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We describe an algorithm for explicitly listing the irreducible monomial subgroups of
GL(n, q), given a suitable list of finite irreducible monomial subgroups of GL(n, C),
where n is 4 or a prime, and q is a prime power. Particular attention is paid to the
case n = 4, and the algorithm is illustrated for n = 4 and q = 5. Certain primitive
permutation groups can be constructed from a list of irreducible monomial subgroups of
GL(n, q). The paper’s final section shows that the computation of automorphisms of such
permutation groups reduces mainly to computation of irreducible monomial subgroups
of GL(n, q), q prime.
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1. Introduction

Let E be a field and n be an integer, n > 1. A list whose elements are subgroups of

GL(n,E), all with certain specified properties, is said to be complete if it contains

a GL(n,E)-conjugate of each subgroup with those properties. The list is irredun-

dant if distinct elements are not GL(n,E)-conjugate. Constructing a complete and

irredundant list of the finite irreducible monomial subgroups of GL(n,E) for n = 4

and E = C is the subject of [12]. In this paper we describe how to obtain a sim-

ilar list for finite E, and carry out the construction when |E| = 5. This work was

initially prompted by remarks in [12, Sec. 1] about classifying irreducible soluble

linear groups over finite fields, after Short [25].

Throughout the paper, p is a prime and q is a power of p. Also, M(n,E) will

denote the full group of monomial matrices in GL(n,E); this is the semidirect

product D(n,E)oSn, where D(n,E) is the group of diagonal matrices in GL(n,E),

and Sn is the group of n× n permutation matrices (identified with the symmetric

group of degree n). If E = GF(q) then “q” replaces “E” in the notation above.
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For details of the long history of classifying finite linear groups, see [10, Sec. 8.5],

[20], [26], and [27]. The main problem considered in this paper has a different aspect

to classical problems in the area, which are concerned not with imprimitive linear

groups at all, but rather with primitive or quasiprimitive unimodular linear groups

of small degree over C. Lists of such groups are finite. Some authors only list groups

up to isomorphism of their collineation groups (central quotients), and then any

finite primitive linear group over C is an extension of its centre by a collineation

group in the relevant list. More recent classifications of finite linear groups employ

the classification of finite simple groups, and have been motivated by the question of

which nonabelian simple groups can occur as chief factors of absolutely irreducible

linear groups over finite fields; see [20, 26]. Here again imprimitive linear groups

are not of much interest. For example, the collineation group of a finite irreducible

subgroup G of M(n,C) is almost simple only if the diagonal subgroup D(n,C) ∩G
of G is scalar. In prime degree n the nonabelian simple group involved therefore has

a transitive permutation representation of degree n and an irreducible projective

representation of degree n. This rarely happens; it is more likely that G has a

rich normal structure (several classes of finite soluble linear groups over C — such

as nilpotent groups — are monomial). Finding complete and irredundant lists of

imprimitive linear groups is a hard classification problem in the theory of finite

linear groups. These lists are possibly infinite, and moreover complicated in ways

connected to the structure of the groups themselves (see also [2, 16]). Nor do we

expect that listing groups by isomorphism type would be any easier. For example,

finite irreducible linear n-groups of prime degree n over C are isomorphic if and

only if they are conjugate in GL(n,C).

Using a standard approach, the irreducible subgroups of M(n, q) may be listed

by computer if n and q are small enough. Critical parameters in this computation

are |GL(n, q)|, |M(n, q)| = n!(q−1)n, and the degrees qn−1 and n(q−1) of natural

faithful permutation representations of GL(n, q) and M(n, q), respectively, which

are not unmanageably large at n = 4 and q = 5. We recommend our more theoreti-

cal solution of the listing problem in M(4, 5) for two reasons. First, it illustrates an

algorithm for solving the general problem, which becomes the only feasible alterna-

tive as n and q increase. Second, it provides a way to test correctness both of the

algorithm itself, and of the hugely complicated infinite list in [12], of linear groups

over C. What this means is comparing our classification of the irreducible subgroups

of M(4, 5), which builds on that list and which has been obtained by hand, against a

matching classification done by machine using standard computational techniques.

It is apt to record here that the lists in [11, 12] have errors of omission, rendering

them incomplete. Errata are stated in an appendix to this paper. A note justifying

the errata is available upon request from the author.

Henceforth Fp stands for the algebraic closure of GF(p); we work with a concrete

version of Fp, to be defined later. Let E be a subfield of Fp. A list of the finite abso-

lutely irreducible p′-subgroups of M(n,E) may be compiled quite straightforwardly

from a list Ln,C of the finite irreducible subgroups of M(n,C). The major tool is a
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particular faithful representation of M(n,Fp) in M(n,C), used to “transfer” groups

between characteristics 0 and p. All of this is covered in Sec. 2 of the paper. We

point out that when E is finite, the transfer is done only on a finite sublist of Ln,C,

and the effectiveness of the transfer between lists hinges upon several requirements

of Ln,C. One of these is the choice of GL(n,C)-conjugacy class representatives, inso-

far as representatives that are p′-groups should contain only matrices with nonzero

entries that are p′-roots of unity. Secondly, each listed group is to be given by a gen-

erating set whose diagonal elements generate the diagonal subgroup of the group.

Thirdly, for given N one can compute the finite sublist of Ln,C of groups of orderN .

If p ≥ 5 then the list in [12] satisfies the above requirements, which are by-products

of the construction process for that list.

Finite irreducible but not absolutely irreducible subgroups of M(n,E) arise in a

well-understood way from irreducible subgroups of GL(m,Fp), m a proper divisor

of n, as explained in Sec. 3. Basically, a group of the former kind is a diagonal in the

direct product of n/m isomorphic groups of the latter kind. