reducible.

Remark 2.15. The general converse of the first claim in Theorem 2.12 is false: M(5,C)

has irreducible subgroups isomorphic to Alt(5).

3. DIAGONAL SUBGROUPS

Let T ≤ Sym(p). A finite T -submodule of D(p,C) is the direct product of its Sylow
p-subgroup and its Hall p′-subgroup, which are also T -modules. The submodule
listing problem bifurcates accordingly.

3.1. 〈s〉-modules.

3.1.1. The modules of p-power order. Our paradigm for listing the 〈s〉-submodules of
D(p,C) of p-power order is [8, §1].

Note that D(p,C) is a central product XZ amalgamating the scalar subgroup of
order p, where Z is the group of all scalars and X = SL(p,C) ∩ D(p,C). We define
endomorphisms γ and χ of D(p,C) by

γ(d) = d1−s, χ(d) = d1+s+···+s
p−1

.

Then Z = χ(Z) = χ(D(p,C)) = ker γ and X = γ(X) = γ(D(p,C)) = ker χ. For i =
√
−1, let

bm = diag(e2πi/m, e−2πi/m, 1, . . . , 1), zm = diag(e2πi/m, . . . , e2πi/m).
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Lemma 3.1. Z has a unique 〈s〉-submodule of each order m, namely Zm = 〈zm〉.

Notation 3.2. Let D be the torsion subgroup of D(p,C). If π is a set of primes, then
Aπ denotes the Hall π-subgroup ofA ≤ D. So we writeA{q} for the Sylow q-subgroup
of A if π has a single prime q. The complement of Aπ in A is denoted Aπ′ .

Remark 3.3. The scalar subgroup Zp = X ∩ Z of order p lies in every non-identity
〈s〉-submodule of D{p}.

Next we determine the finite 〈s〉-submodules of X{p}.

Definition 3.4. For a positive integer j, let n, m be the non-negative integers such
that m < p− 1 and j = n(p− 1)−m. Define

Xpj = X ∩ (ker γj), xpj = γm(bpn).

Remark 3.5. zp
pj+1 = zpj and xp

pj+p−1 = xpj .

Notation 3.6. If A is an abelian q-group, then ΩkA := {a ∈ A | aqk = 1}, i.e., the
largest subgroup of exponent at most qk.

Lemma 3.7. X{p} is a uniserial 〈s〉-module; it has a unique submodule at every order
pj , namely Xpj , generated as an 〈s〉-module by xpj .

Proof. Suppose that |Xpj | = pj for j ≥ 1. The 〈s〉-epimorphism γ : Xpj+1 → Xpj

has kernel Xp. Thus |Xpj+1 | = p|Xpj | = pj+1, proving that |Xpj | = pj for all j by
induction.

Let B ≤ X{p} be a non-identity 〈s〉-submodule. So B/Xp is an 〈s〉-submodule of
X{p}/Xp

∼= X{p}. If B 6= Xp then we replace B by B/Xp in X{p}/Xp and repeat. The
recursion eventually terminates, at which point B = Xpj for some j.

The 〈s〉-module generated by bpn is ΩnX{p} = Xpn(p−1) . Hence γm(bpn) generates
γm(Xpn(p−1)) = Xpn(p−1)−m . �

We obtain all finite 〈s〉-submodules of the Sylow p-subgroup

D{p}/Zp = X{p}/Zp × Z{p}/Zp

of D(p,C)/Zp from Lemmas 3.1 and 3.7 and the following well-known theorem (for
a proof, see [33, 1.6.1, p. 35]).

Theorem 3.8 (Goursat–Remak). Let U and V be R-modules for an associative unital
ring R. If θ is an R-isomorphism of a section U1/U2 of U onto a section V1/V2 of V ,
then

Wθ = {uv | u ∈ U1, v ∈ V1, θ(uU2) = vV2}
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is an R-submodule of U × V such that

U2 = Wθ ∩ U, V2 = Wθ ∩ V, U1 = U ∩WθV, V1 = UWθ ∩ V,

and Wθ/U2V2 ∼= U1/U2
∼= V1/V2.

Conversely, let W be an R-submodule of U × V . Put

U2 = W ∩ U, V2 = W ∩ V, U1 = U ∩WV, V1 = UW ∩ V,

and define α : U1/U2 → V1/V2 by α(uU2) = vV2 where v is any element of uW ∩ V .
Then α is an R-isomorphism such that W = Wα.

That is, apart from ‘Cartesian’ submodules XpjZpk , the 〈s〉-submodules of D{p}
are in one-to-one correspondence with the 〈s〉-isomorphisms between non-identity
sections of X{p}/Zp and Z{p}/Zp.

Definition 3.9. For k ≥ 0, let Y0,k,0 = Zpk . For j, k ≥ 1 and l ≥ 0, let

Yj,k,l = 〈xpj+1zlpk+1 , Xpj , Zpk〉.

Define Y to be the set of all Yj,k,l where 0 ≤ l ≤ p− 1 and either j = l = 0 and k ≥ 0,
or j, k ≥ 1.

Theorem 3.10 (cf. [8, 1.8]). Y is the set of all finite 〈s〉-submodules of D{p}.

Proof. As forecast, this is an application of Theorem 3.8, relying on Lemmas 3.1 and
3.7. �

Remark 3.11.

(i) If (j, k, l) 6= (0, 0, 0) then Yj,k,l is generated as an 〈s〉-module by xpj+1zl
pk+1

and zpk .
(ii) |Yj,k,l| = pj+k.

(iii) Each element of Y is labeled by a unique triple: Yj,k,l = Ya,b,c ⇒ (j, k, l) =

(a, b, c).

3.1.2. The modules of order coprime to p. Let q be a prime, q 6= p. Clearly

D{q} = X{q} × Z{q}.

As we will see, X{q} is a direct product of uniserial 〈s〉-submodules with no iso-
morphism between non-identity sections of the factors, and 〈s〉 acts non-trivially on
every non-identity section of X{q}. Hence, by the Goursat–Remak Theorem, all 〈s〉-
submodules of D(p,C) of q-power order are Cartesian.
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We gave a ‘closed’ (submodule or subgroup) generating set of each finite 〈s〉-
submodule of D{p}. It is infeasible to do the same for submodules of D{q}. A new fea-
ture is calculation with polynomials over the q-adic integers Zq (the endomorphism
ring of the quasicyclic q-group Cq∞ , which acts on D{q} ∼= (Cq∞)p by extension of the
Z-action). The complexity of these calculations varies with q and p. We undertake
these calculations without imposing the ‘height’ restriction of [16, p. 366].

Notation 3.12. Denote reduction modulo q by overlining. So Z = Zq = Fq, and a
polynomial f ∈ Zq[x] or Z[x] maps tof ∈ Fq[x].

We need the following version of Hensel’s Lemma. Its proof contains an algorithm
that we use to construct generators for submodules of X{q} (cf. [19, Lemma 12.8,
p. 40]).

Lemma 3.13. Suppose that f ∈ Zq[x] is monic and f ∈ Fq[x] factorizes into the product
of coprime monic polynomials g0, h0 ∈ Fq[x]. Then there exist monic g, h ∈ Zq[x] such
that g = g0, h = h0, and f = gh.

Proof. We call an integer polynomial flat if its coefficients lie in {0, 1, . . . , q−1}. Each
polynomial in Zq[x] is congruent modulo q to a unique flat polynomial.

We have a0g0 + b0h0 = 1 for some a0, b0 ∈ Fq[x]. Let a, b, g1, h1 ∈ Z[x] be the flat
preimages of a0, b0, g0, h0, respectively, modulo q. Assume inductively that n ≥ 1 and
gn = g0, hn = h0 for some gn, hn ∈ Z[x] such that f = gnhn + qncn where cn ∈ Zq[x].
Then deg cn < deg f . Also, agn + bhn ≡ 1 mod q.

By division in Fq[x] and lifting, we get unique flat vn, wn such that bcn ≡ wngn +

vn mod q and deg vn < deg gn. Let un = acn + wnhn, and let u′n be the unique flat
polynomial congruent to un modulo q. Then

vnhn + ungn = bcnhn + acngn ≡ cn mod q,

so u′ngn ≡ cn − vnhn mod q. Since deg cn < deg f and deg vn < deg gn, it follows that
deg u′n < deg hn.

Define gn+1 = gn+ qnvn and hn+1 = hn+ qnu′n. These polynomials are monic, and

gn+1hn+1 ≡ gnhn + qn(u′ngn + vnhn)

≡ gnhn + qncn

≡ f mod qn+1.

Hence, by induction, for each positive integer n there exist gn, hn ∈ Z[x] such that
gn+1 ≡ gn, hn+1 ≡ hn, and f ≡ gnhn mod qn. So the polynomial sequences {gn}n≥1,
{hn}n≥1 converge in the q-adic sense to monic g, h ∈ Zq[x] such that f = gh. �
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Corollary 3.14. Suppose that f ∈ Zq[x] is monic and f has no repeated roots (in any
extension of Fq). Then f is Zq-irreducible if and only if f is Fq-irreducible.

Proof. Since f has no repeated roots, it is coprime to its formal derivative. Thus f
can only properly factorize into a product of coprime polynomials, which contradicts
Lemma 3.13 if f is irreducible.

For the converse, let fi ∈ Zq[x] be the irreducible monic factors of f in Zq[x]. Each
fi is monic and has no repeated roots. The previous paragraph implies that the fi are
Fq-irreducible. �

Notation 3.15. v := p−1
d where d is the multiplicative order of q modulo p.

Definition 3.16. From now on, f = f(x) := 1 + x + · · ·+ xp−1 ∈ Zq[x]. Let g1 be an
irreducible monic factor of f . For 1 ≤ r ≤ v − 1, define gr+1(x) = gcd(gr(x

u),f(x))

where u is the least primitive element modulo p (see Notation 2.5).

Remark 3.17. We can impose a total ordering on Fq[x] to ensure that the gr (and thus
submodule generators in X{q}) are canonically defined.

The polynomials f and f do not have repeated roots. Indeed, if ξ is a root of g1,
then ξ is a root of f , hence a primitive pth root of unity, and the roots of f are the ξi.

Proposition 3.18.

(i) Each gr is Fq-irreducible, and f = g1 · · · gv.
(ii) There are monic irreducible factors f1, . . . , fv ∈ Zq[x] of f such thatfr = gr and

f = f1 · · · fv.

Proof. Denote the Frobenius automorphism of Fq(ξ)/Fq by β. Let Ξr = {ξu1−rqi |
1 ≤ i ≤ d}, the orbit of ξu

1−r
under 〈β〉. Further, let Λr be the set of roots of gr.

We assert that Λr = Ξr. Since 〈β〉 acts transitively on Ξr, this will prove that gr is
irreducible; since the set of roots of f is partitioned by the Ξr, this will also prove
that f = g1 · · · gv.

Certainly Λ1 = Ξ1, because g1 is irreducible and has ξ as a root. Assume inductively
that Λr = Ξr for some r ≥ 1. Then ξj ∈ Λr+1 if and only if ξju ∈ Λr. By the
inductive hypothesis, this happens if and only if j ≡ u1−(r+1)qi mod p for some i.
Hence Λr+1 = Ξr+1, completing the proof of (i) by induction. As the polynomial
rings are UFDs, part (ii) then follows from Corollary 3.14. �

Thus, we factorize f over Fq, then lift to the irreducible factors fr ∈ Zq[x] of f
by the algorithm in the proof of Lemma 3.13. Although this factorization depends
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strongly on the value of q, we omit q in some of the attendant polynomial notation to
reduce clutter.

Definition 3.19.

(i) Let X(r)
{q} be the set of elements of X{q} annihilated by fr(s).

(ii) X(r)
q,n := ΩnX

(r)
{q}.

(iii) fr′ :=
∏
j 6=r fj .

Remark 3.20. X(r)
{q} is a Zq〈s〉-submodule.

Proposition 3.21.

(i) X{q} = X
(1)
{q} × · · · ×X

(v)
{q}.

(ii) X(r)
{q} = X

fr′ (s)
{q} for 1 ≤ r ≤ v.

Proof. There exist h1, . . . , hv ∈ Qq[x] such that
∑v

r=1 fr′hr = 1. We can choose k ≥ 0

such that cr := qkhr ∈ Zq[x] for all r. Since Xqk

{q} = X{q},

X{q} =
∏v
r=1(X{q})

fr′ (s)cr(s) =
∏v
r=1(X

(r)
{q})

cr(s) ⊆
∏v
r=1X

(r)
{q}.

Thus X{q} =
∏v
r=1X

(r)
{q}.

If X(r)
q,1 ∩ Ω1

(∏
j 6=rX

(j)
{q}
)
6= 1, then there is a non-identity b ∈ Ω1X{q} such that

b = bfr(s) = bfr′ (s) = 1. But frw + fr′z ≡ 1 mod q for some w, z ∈ Zq[x]. Hence b =

bfrw(s)bfr′z(s) = 1. �

We embark on the task of determining the finite 〈s〉-submodules of each X(r)
{q}.

Lemma 3.22. X(r)
q,1 is irreducible as an 〈s〉-module.

Proof. Let dr be the dimension of the subspace X(r)
q,1 of the (p − 1)-dimensional Fq-

space Ω1X{q}. The conjugation action of 〈s〉 induces a linear transformation sr on

X
(r)
q,1 . Its minimal polynomial is gr, so d ≤ dr by the Cayley–Hamilton theorem. This

shows that dr = d, because
∑

r dr = dv. Therefore sr has characteristic polynomial
gr. Since gr is irreducible, X(r)

q,1 is an irreducible 〈s〉-module. �

Definition 3.23. Let fr,n(x) ∈ Z[x] be the nth approximation of fr found by the
algorithm in the proof of Lemma 3.13 (fr,n+1 ≡ fr mod qn). Define

fr′,n =
∏
j 6=rfj,n ∈ Z[x], x(r)q,n = b

fr′ (s)
qn .

Since (x
(r)
q,n)q

n
= 1, we obtain the useful working formula x(r)q,n = b

fr′,n(s)
qn .

Lemma 3.24. X(r)
q,n
∼= (Cqn)d is generated by x(r)q,n as an 〈s〉-module.
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Proof. We saw in the proof of Lemma 3.22 that X(r)
q,n
∼= (Cqn)d. Also, x(r)q,n generates

(ΩnX{q})
fr′ (s) = Ωn

(
X
fr′ (s)
{q}

)
= X

(r)
q,n as an 〈s〉-module. �

Proposition 3.25. The 〈s〉-module X(r)
{q} is uniserial: its only finite 〈s〉-submodules are

the X(r)
q,n, n ≥ 0.

Proof. Cf. the proof of Lemma 3.7; here we use Lemma 3.22. �

Definition 3.26. Let Wq be the set of all subgroups X(1)
q,n1X

(2)
q,n2 · · ·X

(v)
q,nvZqc of D{q}

as n1, . . . , nv, c range over the non-negative integers.

Theorem 3.27. Wq is the set of all finite 〈s〉-submodules of D{q}.

Proof. This is another application of Theorem 3.8, relying now on Propositions 3.21
and 3.25. In particular, if i 6= j then a non-identity section of X(i)

{q} is not 〈s〉-

isomorphic to a non-identity section of X(j)
{q} (since fi(s) does not annihilate both

sections). �

Remark 3.28. Each element ofWq is labeled by a unique (v + 1)-tuple n1, . . . , nv, c.

3.2. All finite submodules of D(p,C). Theorems 3.10 and 3.27 give the following.

Theorem 3.29. The set A of direct products Y × ΠqWq, where Y ∈ Y and Wq ∈ Wq

for finitely many primes q 6= p, is the set of all finite 〈s〉-submodules of D(p,C).

Theorem 3.29 accounts for all the modules needed. That is, the T -modules for
〈s〉 ≤ T ≤ Sym(p) are listed by refinement of A.

As per Remarks 3.11 (iii) and 3.28, we designate each finite 〈s〉-submodule of
D(p,C) by a unique integer parameter string.

With the implementation in mind, we outline how to list all 〈s〉-submodules M
of a given order o > 1. Let o = pab where a ≥ 0 and b is a positive integer not
divisible by p. The possible Sylow p-subgroups of M are the Yj,k,l where j + k = a,
0 ≤ l ≤ p − 1, and either j = l = 0 or j, k ≥ 1. Let qe > 1 be the largest power of
the prime q in the prime factorization of b. Then M{p}′ ∩X{q} is some Wq ∈ Wq; the
choices for Wq correspond to the strings n1, . . . , nv, c of non-negative integers such
that e = d(n1 + · · · + nv) + c. We reckon thus for each prime factor q of b, and get
all 〈s〉-submodules as direct products of these parts. The module generating sets are
sufficient to assemble group generating sets of the T -extensions in M(p,C).
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3.3. Modules for every solvable permutation part. Let a ≥ 1 be a proper divisor
of p− 1. The next two lemmas enable us to refine the list A of Theorem 3.29 to a list
of finite 〈s, ta〉-modules, and are also used in solving the conjugacy problem.

Note that each finite 〈s〉-submodule of X{p} is a 〈t〉-module, by Lemma 3.7.

Lemma 3.30. Y t
j,k,l = Yj,k,l′ where l′ is the image of l under tj ∈ Sym(p), i.e., l′ ≡

luj mod p.

Proof. Let m be the residue of −j modulo p − 1, and let n = (j + m)/(p − 1). If apk
denotes the diagonal matrix with e2πi/p

k
in position (1, 1) and 1s elsewhere on the

main diagonal, then xpj+1 = γm(apn) for m 6= 0 and xpj+1 = γp−1(apn+1) for m = 0.
Suppose that m > 0; the proof for m = 0 is similar. It may be checked that

xt
pj+1 = a

t(1−su)m
pn and atpn = as

u−1

pn . Since 〈s〉 acts trivially on Xpj+1/Xpj ,

xtpj+1 ≡ a(1−s
u)m

pn mod Xpj .

Binomial expansion in Z〈s〉 gives

(1− su)m = (1− s)mum + (terms divisible by (1− s)m+1).

Thus xt
pj+1 ≡ xu

m

pj+1 mod Xpj .
Let y = xpj+1zl

pk+1 . Since Yj,k,0 is a 〈t〉-module, we assume that l > 0. By the

above, yt ∈ xum
pj+1z

l
pk+1Xpj ; so (yt)u

j ∈ xpj+1zlu
j

pk+1Xpj . Hence Yj,k,l′ ⊆ Y t
j,k,l. As these

modules have the same order, they are equal. �

Lemma 3.31. (X
(1)
q,n1X

(2)
q,n2 · · ·X

(v)
q,nv)t = X

(1)
q,nvX

(2)
q,n1 · · ·X

(v)
q,nv−1 .

Proof. The only indecomposable direct factors of X{q} are the X(r)
{q}. Thus (X

(r)
{q})

t =

X
(j)
{q} for some j. The X(1)

q,1 , . . . , X
(v)
q,1 are pairwise non-isomorphic 〈s〉-modules, so it

is enough to prove that (X
(r)
q,1 )t ∼= X

(r+1)
q,1 (reading superscripts modulo v).

By Definition 3.16, gr+1(x) divides gr(xu), whence gr(s)t ∈ gr+1(s)Zq〈s〉. Each ele-
ment of X(r+1)

q,1 is annihilated by gr+1(s), and therefore by gr(s)t. Thus (X
(r+1)
q,1 )t

−1 ⊆
X

(r)
q,1 ; then (X

(r)
q,1 )t = X

(r+1)
q,1 by Lemma 3.22. �

4. MONOMIAL GROUPS WITH CYCLIC PERMUTATION PART

This section presents our first solutions of the extension and conjugacy problems.
The resulting classification subsumes that in [8, §§2–3].

Definition 4.1. Let L be the set of all groups 〈szi
pk+1 , A〉 where 0 ≤ i ≤ p − 1 and

A ∈ A as in Theorem 3.29 with A ∩ Z{p} = Zpk .
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Proposition 4.2. A finite subgroup of M̃(p,C) with permutation part 〈s〉 isD-conjugate
to a group in L.

Proof. Let G be a subgroup of M̃(p,C) with φ(G) = 〈s〉, so sxz ∈ G for some torsion
elements x ∈ X and z ∈ Z. Since γ(X) = X, there exists y ∈ X such that Gy =

〈sz,D ∩G〉. Then zp = (sz)p ∈ (G ∩ Z{p})(G ∩ Z{p}′) implies that we may multiply z
by scalars from D ∩G to get z ∈ Z{p}. �

By Theorem 2.12, the irreducible groups in L are precisely the non-abelian ones:
those with non-scalar diagonal subgroup.

Since each group in L is normalized by 〈s〉, andNSym(p)(〈s〉) = 〈s, t〉, Theorems 2.9
and 2.10 guarantee that the irreducible groups with a unique abelian normal sub-
group of index p are GL(p,C)-conjugate if and only if they are D〈t〉-conjugate. We
decide conjugacy of this type using the next two lemmas.

Lemma 4.3. Let G ∈ L, with G ∩ Z{p} = Zpk . Then G is 〈t〉-conjugate to some H ∈ L
such that s ∈ H or szpk+1 ∈ H.

Proof. If i 6= 0 and i−1 ≡ ue mod p, for u as in Notation 2.5, then (szpk+1)t
e ≡

(szi
pk+1)u

e
mod Zpk . �

Lemma 4.4. Distinct G, H ∈ L are D-conjugate if and only if G ∩ D = H ∩ D and
G ∩D{p} ∈ {1, Yj,k,l | l 6= 0}.

Proof. Suppose that Gd = H for some d ∈ D. Thus G ∩H = D ∩H. If G ∩D{p} =

Yj,k,0 6= 1, then [s, d] ∈ (G ∩D)Z ∩X ≤ G ∩X ≤ H. As a consequence, H = G.
If G ∩D{p} = 1 then all 〈szip, G ∩D〉 in L are 〈xp2〉-conjugate.
Lastly, suppose that G ∩D{p} = Yj,k,l where 1 ≤ l ≤ p − 1. Now 〈s,G ∩D{p}〉x =

〈sz−l
pk+1 , G ∩ D{p}〉 for x ∈ D such that γ(x) = xpj+1 . Hence all 〈szi

pk+1 , G ∩ D〉 ∈ L
are 〈x〉-conjugate. �

If G,H ∈ L are conjugate by a non-monomial matrix, then each has more than
one abelian normal subgroup of index p. Such a group G has a scalar subgroup of
index p2, so is nilpotent of class 2.

Lemma 4.5.

(i) The groups in L that are nilpotent of class 2 are the 〈szi
pk+1 , Y1,k,l, Zm〉 where

k ≥ 1, l ≥ 0, and gcd(p,m) = 1.
(ii) Let gcd(p,m) = 1. Up to GL(p,C)-conjugacy, exactly two groups of order

pk+2m in L are nilpotent of class 2, namely 〈s, Y1,k,0, Zm〉 and 〈szpk+1 , Y1,k,0, Zm〉.
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Proof. By Remark 3.11 (ii), if G ∈ L is nilpotent of class 2 then G ∩D{p} = Y1,k,l for
some l and k ≥ 1.

We prove (ii) for p ≥ 3. By (the proof of) Lemma 4.3, H = 〈szpk+1 , Y1,k,0〉 =

〈szpk+1 , xp2〉 is conjugate to each group 〈szi
pk+1 , Y1,k,0〉 for 1 < i ≤ p − 1. Let e ∈

GL(p,C) be the Vandermonde matrix with entry εrc in row r, column c, where |ε| = p

(cf. [8, 4.1]). Then se = xp2 and xep2 = s−1; so He = 〈s, Y1,k,1〉. Lemmas 3.30 and
4.4 show that H and the 〈szi

pk+1 , Y1,k,l〉 for i ≥ 1 or l ≥ 1 are all conjugate to each
other. However, H is not conjugate to 〈s, Y1,k,0〉: this group has an elementary abelian
subgroup of order p3, while H does not. �

We now define sublists L1, L2, L3, L4 of groups 〈szi
pk+1 , A〉 ∈ L, on the way to

eliminating redundancy in L.

Definition 4.6. Groups in L1 have A = 〈Y1,k,0, Zm〉 for m coprime to p. Groups in
L2 ∪ L3 ∪ L4 have A = 〈Yj,k,l,ΠqWq〉 for finitely many primes q 6= p where Wq ∈ Wq.
Conditions that govern membership of such 〈szi

pk+1 , A〉 in an Li are as follows.

L1: i ∈ {0, 1} and k ≥ 1.
L2: i = 1; l = 0; either j = k = 0 or k ≥ 1; and either j ≥ 2 or some Wq is

non-scalar.
L3: i = l = 0; k ≥ 1; and either j ≥ 2 or some Wq is non-scalar.
L4: i = 0; 1 ≤ l ≤ p− 1; j, k ≥ 1; and either j ≥ 2 or some Wq is non-scalar.

Let L0 = L1 ∪ L2 ∪ L3 ∪ L4.

Each group in L0 has non-scalar diagonal subgroup, hence is irreducible.

Theorem 4.7.

(i) Up to GL(p,C)-conjugacy, L0 is a complete list of the finite irreducible sub-
groups of M(p,C) with permutation part Cp. That is, an irreducible group in L
is conjugate to at least one group in L0.

(ii) Distinct G,H ∈ L0 are conjugate only if they are both in the same sublist L2,
L3, or L4. If G,H ∈ L2 are conjugate, then G ∩ D{p} = H ∩ D{p} = 1 and
G∩D is 〈t〉-conjugate to H ∩D. If G,H ∈ Li for i = 3 or 4 are conjugate, then
G is 〈t〉-conjugate to H.

Proof. By Lemma 4.5, every group in L1 is nilpotent of class 2; a nilpotent group of
class 2 in L is conjugate to a single group in L1; and no group in L1 can be conjugate
to a group in L0 \ L1.

Assume now that G ∈ L is irreducible and not nilpotent of class 2. Then G ∩D is
the unique abelian normal subgroup of G with index p, so G is GL(p,C)-conjugate to
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H ∈ L only if G is D〈t〉-conjugate to H. A laborious check against the definition of
the Li and Lemmas 4.3–4.5 confirm that G is conjugate to a group in L2 ∪ L3 ∪ L4.

It remains to prove (ii) for G,H ∈ L2 ∪ L3 ∪ L4. Suppose that G = 〈szpk+1 , Yj,k,0,

M〉 ∈ L2 and H ∈ L3 ∪ L4 are conjugate. Then |G ∩D{p}| = |H ∩D{p}| implies that
k ≥ 1. Since H splits over its diagonal subgroup, G does too. But this is false: there
is no d ∈ D ∩G such that |szpk+1d| = p for k ≥ 1 (if there were such a d, then zpk =

zp
pk+1 would be in χ(Yj,k,0) = Zpk−1).

A group G ∈ L2 has p − 1 different 〈t〉-conjugates of the form 〈szi
pk+1 , A〉, one for

each i ∈ {1, . . . , p − 1}. By Lemmas 3.30 and 4.4, if G ∩D{p} 6= 1 then the only one
of these that is D-conjugate to a group in L2 is G itself.

Since 〈t〉-conjugacy leaves L3 and L4 setwise invariant, no group in L3 is D〈t〉-
conjugate to a group in L4 by Lemma 4.4. If G,H ∈ L3 ∪ L4 are D-conjugate then
G = H; hence G and H can be conjugate only if they are 〈t〉-conjugate. �

Corollary 4.8.

(i) Groups in L2 are conjugate if and only if their diagonal subgroups have p′-order
and are 〈t〉-conjugate.

(ii) Groups in either L3 or L4 are conjugate if and only if their diagonal subgroups
are 〈t〉-conjugate.

Theorem 4.9. If p = 2 then L0 is a (complete and irredundant) classification of the
finite irreducible subgroups of M(2,C).

Proof. Here t = 1. Since L1 is irredundant and there is a single group in L0 \ L1 with
given diagonal subgroup, the result follows from Theorem 4.7 and Corollary 4.8. �

If G ∈ L2 ∪ L3 then we need only worry about 〈t〉-orbits in the Wq. However, if
G ∈ L4 then 〈t〉-conjugacy might change G ∩D{p}.

We encode the action of 〈t〉 on the set of finite 〈s〉-submodules of D{p}′ as an
action by 〈t〉 on a set of arrays N. Each such array has p − 1 columns and finitely
many non-zero rows. Let q 6= p, and suppose that the Sylow q-subgroup of A ∈ A
is X(1)

q,n1X
(2)
q,n2 · · ·X

(v)
q,nvZqc , where as usual (p − 1)/v is the multiplicative order of q

modulo p. Row q of the array NA has nr in column r for r ≤ v, and nr−v in column r
for r > v. By Lemma 3.31, NtA is the array obtained from NA by shifting columns of
NA one place rightward, modulo p− 1.

A lexicographic ordering is defined on these arrays. Specifically, N ≤ N′ if and
only if the first entry in the first row of N where N and N′ differ is at most the
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matching entry in N′. We select a minimal element of each 〈t〉-orbit of NA. Although
cumbersome, this formulation of 〈t〉-conjugacy in ∪qWq is easily automated.

Definition 4.10. Let L∗ := L1 ∪ L∗2 ∪ L∗3 ∪ L∗4, where

(i) L∗2 consists of those G ∈ L2 such that either G ∩ D{p} 6= 1, or NG∩D is 〈t〉-
minimal (i.e., minimal in its 〈t〉-orbit);

(ii) L∗3 consists of those G ∈ L3 such that NG∩D is 〈t〉-minimal;
(iii) L∗4 consists of those G ∈ L4 such that

– G∩D{p} = Yj,k,l for l ∈ {u, u2, . . . , uj′}modulo pwhere j′ = gcd(j, p−1)

and u is the least primitive integer modulo p,
– NG∩D is 〈t(p−1)/j′〉-minimal.

Theorem 4.7, Corollary 4.8, and the foregoing provide our first major classification
of irreducible monomial groups.

Theorem 4.11. Up to GL(p,C)-conjugacy, L∗ is a complete and irredundant list of the
finite irreducible subgroups of M(p,C) with permutation part Cp.

Proof. We prove that L∗ \ L1 is irredundant and complete.
By Definition 4.10 and Corollary 4.8, each group in L3 is conjugate to one in L∗3.

Suppose that G,H ∈ L∗3 are conjugate. Minimality and Corollary 4.8 force G ∩D =

H∩D. But the groups in L3 are distinguished by their diagonal subgroups, soG = H.
The reasoning for L∗2 is similar.

Now let G = 〈s,G ∩ D〉 ∈ L4, with G ∩ D{p} = Yj,k,l. By Lemma 3.30, there is a
unique non-negative integer a such that a < (p − 1)/j′ and H ∩D{p} = Yj,k,` where
H = Gt

a
and ` ∈ {u, u2, . . . , uj′} modulo p. Conjugation of H by some tb preserves

this value of ` (i.e., does not change 〈s,H ∩ D{p}〉) if and only if b is divisible by
(p− 1)/j′. Completeness of L∗ is proved.

If G,H ∈ L∗4 are conjugate then G ∩D{p} and H ∩D{p} are 〈t〉-conjugate. By the
uniqueness statement above, G ∩D and H ∩D can only be 〈t(p−1)/j′〉-conjugate; so
they are the same. Hence G = H. �

5. THE REMAINING SOLVABLE MONOMIAL GROUPS

In this section we classify the finite irreducible solvable subgroups of M(p,C) with
non-cyclic permutation part. To that end, p is assumed odd (by Theorem 4.9).

Definition 5.1. Let T = 〈s, ta〉 where a ≥ 1 is a proper divisor of p − 1, and let
â = (p− 1)/a.
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Up to conjugacy, the groups T ∼= Cp o Câ in Definition 5.1 are the non-cyclic
solvable transitive subgroups of Sym(p).

Recall the discussion before Definition 4.10 of 〈t〉-conjugacy in ∪qWq.

Lemma 5.2. The subset A[a] of A (see Theorem 3.29) consisting of all A such that
Nt

a

A = NA and either l = 0 or aj ≡ 0 mod p − 1, where A ∩D{p} = Yj,k,l, is the set of
all finite T -submodules of D.

Proof. We refine A using Lemma 3.30. �

If A ∈ A[a] and X(1)
q,n1 · · ·X

(v)
q,nv is the Sylow q-subgroup of A ∩X, then Nt

a

A = NA is
equivalent to nr = nr+a for all r and q (see Lemma 3.31). These conditions are again
straightforward to implement, building on our implementation of A.

Definition 5.3. Let M[a] be the set of all 〈s, tazcmâ, A〉 where A ∈ A[a], A ∩ Z{p}′ =

Zm, and 0 ≤ c < â.

Theorem 5.4. A finite subgroup of DT with permutation part T is D-conjugate to a
group inM[a].

Proof. Denote ta by t̄. Let G be a finite subgroup of DT such that φ(G) = T . Put
A = G ∩D and F = φ−1(〈s〉) ∩G. By Proposition 4.2, we assume that F ∈ L.

The Frattini argument shows that if P is a Sylow p-subgroup of F , then there is
h ∈ NG(P ) such that φ(h) = t̄. We may replace h by an appropriate power of h to
arrange that hâ ∈ A{p}′ . Choose g ∈ P with φ(g) = s. Then [hâ, g] ∈ P ∩ A{p}′ = 1.
Hence hâ is scalar (it is centralized by s).

So hâ = λâ1p for λ ∈ C× of p′-order such that det(h) = λp. Define y = (−1)aλ1p

and x = t̄−1hy−1. Then yâ = hâ, x ∈ X (as det(x) = 1), and hâ = xψyâ where ψ is
the element 1 + t̄+ t̄2 + · · ·+ t̄ â−1 of the integral group ring Z〈s, t〉. Thus xψ = 1.

Now g = sz for z ∈ Z{p} such that zp ∈ A. Since gh ∈ F and st = su, we have d :=

x1−s
t̄ ∈ zua−1A (remember st = su). Raising d to the power 1 + st̄ + · · · + st̄(ũ−1),

where ũ ≡ u−a mod p, reveals that x1−s ∈ z1−ũA. Thus γp−1(x) ∈ A. The 〈s〉-module
generated by xp is the same as the one generated by γp−1(x), so xp ∈ A.

Fortunately, x can be conjugated away. Let µ = t̄ + 2̄t2 + · · · + (â − 1)̄t â−1. Then
µ(1− t̄) = ψ − â, and we further calculate that G is conjugate by x−aµ to

〈szxaµ(s−1), t̄y, A〉.

(Note: the inclusion ( t̄y)â ∈ A ∩ Z{p}′ implies the possibilities for the generator with
permutation part t̄ in Definition 5.3.) Starting from the identity

tb(s− 1) = (s− 1)(1 + s+ · · ·+ su
−b−1)tb
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in Z〈s, t〉, we can prove the existence of ν ∈ Z〈s, t〉 with coefficient sum

c ≡ ũ+ 2ũ2 + · · ·+ (â− 1)ũ(â−1) mod p

such that µ(s−1) = (s−1)ν. Together with xs−1 ∈ zũ−1A, this yields z(1−ũ)acxaµ(s−1) ∈
A. Also,

(ũ− 1)c ≡ −ũ− ũ2 − · · · − ũâ−1 + (â− 1)ũâ

≡ 1 + (â− 1)ũâ

≡ â mod p.

Thus (ũ− 1)ac ≡ −1 mod p. It follows that zxaµ(s−1) ∈ A, as required. �

Remark 5.5. The relative simplicity of the familyM[a] places restrictions on degree p
representations of Aut(G) for G ∈ L (cf. [8, §6]).

We move on to the conjugacy problem.

Lemma 5.6. Each group in M[a] is normalized by 〈s〉, and stays in M[a] under 〈t〉-
conjugation. If Gd ∈M[a] for d ∈ D, then Gd = G.

Theorem 5.7. If G, H ∈M[a] are irreducible and GL(p,C)-conjugate, then either they
are 〈t〉-conjugate, or they are 〈e〉-conjugate, where e is a Vandermonde matrix. The latter
can occur only when each of G and H has more than one abelian normal subgroup with
quotient T .

Proof. Suppose that Gw = H for some w ∈ GL(p,C). If (G ∩ D)w = H ∩ D then
w ∈ D〈s, t〉 up to scalars. Thus G and H are 〈t〉-conjugate by Lemma 5.6.

Suppose now that (G ∩ D)w 6= H ∩ D. By the definition of Y and Lemma 5.2,
G∩D = 〈x,G∩Z〉 where x = xp2; i.e., G∩D{p} = H ∩D{p} = Y1,k,0 for some k. The
Fitting subgroup 〈s,G∩D〉 of G (and of H) has unique Sylow p-subgroup E = 〈s, x〉,
an extraspecial group of order p3 and exponent p. Therefore w ∈ N := NGL(p,C)(E).

It is proved in [5, § 3] that NPGL(p,C)(EZ/Z)/(EZ/Z) ∼= SL(2, p). As the largest
subgroup of exponent p, E is characteristic in EZ. Hence N/EZ ∼= SL(2, p).

For the Vandermonde matrix e defined in the proof of Lemma 4.5, se = x and
xe = s−1. Also te = t−1. (We know from the proof of Lemma 3.30 that xt = xũ where
ũ ≡ u−1 mod p. Thus tet centralizes E. So the scalar tet is 1, because t−1 and te have
trace 1.) Let σ be the natural surjection of N onto SL(2, p). If d := xp3 then σ(d)

has order p, so generates a Sylow p-subgroup of SL(2, p). Its normalizer σ(〈d, t〉) is
maximal in SL(2, p). Consequently SL(2, p) = σ(〈d, t, e〉).
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Observe that σ(w) normalizes 〈σ(ta)〉 = σ(G) = σ(H). Representing σ(d), σ(t),
and σ(e) in SL(2, p) according to conjugation action on the basis {sZ(E), xZ(E)} of
F2
p, we find that σ(〈t, e〉) is monomial. If the diagonal subgroup σ(〈ta〉) is non-scalar

then it has normalizer σ(〈t, e〉) in SL(2, p); otherwise Gd = G. Since Gt = G, this
completes the proof. �

Definition 5.8. Let M[a]
1 , M[a]

2 , and M[a]
3 respectively denote the sublists of M[a]

consisting of G = 〈s, tazcmâ, Yj,k,l, G ∩D{p}′〉 that satisfy (1), (2), (3) below.

(1) l = 0, 0 ≤ c ≤ â/2, j = 1, and NG∩D = 0.

(2) l = 0, either j ≥ 2 or NG∩D 6= 0, and NG∩D is 〈t〉-minimal.

(3) j ≥ 2 is divisible by â, l ∈ {u, u2, . . . , uj′} modulo p where j′ = gcd(j, p− 1),
and NG∩D is 〈t(p−1)/j′〉-minimal.

LetM∗ be the union of allM[a]∗ :=M[a]
1 ∪M

[a]
2 ∪M

[a]
3 as a ranges over the proper

divisors of p− 1.

The solvable groups are now classified.

Theorem 5.9. For L∗ as in Definition 4.10, L∗∪M∗ is a complete and irredundant list
of the solvable finite irreducible monomial subgroups of GL(p,C).

Proof. All groups inM∗ are irreducible (Theorem 2.12). By Theorems 2.9, 4.11, and
5.4, we must show that each element of M[a] (for fixed a) is conjugate to one and
only one element ofM[a]∗.

Let G = 〈s, tazcmâ, A〉 ∈ M[a] where A ∩ D{p} = Yj,k,l. Heeding Lemma 5.2, we
first suppose that l = 0. By Lemma 3.30 and Theorem 5.7, if G has a unique abelian
normal subgroup with quotient T , then the only group inM[a]∗ that is conjugate to
G lies inM[a]

2 . Otherwise, j = 1 and NG∩D = 0. We have Ge = 〈s, tazâ−cmâ , A〉. Thus
the 〈e〉-orbit of G contains just one group H with c ≤ â/2. Since H ∈ M[a]

1 , the only
element ofM[a]∗ conjugate to G is H.

Suppose next that l ≥ 1, so j is positive and j ≡ 0 mod â. Only 〈t〉-conjugacy
matters here, and G cannot be conjugate to a group inM[a]

1 ∪M
[a]
2 . The rest of the

proof echoes the last two paragraphs in the proof of Theorem 4.11. �

6. NON-SOLVABLE MONOMIAL GROUPS

Our objective in this section is to prove general-purpose results for (finite) sub-
groups of M(p,C) with non-solvable transitive permutation part T . In later sections,
we treat T = Sym(p), T = Alt(p), and special cases of T required to facilitate the
classifications for p ≤ 11.
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Notation 6.1. Let p ≥ 5, let q be a prime, let T be a non-solvable subgroup of Sym(p)

containing s, and let π be the set of primes other than p that divide |T |.

Note that all primes in π are less than p.
A finite T -submodule of D{p} is sandwiched between ΩnX{p} and Z{p} ·ΩnD{p} for

some n ≥ 0.

Lemma 6.2. If A = Yj,k,l ∈ Y then the following are equivalent.

(i) A is a T -module.
(ii) A is a Sym(p)-module.

(iii) Either j ≡ 0 mod (p− 1), or both l = 0 and j ≡ −1 mod (p− 1).

Proof. Let j = n(p− 1). Then Xpj = ΩnX{p} and thus Yj−1,k,0 = XpjZpk are Sym(p)-
modules. Since M := ΩnD{p} is a Sym(p)-module of order pnp, and Yj−1,n,0 has
index p in M , it follows that M = Yj,n,l for some l 6= 0. Hence X ∩ ZM = Xpj+1 is
a Sym(p)-module. Taking pn-powers, we deduce that Xpj+1/Xpj

∼= Zp is trivial as a
Sym(p)-module, so (iii)⇒ (ii) by Theorem 3.8.

Suppose that A is a (non-identity) T -module. If l 6= 0 (resp., l = 0) then A ∩X =

Xpj (resp., A ∩ X = Xpj+1). By [31, Satz 5.1], the only non-identity proper T -
submodules of Ω1D{p} are Xp = Zp and Ω1X{p} = Xpp−1 . Since (A ∩X)r ∈ Ω1X{p}

for some p-power r, necessarily A ∩X is Xpn(p−1) or Xpn(p−1)+1 for some n ≥ 1. The
permitted values of j and l in (iii) are now evident. �

We derive a weaker statement for submodules of p′-order.

Proposition 6.3. If q 6= p then X{q} is an indecomposable T -module.

Proof. Let W = Ω1D{q}. We prove that the Fq-space EndTW has dimension 2. Since
W = Zq × Ω1X{q}, this will imply that Ω1X{q} and thus X{q} are indecomposable
T -modules.

The permutation matrix group T embeds in GL(p, q) under entrywise reduction
modulo q, and T thereby acts on Mat(p,Fq) by conjugation, with fixed-point space
EndTW . By a result of Burnside [30, Theorem 3], T is 2-transitive. Hence the
elementary matrices in Mat(p,Fq) are permuted in two orbits by T :

{[δi,kδl,j ]i,j | k 6= l, 1 ≤ k, l ≤ p} and {[δi,kδk,j ]i,j | 1 ≤ k ≤ p}.

Summing the elements in each orbit gives a basis of EndTW . �

Corollary 6.4. For q coprime to |T |, the ΩnX{q} are all the finite T -submodules of X{q}.
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Proof. (Cf. the proof of Lemma 3.7.) By Maschke’s Theorem, Ω1X{q} is a completely
reducible FqT -module. Hence Ω1X{q} is irreducible by Proposition 6.3, so is in every
non-identity T -submodule of X{q}. �

We show that p and primes not dividing |T | can be set aside from submodule orders
that appear in our solution of the extension problem for T .

Proposition 6.5. Let G be a finite subgroup of DT such that φ(G) = T . Then there
exists H ≤ TDπ such that s ∈ H and G is D-conjugate to H.(G ∩Dπ′).

Proof. By [27, Satz V.21.1 c)], NT (〈s〉) 6= 〈s〉. Thus G has a subgroup with solvable
non-cyclic permutation part, and we may suppose that s ∈ G by Theorem 5.4.

Denote the natural surjection of TD = GD onto TD/(G ∩Dπ′)Dπ by an overline;
then GD = TD = G n D = T n D. Also, |T : T ∩ G| is a π-number, while D is a
π′-group. Therefore, by [14, Lemma 1, corrected], T and G are D-conjugate. This
implies that, for some d ∈ Dπ′ ,

GdDπ = (GDπ)d = TDπ(G ∩Dπ′) = TDπ(Gd ∩Dπ′).

Then Gd = H.(G ∩Dπ′) where H = Gd ∩ TDπ. Since s[s, d] = sd ∈ TDπ(Gd ∩Dπ′)

and thus [s, d] ∈ Dπ(Gd ∩ Dπ′), we have [s, d] ∈ Gd ∩ Dπ′ . Hence s = sd[s, d]−1 ∈
Gd ∩ T ≤ H. �

So each group with non-solvable permutation part T in our final list is the semi-
direct product of a T -submodule of Dπ′ by a ‘hub group’ in TDπ containing s.

The next result is a companion piece to Proposition 6.5, dealing with a ubiquitous
kind of hub group. If the hypotheses are fulfilled, then we can discard even more of
a diagonal subgroup when solving the extension problem. (Recall that for a group K
andK-module U , there is a one-to-one correspondence between the first cohomology
group H1(K,U) and the set of conjugacy classes of complements of U in U oK.)

Proposition 6.6. Let G be a finite subgroup of TDπ such that φ(G) = T and s ∈ G.
Suppose that Dπ = B × C for T -modules B and C where H1(T,B/G ∩ B) = 0. Then
G is B-conjugate to H.(G ∩B) for some H ≤ TC such that φ(H) = T and s ∈ H.

Proof. By Theorem 3.27, G ∩Dπ = (G ∩ B)(G ∩ C). We mimic the proof of Proposi-
tion 6.5, with Dπ, B, C here in place of D, Dπ′ , Dπ there, respectively; G and T are
B-conjugate because H1(T,Dπ/(G ∩B)C) ∼= H1(T,B/G ∩B) = 0. �

Occasionally the T -module structure of B/(B ∩G) is independent of G.



24 Z. BÁCSKAI, D. L. FLANNERY, AND E. A. O’BRIEN

Lemma 6.7. Let ζ be a subset of π consisting of q such that Ω1X{q} is an irreducible T -
module, and let B =

∏
q∈ζ X{q} ·

∏
q∈η Z{q} where η is any subset of π. Then B/A ∼= B

as T -modules for every finite T -submodule A of B.

Proof. It suffices to assume that B = X{q} for q ∈ ζ. Since Ω1B is an irreducible
T -module, A must be some ΩnB. Certainly B/ΩnB ∼= B. �

We record basic results for calculating first cohomology. These use the following
definition. If R ≤ T and M is a right R-module, then MT

R denotes the T -module
co-induced from M . That is, MT

R has element set HomR(ZT,M), and becomes a
T -module by setting ρy(x) = ρ(yx) for ρ ∈ HomR(ZT,M), y ∈ T , and x ∈ ZT .

Lemma 6.8 (Eckmann–Shapiro [32, p. 561]). Hn(R,M) ∼= Hn(T,MT
R ) for all n ≥ 0.

Lemma 6.9. Let R = T ∩ Sp−1, where Sp−1 ∼= Sym(p− 1) is the group of permutation
matrices in GL(p,C) whose elements have 1 in position (p, p). Then D{q} ∼= (Z{q})

T
R as

T -modules.

Proof. Since each ρ ∈ (Z{q})
T
R is determined by its values on a transversal U for the

p cosets of R in T , as a group (Z{q})
T
R is isomorphic to the group of all set maps

U → Z{q}, which in turn is isomorphic to D{q}.
Let θ be the R-homomorphism from D{q} into Z{q} defined by diag(a1, . . . , ap) 7→

diag(ap, . . . , ap). By [28, Theorem 4.9, p. 55], there is a T -homomorphism θ′ : D{q} →
(Z{q})

T
R with kernel in ker θ. But ker θ contains no non-identity T -modules. Thus θ′ is

an isomorphism, as desired. �

Remark 6.10. If K is perfect and M is a trivial K-module, then H1(K,M) = 0.

7. PERMUTATION PART Sym(p)

We maintain Notation 6.1, writing Sn for Sym(n).

Definition 7.1. Let A[S] be the set of A ∈ A such that NtA = NA, and if A ∩D{p} =

Yj,k,l, then either j ≡ 0 mod (p− 1), or both l = 0 and j ≡ −1 mod (p− 1).

Lemma 7.2. A[S] is the set of all finite Sp-submodules of D(p,C).

Proof. Follows from Lemmas 3.31 and 6.2. �

In particular, for q 6= p, the ΩnX{q} are all the finite Sp-submodules of X{q}.

Lemma 7.3. H1(Sp, X{2}) = 0 and H1(Sp, D{q}) = 0 if q is odd.
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Proof. By Lemmas 6.8 and 6.9, H1(Sp, D{q}) ∼= H1(Sp−1, Z{q}). Now H1(Sn, Z{q}) =

Hom(Sn/S
′
n, Z{q}). Thus H1(Sp, D{q}) = 0 if q is odd, whereas H1(Sp, D{2}) ∼= C2.

Since D{2} = X{2} × Z{2} implies that H1(Sp, D{2}) = H1(Sp, X{2}) ⊕H1(Sp, Z{2}),
the rest of the lemma is clear. �

Definition 7.4. Let r = (1, 2) ∈ Sp; so Sp = 〈s, r〉. Define R to be the set of groups
〈s, r, A〉 and 〈s, rz2n+1 , A〉 where A ∈ A[S] and |A ∩ Z{2}| = 2n, for all n ≥ 0.

Proposition 7.5. If G is a finite subgroup of M(p,C) with permutation part Sp, then G
is D-conjugate to a group in R.

Proof. Let G be a hub group, i.e., G ≤ SpDπ and s ∈ G (see Proposition 6.5). We
have Dπ = B × Z{2} where B = X{2}

∏
q∈π\{2}D{q}. By Lemma 7.3, H1(Sp, B) = 0,

and B/(G ∩ B) ∼= B as Sp-modules by Lemmas 6.7 and 7.2. Proposition 6.6 then
gives d ∈ D such that Gd = H.(B ∩ G) where H = Gd ∩ SpZ{2} and s ∈ H. Thus
H = 〈s, rz, Z2n〉 for some n and z ∈ Z{2}. So Gd ∈ R because z2 = (rz)2 ∈ Z2n . �

Lemma 7.6. A finite subgroup of M(p,C) with permutation part Sp is reducible if and
only if its diagonal subgroup is scalar.

Proof. If G ∈ R and G ∩D ≤ Z then G ≤ SpZ is reducible. �

Lemma 7.7. Distinct irreducible groups in R are not GL(p,C)-conjugate.

Proof. Let G ∈ R be irreducible with diagonal subgroup A, and suppose that Gh ∈ R
for some h ∈ GL(p,C). By Theorem 2.9, Ah = Gh ∩ D. Then Gh ∩ D = A by
Theorem 2.10. The two groups in R with diagonal subgroup A are not conjugate
(their images under the determinant map have different 2-parts), so Gh = G. �

We next delete the reducible groups from R.

Definition 7.8. Let R∗ be the subset of R consisting of all groups G such that A =

G ∩D ∈ A[S] as in Definition 7.1 satisfies one of the following:

(i) j 6= 0 and j ≡ 0 mod (p− 1);
(ii) j ≡ −1 mod (p− 1) and l = 0;

(iii) j = l = 0 and NA 6= 0.

The main problems for T = Sym(p) are now solved.

Theorem 7.9. R∗ is a classification of the finite irreducible subgroups of M(p,C) with
permutation part Sym(p).
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8. PERMUTATION PART Alt(p)

This section incidentally disposes of all degrees at most 5. Degree 5 requires added
care.

Let p ≥ 5 and An := Alt(n).

Proposition 8.1. A finite Ap-submodule of D(p,C) is an Sp-module.

Proof. By Lemma 6.2, we need only show that M := Ω1X{q} is an irreducible Ap-
module for primes q 6= p. By Proposition 3.21, Lemma 3.22, and the proof of
Theorem 3.27, M is a direct product of v irreducible pairwise non-isomorphic 〈s〉-
submodules X(i)

q,1. We infer from Lemma 3.31 that M is an irreducible 〈s, t2〉-module
when v is odd. Let v be even. As an Ap-module, if M were reducible then it would be
the direct sum of its 〈s, t2〉-submodules

∏
i oddX

(i)
q,1 and

∏
i evenX

(i)
q,1. This contradicts

Proposition 6.3. �

Lemma 8.2. H1(A5, X{3}) = C3 and H1(Ap, D{q}) = 0 for (p, q) 6= (5, 3).

Proof. Cf. the proof of Lemma 7.3. �

Definition 8.3. Let w = (1, 2, 3) ∈ P(p), so Ap = 〈s, w〉. Let U0 be the set of groups
〈s, w,A〉 for A ∈ A[S].

Proposition 8.4. If p > 5 and G is a finite subgroup of M(p,C) with permutation part
Ap, then G is D-conjugate to a group in U0.

Proof. Since H1(Ap, Dπ) = 0 by Lemma 8.2, and we may take ζ = η = π in
Lemma 6.7, G is conjugate to 〈Ap, G ∩D〉 by Proposition 6.6. �

Lemma 8.5. Distinct irreducible groups in U0 are not GL(p,C)-conjugate.

Proof. Cf. the proof of Lemma 7.7. Proposition 8.1 comes into play; reducibility of
G is again equivalent to G ∩ D ≤ Z, and there is a single group in U0 with a given
diagonal subgroup. �

Definition 8.6. Let U∗0 be the set of 〈s, w,A〉 ∈ U0 such that one of (i)–(iii) as in
Definition 7.8 holds for A ∈ A[S].

Thus, U∗0 is the subset of irreducible groups in U0.

Theorem 8.7. If p ≥ 7 then U∗0 is a classification of the finite irreducible subgroups of
M(p,C) with permutation part Alt(p).

Proof. Proposition 8.4 and Lemma 8.5 show that U∗0 is complete and irredundant. �
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8.1. Degree 5. Now fix p = 5.

Definition 8.8. Let cn = diag(1, εn, ε
−1
n , ε−1n , εn) where εn = e2πi/3

n
. For i ∈ {1, 2},

define Ui to be the set of groups 〈s, wcin+1, A〉 ≤ M(5,C) where A ∈ A[S] and A ∩
X{3} = ΩnX{3}, as n ranges over the non-negative integers.

Remark 8.9. 〈s, wcin+1〉 has diagonal subgroup ΩnX{3}.

Lemma 8.10. The Wi = 〈s, wci1〉 for i ∈ {0, 1, 2} are isomorphic to A5, and no two of
these groups are conjugate in DA5.

Proof. Obviously W0 = A5 is reducible. Also, W1 and W2 correspond to the ordinary
irreducible character of A5 of degree 5 (hence they are GL(5,C)-conjugate). If W1

and W2 were DA5-conjugate, then they would be D-conjugate; but sd 6∈ W2 for
non-scalar d ∈ D. �

Theorem 8.11. A finite subgroup G of DA5 such that φ(G) = A5 is conjugate to a
group in U0 ∪ U1 ∪ U2.

Proof. By Proposition 6.6, and Lemmas 6.7 and 8.2, we may suppose that the hub
group G is in M := X{3}A5. So G ∩D = ΩnX{3} for some n. Let τ be the surjective
endomorphism of M that is the identity on A5 and maps x ∈ X{3} to x3

n
. Note that

ker τ = G ∩D.
The Wi and τ(G) are all complements of X{3} in M . Since |H1(A5, X{3})| =

3, Lemma 8.10 implies that τ(G) is M -conjugate, i.e., τ(M)-conjugate, to Wi =

τ(〈s, wcin+1〉) for some i. Therefore G is M -conjugate to 〈s, wcin+1〉. �

Lemma 8.12. Each group in U2 is conjugate to a group in U1.

Proof. Here t = (1, 2, 4, 3). Matrix multiplication establishes that (wcn)s
3wcns2 ≡ wtc2tn

modulo the diagonal subgroup Ωn−1X{3} of 〈s, wcn〉. �

Lemma 8.13. All groups in U1 are irreducible.

Proof. Let G = 〈s, wcn+1, A〉 ∈ U1. If n = 0 then G contains the irreducible group W1.
If n ≥ 1 then A is non-scalar. �

Lemma 8.14. Distinct groups in U0 ∪ U1 are not GL(5,C)-conjugate.

Proof. We proceed as in the proofs of Lemmas 7.7 and 8.5. Suppose that 〈s, wcn+1,

A〉d = 〈s, w,A〉 for some d ∈ D, where A∩X{3} = ΩnX{3}. Then [w, d]cn+1 ∈ A∩X.
However, [w, d]cn+1 has a diagonal entry of order 3n+1. �

Theorem 8.15. U∗0 ∪U1 is a classification of the finite irreducible subgroups of M(5,C)

with permutation part Alt(5).
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9. DEGREES GREATER THAN 5

Let G be a finite irreducible subgroup of M(p,C) with permutation part T . In
previous sections we classified all G such that T is compulsory. A member of the
non-compulsory ‘projective’ family, SL(3, 2), is self-normalizing in Sym(7), hence is
the only non-compulsory T for p = 7. In degrees 11 and 23, the non-compulsory T
are M11, PSL(2, 11), and M23.

9.1. Degree 7. Let p = 7 and T ∼= SL(3, 2). Thus π = {2, 3}.

Definition 9.1. V ∼= SL(3, 2) is the subgroup of S7 generated by s and v = (1, 2)(3, 5).

Lemma 9.2. If q is an odd prime then a finite V -submodule of D{q} is an S7-module.

Proof. We combine Lemma 6.2, Corollary 6.4, and Proposition 3.25 (for q = 3, as
X{3} = X

(1)
{3}). �

The V -submodule structure of X{2} = X
(1)
{2}X

(2)
{2} is less tractable. Here we resume

the conventions of Section 3.1.2, fixing q = 2. In Z2[x], f(x) = x6 + x5 + x4 + x3 +

x2 + x + 1 factorizes as the product of irreducibles f1, f2, with integer polynomial
approximations

f1,1(x) = x3 + x + 1 f2,1(x) = x3 + x2 + 1

f1,2(x) = x3 + 2x2 + x + 3 f2,2(x) = x3 + 3x2 + 2x + 3

(see the proof of Lemma 3.13 for the method to calculate each fi,n).

Lemma 9.3.

(i) X(1)
2,mX

(2)
2,n is a V -module if and only if m = n or m = n+ 1.

(ii) X(1)
2,mX

(2)
2,n is an S7-module if and only if m = n.

Proof. Since X(1)
2,1 is annihilated by f1,1(s), the F2-space X(1)

2,1 has basis {x1, xs1, xs
2

1 }
where x1 := x

(1)
2,1 = diag(−1,−1,−1, 1,−1, 1, 1). This basis maps to another under

action by v. Hence X(1)
2,1 is a V -module.

Clearly X
(1)
2,nX

(2)
2,n = ΩnX{2} is a V -module; as is X(1)

2,n+1X
(2)
2,n, being the inverse

image of X(1)
2,1 under the endomorphism κn on X{2} that maps x to x2

n
.

Suppose that m < n and X(1)
2,mX

(2)
2,n is a V -module. Then X

(2)
2,1 = κn−1

(
X

(1)
2,mX

(2)
2,n

)
is a V -module. But Ω1X{2} = X

(1)
2,1 ×X

(2)
2,1 is V -indecomposable by Proposition 6.3.

Let x2 = x
(1)
2,2 = diag(−i,−i, i,−1,−i, 1, 1). Observe that xv2 6∈ X

(1)
2,2 , as xv2 is not

annihilated by f1,2(s). So X
(1)
2,2 is not a V -module. However, if m > n + 1 and
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X
(1)
2,mX

(2)
2,n were a V -module, then X

(1)
2,2 = κm−2

(
X

(1)
2,mX

(2)
2,n

)
would be one too. This

rules out the final possibility for (m,n). �

Definition 9.4. Let A[V ] be the set of A ∈ A in degree 7 for which the following hold.

(i) If A ∩ D{7} = Yj,k,l, then either j ≡ 0 mod p − 1, or both l = 0 and j ≡ −1

mod p− 1.
(ii) Either NA = NtA, or A ∩ X{2} = X

(2)
2,n+1X

(2)
2,n for some n and NA agrees with

NtA in each row apart from the row for q = 2.

Proposition 9.5. A[V ] is the set of all finite V -submodules of D.

Since V ∩ S6
∼= S4, Lemmas 6.8 and 6.9 give the following.

Lemma 9.6. H1(V,D{q}) = 0 if q is odd.

Next we carry out some matrix arithmetic.

Lemma 9.7. If d ∈ D(7,C) and 〈s, vd〉 ∩D ≤ X(1)
2,1 , then d2 = 1.

Proof. Let d = diag(a1, . . . , a7). We evaluate the containment of (vd)2, (svd)4, (s2vd)3

in Ω1D{2} and (vd)2, (svd)4 in ker f1,1(s) to get a system of equations in the ai whose
simultaneous solution implies that each ai is ±1. �

Definition 9.8. Let gn = diag(1, 1, 1, εn, 1, ε
−1
n , 1) and hn = diag(εn, εn, 1, ε

−1
n , 1, 1, ε−1n )

where εn = eπi/2
n−1

.

Remark 9.9. The diagonal subgroup of 〈s, vg1〉 isX(1)
2 , and 〈s, vh1〉 ∼= V is irreducible.

Lemma 9.10. Let d ∈ D(7,C). If 〈s, vd〉 ∩ D = X
(1)
2,1 (resp., 〈s, vd〉 ∩ D = 1), then

d ∈ X(1)
2,1 or g1X

(1)
2,1 (resp., d ∈ 〈h1〉).

Proof. Follows from Lemma 9.7 and calculations similar to those in its proof. �

Definition 9.11. Let

V0 = {〈s, v, A〉 | A ∈ A[V ]},
V1 =

⋃
n≥1
{
〈s, vgn, A〉 | A ∈ A[V ] \ A[S] and A ∩X(1)

{2} = X
(1)
2,n

}
,

V2 =
⋃
n≥0
{
〈s, vhn+1, A〉 | A ∈ A[S] and A ∩X(1)

{2} = X
(1)
2,n

}
.

Then let V = V0 ∪ V1 ∪ V2.

Theorem 9.12. A finite subgroup of M(7,C) with permutation part SL(3, 2) is DS7-
conjugate to a group in V.
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Proof. (Cf. the proof of Theorem 8.11.) By Lemmas 9.2 and 9.6, we consider a finite
hub groupG ≤ V X{2} with φ(G) = V and s ∈ G. Lemma 9.3 indicates that ΩnX{2} ≤
D ∩G ≤ Ωn+1X{2} for some n.

Let κ be the group endomorphism of S7X{2} that squares elements of X{2} and is

the identity on S7. If G ∩D = X
(1)
2,n+1X

(2)
2,n then κn(G) ∩D = X

(1)
2,1 . By Lemma 9.10,

κn(G) = V X
(1)
2,1 or 〈s, vg1〉. The preimages of these groups under κn are in V0 ∪ V1.

Suppose that G∩D = ΩnX{2}. By Lemma 9.10, κn(G) is then V or 〈s, vh1〉. Hence
G ∈ V0 ∪ V2. �

Lemma 9.13. G ∈ V is irreducible if and only if G 6∈ V0 or G ∩D 6≤ Z.

Proof. Suppose that G ∈ V1 ∪ V2 and G ∩ D ≤ Z. Then G ∈ V2 by Definition 9.11,
and we know that 〈s, vh1〉 ≤ G is irreducible. �

Definition 9.14. Let V∗ be the sublist of V that excludes all members of V0 with
scalar diagonal subgroup.

Theorem 9.15. V∗ is a classification of the finite irreducible subgroups of M(7,C) with
permutation part SL(3, 2).

Proof. To prove irredundancy of V∗, suppose that G ∈ V0 and H ∈ V1 ∪ V2 are DS7-
conjugate, hence DV -conjugate (as NS7(V ) = V ), with the same diagonal subgroup
A. Let A ∩X(1)

{2} = X
(1)
2,n. Then there is d ∈ D(7,C) such that [v, d]b ∈ A where b = gn

(n ≥ 1) or hn+1 (n ≥ 0). Since the last two (and fourth) diagonal entries of [v, d] are
1s, b cannot be hn+1. Also, κn−1([v, d]gn) 6∈ X(1)

2,1 for any d. �

9.2. Degree 11. There are two non-isomorphic permutation parts of degree 11, each
of which is is self-normalizing in Sym(11).

Definition 9.16. Let w1, w2 be the permutation matrices corresponding respectively
to (1, 7)(2, 3)(4, 8)(5, 9), (1, 3)(2, 8)(4, 7)(5, 6) ∈ Sym(11). Then let P = 〈s, w1〉 and
Q = 〈s, w2〉.

In fact P ∼= PSL(2, 11), Q ∼= M11, and P ≤ Q. For both groups, π = {2, 3, 5}.

Lemma 9.17. If q 6= 3 then the finite P -submodules of D{q} are S11-modules.

Proof. For q 6∈ {3, 5}, cf. the proof of Lemma 9.2. Inspecting the actions of f1,1(s) and
f2,1(s) on (x

(1)
5,1)

w1 and (x
(2)
5,1)

w1 , we see that X(1)
5,1 and X(2)

5,1 are not P -modules. Thus
Ω1X{5} is irreducible. �

Lemma 9.18. X(1)
3,mX

(2)
3,n is a P -module if and only if n = m or n = m+ 1.
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Proof. Cf. the proof of Lemma 9.3; X(2)
3,1 is a P -module, while X(2)

3,2 is not. �

Lemmas 9.17 and 9.18 inform the next definition.

Definition 9.19. Let A[P ] be the set of A ∈ A in degree 11 for which the following
hold.

(1) If A ∩D{p} = Yj,k,l, then either j ≡ 0 mod p− 1, or both l = 0 and j + 1 ≡ 0

mod p− 1.
(2) Either NA = NtA, or A ∩ X{3} = X

(1)
3,nX

(2)
3,n+1 for some n ≥ 0 and NA agrees

with NtA in each row apart from the row for q = 3.

Moving between A[V ] and A[P ], the roles of X(1)
q,∗ and X

(2)
q,∗ are switched as the

critical prime q switches between 2 and 3. The Hasse diagram of the T -submodule
lattice of X{q} is a zig-zag chain.

Proposition 9.20.

(i) A[P ] is the set of all finite P -submodules of D.
(ii) A[S] is the set of all finite Q-submodules of D.

Proof. Part (ii) follows from part (i): P ≤ Q, and X
(1)
3,nX

(2)
3,n+1 is not a Q-module

because (x
(2)
3,1)

w2 6∈ X(2)
3,1 . �

Since P ∩ S10
∼= A5 and Q ∩ S10

∼= A6 · 2, we deduce the following.

Lemma 9.21.

(i) H1(P,D{q}) = 0 for all primes q.
(ii) H1(Q,D{q}) = 0 for odd primes q, and H1(Q,X{2}) = C2.

Lemma 9.22. If G is a finite subgroup of M(11,C) with permutation part P , then G is
D-conjugate to P.(G ∩D).

Proof. By Proposition 6.6, Lemma 6.7 (with T = S11), and Lemma 9.21 (i), we may
suppose that G ∩ D ∈ A[P ] \ A[S]. Let W be the largest S11-module in G ∩ Dπ, i.e.,
(G∩Dπ)/W ∼= A := X

(2)
3,1 . Then Dπ/W ∼= Dπ by Lemma 6.7, so that Dπ/(G∩Dπ) ∼=

Dπ/A. The short exact sequence

1→ A→ Dπ → Dπ/A→ 1

gives rise to the fragment

H1(P,Dπ)→ H1(P,Dπ/(G ∩Dπ))→ H2(P,A)

of a long exact sequence (see [32, p. 573]). Since H1(P,Dπ) = H2(P,A) = 0 by
Lemma 9.21 (i) and [26, p. 229], the proof is complete by Proposition 6.6. �
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Theorem 9.23. The set of all PA where A ∈ A[P ] is non-scalar is a classification of the
finite irreducible subgroups of M(11,C) with permutation part PSL(2, 11).

Proof. Let A,B ∈ A[P ]. If A ≤ Z then the split extension A o P is reducible. If PA
and PB are GL(11,C)-conjugate, then A = B by Theorems 2.9 and 2.10, because
NS11(P ) = P . �

To conclude degree 11, we list the groups with permutation part M11.

Definition 9.24. Let dn = diag(εn, ε
−1
n , ε−1n , 1, ε−1n , εn, 1, εn, 1, 1, 1) where εn = eπi/2

n−1
.

Define Q to be the set of groups 〈s, w2, A〉 and 〈s, w2dn+1, A〉 for A ∈ A[S] such that
A ∩X{2} = ΩnX{2}, for all n ≥ 0.

Theorem 9.25. The subset of Q that excludes (only) the groups 〈s, w2, A〉, where A ≤
Z, is a classification of the finite irreducible subgroups of M(11,C) with permutation
part M11.

Proof. Let G be a hub group in QX{2} (by way of Lemma 9.21 (ii), Proposition 6.6,
and Lemma 6.7). Repeated squaring on G reduces to Q or 〈s, w2d1〉, the only copies
of M11 in QX{2} up to conjugacy (see Lemma 9.21 (ii)). These have preimages in Q.

Since 〈s, w2d1〉 is irreducible, the reducible groups in Q are the QA with A scalar.
Suppose that A ∩ X{2} = ΩnX{2} and G = QA is DQ-conjugate, hence D-

conjugate, to 〈s, w2dn+1, A〉. Then there is a diagonal matrix b such that b1−sw2 =

dn+1 ∈ A ∩X. However, b1−sw2 has diagonal entries of order 2n+1. �

9.3. Degree 23. Let p = 23. A non-compulsory transitive subgroup of P(23) is con-
jugate to the group Q ∼= M23 generated by s and

(1, 3)(4, 19)(5, 17)(6, 9)(7, 8)(10, 16)(12, 15)(13, 18).

(We recycle the notation Q from Section 9.2.)

Definition 9.26. LetA[Q] be the sublist of A ∈ A in degree 23 for which the following
hold.

(1) If A∩D{p} = Yj,k,l, then either j ≡ 0 mod p− 1, or both l = 0 and j + 1 ≡ 0

mod p− 1.
(2) Either NA = NtA, or A ∩ X{2} = X

(1)
2,n+1X

(2)
2,n for some n ≥ 0 and NtA = NA

apart from the row for q = 2.

Proofs of the next three results are left as exercises.

Lemma 9.27. A[Q] is the set of all finite Q-submodules of D(23,C).
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Lemma 9.28. If q is prime then H1(Q,D{q}) = 0.

Theorem 9.29. The set of all AQ for non-scalar A ∈ A[Q] is a classification of the finite
irreducible subgroups of M(23,C) with permutation part M23.

10. OVERVIEW

We have completely and irredundantly classified up to conjugacy in GL(p,C) all
finite irreducible monomial subgroups that

• are solvable;
• have permutation part containing Alt(p);
• are non-solvable in degrees p ∈ {7, 11, 23}.

Hence, we have classified the groups for p ≤ 11, p = 23, and the infinitely many p
not of the form (qd − 1)/(q − 1) where q is a prime power.

Our methodology may be used to settle all prime degrees p < 31. If p = 19 or 29

then the permutation part T is compulsory. If p = 13 or 17 then the non-compulsory
T are projective, with one or three possible isomorphism types, respectively.

A hermetic classification of the finite irreducible subgroups of M(p,C) for arbitary
prime p is obstructed by a lack of solutions to the T -module listing problem (in D{p}′)
and the extension problem for projective T . We pose some conjectures, suggested by
existing evidence, whose resolution might aid in closing these gaps. Note that [16]
is also stymied by the projective family case, there being a question about ‘basic
subgroups’ of ‘height’ greater than 1 [16, p. 366].

Let T be a non-solvable transitive subgroup of Sym(p).

Conjecture 10.1. Every finite T -submodule of D{p}′ is an NSym(p)(T )-submodule.

Suppose that SL(d, q) E T ≤ ΣL(d, q). If q is prime then NSym(p)(T ) = T . The
only p such that 5 < p < 106 and p = (qd − 1)/(q − 1) with q composite are p =

17, 73, 257, 757, 65537, and 262657. Since finite SL(2, 16)-submodules of D(17,C)

are Sym(17)-modules (cf. the proof of Lemma 9.2), the smallest degree at which
Conjecture 10.1 could fail is 73. This conjecture has a bearing on the conjugacy
problem (see Theorems 2.9 and 2.10).

Conjecture 10.2. Every finite T -submodule ofD has the same number of T -extensions
in M̃(p,C) up to M̃(p,C)-conjugacy.

The number nT in Conjecture 10.2 is 2, 1, 2, 2, 1, 2, 1 for T = Sp, Ap (p > 5), A5,
SL(3, 2), PSL(2, 11), M11, M23, respectively. In degrees p ∈ {13, 17}, the conjecture
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is true for T = SL(3, 3) and SL(2, 16), with nT = 2 and 4, respectively; we suppress
the proofs. Surjective endomorphisms of TDπ that act identically on T (e.g., denoted
as powers of κ when p = 7 and T = V ) were used to validate Conjecture 10.2 in
the cases so far examined. Such maps need not always exist: it can be shown that
there are none for T ∼= SL(5, 2). However, another pattern emerges from the body of
results about X{q} for p ≤ 31 and q 6= p.

Conjecture 10.3. Every indecomposable T -submodule of D is uniserial.

Rather than pursuing such conjectures to ever higher degrees, it seems more fruit-
ful to classify primitive groups of moderate prime degree. The non-solvable finite
primitive subgroups of SL(p,C) are listed up to isomorphism in [15]. Our ultimate
goal is a (complete, irredundant, explicit) classification of all finite irreducible sub-
groups of GL(p,C) for p ≤ 11 (at least). The next section begins this work.

11. FINITE COMPLEX LINEAR GROUPS OF DEGREES 2 AND 3

Some material in this section pertaining to finite primitive subgroups of SL(2,C)

and SL(3,C) is common knowledge, tracing back to old classifications referenced in
Section 1. A convenient source is [29, Chapters X, XII].

The following easy lemma and its corollary assist in irredundancy proofs.

Lemma 11.1. Let G be a finite irreducible subgroup of GL(n,F). Then Aut(G) has a
natural action on the set of equivalence classes [ρ] of faithful irreducible representations
ρ→ GL(n,F), defined by [ρ]θ = [ρ ◦ θ]. Under this action,

(i) StabAut(G)([ρ]) ∼= NGL(n,F)(ρ(G))/CGL(n,F)(ρ(G));

(ii) the orbits are in one-to-one correspondence with the GL(n,F)-conjugacy classes
of all irreducible subgroups of GL(n,F) isomorphic to G.

Corollary 11.2. LetG be a finite absolutely irreducible subgroup of GL(n,F) that is self-
normalizing in GL(n,F) modulo scalars. If there are precisely |Out(G)| inequivalent
faithful absolutely irreducible representations of G in GL(n,F), then every absolutely
irreducible subgroup of GL(n,F) isomorphic to G is conjugate to G.

11.1. Degree 2. Some of our generators for the primitive groups in degree 2 are
taken from [29, §§102–103]. The others are in D{p}; see Section 3.1.1.

Definition 11.3. Let

a = 1
2

[
i− 1 i− 1

i + 1 −i− 1

]
, b = 1√

2

[
1 + i 0

0 1− i

]
, c = 1

2

[
i λ1 − λ2i

−λ1 − λ2i −i

]
,
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where λ1 = 1−
√
5

2 and λ2 = 1+
√
5

2 .

Theorem 11.4.

(i) A finite subgroup G of GL(2,C) is (irreducible) primitive if and only if G ∩
D(2,C) = Z(G) has even order and G/Z(G) is isomorphic to Alt(4) or Sym(4)

or Alt(5).
(ii) Let n ≥ 2 be an even integer.

– For K = Alt(4) and K = Sym(4), there are precisely two conjugacy
classes of groups G ≤ GL(2,C) such that |Z(G)| = n and G/Z(G) ∼= K.
These have representatives 〈a, x4, zn〉, 〈az3n, x4〉 when K = Alt(4), and
〈a, b, zn〉, 〈a, bz2n, zn〉 when K = Sym(4).

– Every subgroup of GL(2,C) with center of order n and central quotient
Alt(5) is conjugate to 〈a, c, x4, zn〉.

Proof. The proofs of parallel statements in [22, Theorem 5.4] and [23, Theorems 5.8,
5.11] for non-modular absolutely irreducible primitive groups transfer with minor
adjustments. There is a finite primitive group H ≤ SL(2,C) such that GZ = HZ and
so G/Z(G) ∼= H/Z(H). The possible isomomorphism types of H/Z(H) are identified
in [29, §§102–103]. We solve central extension problems for subgroups of GL(2,C)

using standard 2-cohomology to prove completeness. �

Theorem 11.5. The union of L0 as in Theorem 4.9 and the set of all groups listed in
Theorem 11.4 (ii) as n ranges over the positive even integers is a classification of the
finite irreducible (i.e., finite non-abelian) subgroups of GL(2,C).

11.2. Degree 3.

Theorem 11.6. Let G be a finite solvable primitive subgroup of GL(3,C).

(i) G ∩D(3,C) = Z(G) has order divisible by 3.
(ii) G/Z(G) ∼= EH := (C3 × C3) oH where H is C4 or Q8 (the quaternion group

of order 8) or SL(2, 3).
(iii) For n ≡ 0 mod 3, denote by mn,H the number of GL(3,C)-conjugacy classes of

G such that |Z(G)| = n and G/Z(G) ∼= EH . If H = Q8 then mn,H = 2. If H is
C4 or SL(2, 3) then mn,H = 3.

Proof. Once more we appeal to our proofs of these results for non-modular absolutely
irreducible primitive groups: see [23, §6.4]. �
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We give a more detailed version of Theorem 11.6. The generating sets below are
transcribed from those in Theorems 6.22–6.24 and Corollary 6.26 of [23] (deleting
redundant generators).

Theorem 11.7. Let n ≡ 0 mod 3. Define

u =
1

ε− ε2

 1 1 1

1 ε ε2

1 ε2 ε

 and u′ =
1

ε− ε2

 1 ε ε

ε2 ε ε2

ε2 ε2 ε


where ε = e2πi/3. Up to conjugacy, the finite solvable primitive subgroups of GL(3,C)

with center of order n and central quotient EH are as follows.

(i) For H = C4 :

〈s, u, zn〉 alln
〈s,−u, zn〉
〈s, iu, zn〉

}
n odd

〈s, z4nu, zn〉
〈s, z24nu, zn〉

}
n ≡ 0 mod 4

〈s, iu, zn〉
〈s,
√

iu, zn〉

}
n ≡ 2 mod 4.

(ii) For H = Q8 :

〈s, u, u′, zn〉
〈s, u,−u′, zn〉 n odd only
〈s, uz2n, u′, zn〉 n even only.

(iii) For H = SL(2, 3) : 〈u, x27, zn〉, 〈u, z3nx27, zn〉, 〈u, z23nx27, zn〉.

It would be pleasing to have classifications of finite solvable primitive subgroups
of GL(p,C) for larger p.

The finite non-solvable primitive subgroups of SL(3,C) were also listed by Blich-
feldt [4]. We fill out this listing to all of GL(3,C) via the techniques employed in
degree 2 to prove Theorem 11.4.

Definition 11.8. Let

a′ =
1

2

 −1 µ2 µ1

µ2 µ1 −1

µ1 −1 µ2

 and b′ =

 −1 0 0

0 0 −ε2

0 −ε 0

,
where µ1 = −1+

√
5

2 , µ2 = −1−
√
5

2 , and ε = e2πi/3. Let c′ be the 3 × 3 back-circulant
matrix whose first row is 1√

−7 [ω4 − ω3, ω2 − ω5, ω − ω6] where ω = e2πi/7.
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Theorem 11.9. A finite non-solvable subgroup G of GL(3,C), with center of order n,
is primitive if and only if G is GL(3,C)-conjugate to one of

(i) 〈s, diag(1,−1,−1), a′, zn〉 ∼= Alt(5)× Z(G);

(ii) 〈s, diag(1,−1,−1), a′, b′, zn〉 for n ≡ 0 mod 3, containing 3 · Alt(6) and with
central quotient Alt(6);

(iii) 〈diag(ω, ω2, ω4), c′, zn〉 ∼= PSL(2, 7)× Z(G).

Proof. The possible isomorphism types of central quotient, and the matrix generators,
are apparent from [29, pp. 250–251].

We sketch a proof of (i) only. Let G be a finite subgroup of GL(3,C) such that
G/Z(G) ∼= A5. Since |H2(A5, Z(G))| ≤ 2, and the Schur cover SL(2, 5) of A5 has
no faithful irreducible ordinary representation of degree 3, G must split over its
center. Also, GL(3,C) does not contain a subgroup with central quotient S5. The
hypotheses of Corollary 11.2 are therefore satisfied. Direct computation shows that
〈s, diag(1,−1,−1), a′〉 ∼= A5. �

Theorem 11.10. The union of L∗ ∪ M∗ for p = 3 (see Theorem 5.9) together with
the set of all groups listed in Theorems 11.7 and 11.9 is a classification of the finite
irreducible subgroups of GL(3,C).

12. VERIFICATION AND ACCESS TO THE LISTS

We implemented our classifications in MAGMA: see [24]. The input is a positive
integer m and a prime p dividing m; the output is a list of irreducible monomial
subgroups of GL(p,C) of order m up to GL(p,C)-conjugacy and their labels. The
projective family is implemented only for p ≤ 11. Other groups are returned for all
input m and p.

Each output group G is given by a generating set of monomial matrices over a
cyclotomic field determined by m. Currently, such fields can be realized up to size
230 in MAGMA. Our default is the ‘sparse’ option. An isomorphic copy of G defined
over a finite field may be constructed as in [13, § 4.3], and then we may use other
algorithms for finite matrix groups to study G.

Hensel lifting (see Lemma 3.13) is done using MAGMA intrinsic functions. We could
avoid p-adic polynomial arithmetic by computing over residue rings Z/qnZ (for n and
primes q determined by m).

We consider briefly the cost of setting up the groups of orderm in M(p,C). Timings
depend on m, the number of prime factors of m, and v (see Notation 3.15). For many
orders, setup takes just a few CPU seconds. More expensive examples include those
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where m = pq for a prime q of order 1 modulo p. In Table 2, we state the CPU time
in seconds taken to construct representatives of all t classes of order at most m for
degrees 3 and 5. We used MAGMA V2.25-2 on a 2.6GHz machine.

m p t Time p t Time

2000 3 2229 28 5 373 7
4000 3 4994 206 5 850 54
6000 3 7943 778 5 1328 210
8000 3 10993 2033 5 1892 525
10000 3 14131 4711 5 2445 1089

TABLE 2. Setting up all t classes of order at most m in M(p,C)

Conjugacy class representatives for all finite irreducible subgroups of GL(2,C) and
GL(3,C) are also available.

12.1. Checking correctness. Much data about the groups is routinely corroborated
using MAGMA. We can test whether a finite G ≤ GL(p,C) is (absolutely) irreducible.
By exploiting the isomorphic copy of G defined over a finite field, we can check |G|
and other group-theoretic properties, such as the isomorphism type of G/Z(G). We
verified claims for solvable groups of orders m ≤ 104 and all p dividing m. Non-
solvable groups were checked for p ≤ 11 and up to order 106.

Lemma 11.1 (ii) underpins a rudimentary but effective correctness testing proce-
dure, which we now summarize.

(1) Fix m > 1 and a prime p dividing m.
(2) List the monomial groups of order m and degree p from our implementation.
(3) Partition this list by isomorphism.
(4) For each isomorphism type G, use the algorithm of [7] to construct its in-

equivalent faithful irreducible monomial representations in GL(p,C). Com-
pute the number of Aut(G)-orbits in the set of equivalence classes.

(5) If all groups of order m are known, then apply step (4) to each.

If the lists produced in steps (3) and (4) coincide for every isomorphism type, then
we have verified that the output from step (2) is irredundant. If the list produced
in step (5) also coincides, then the output is complete. For non-solvable G, the
algorithm of [7] constructs only those representations defined over Q, so correlation
between lists is more limited.

In step (5), we use the following criterion to isolate monomial groups.
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Lemma 12.1. A finite irreducible solvable subgroup of GL(p,C) is monomial if and
only if it has a non-central abelian normal subgroup.

Note that a finite irreducible monomial subgroup of GL(p,C) is not isomorphic to
any primitive subgroup of GL(p,C) [22, Theorem 2.15].

We applied steps (2), (3), and (4) of the correctness test to solvable monomial
groups of order at most 10000. The SMALLGROUPS library [3] contains the groups of
order at most 2000 (excluding 210); step (5) was applied to all. We thereby recon-
ciled our results with the classification in [8] of the finite irreducible p-subgroups of
GL(p,C), and that in [16] of the finite irreducible subgroups of SL(p,C) ∩M(p,C).

An (obvious) variant of the procedure was used to check accuracy of the primitive
group lists from Section 11.

12.2. The number of conjugacy classes of monomial groups. Our implementation
can simply count the GL(p,C)-conjugacy classes of irreducible subgroups of M(p,C)

having order m. Since neither fields nor generators are constructed, this number is
computed quickly, even for large m.

As an illustration, we counted the conjugacy classes of solvable groups of order m
up to 106 and all p dividing m. We did likewise for non-solvable groups in degrees
p ≤ 11. Table 3 shows the orders with the most conjugacy classes (solvable groups
are on the left).

Order No. classes

26 · 34 · 52 · 7 684

24 · 34 · 72 · 13 648

27 · 34 · 7 · 13 640

24 · 33 · 52 · 7 · 13 621

26 · 33 · 5 · 7 · 13 620

24 · 33 · 7 · 13 · 19 588

28 · 34 · 5 · 7 585

26 · 35 · 72 573

27 · 33 · 5 · 72 568

27 · 33 · 52 · 7 564

Order No. classes

24 · 3 · 56 25

23 · 3 · 56 25

211 · 32 · 5 · 7 17

213 · 3 · 5 · 7 16

212 · 3 · 5 · 7 16

210 · 33 · 5 · 7 15

210 · 32 · 5 · 7 15

211 · 3 · 5 · 7 14

216 · 3 · 5 13

215 · 3 · 5 13

TABLE 3. Monomial group orders with the most GL(p,C)-conjugacy classes
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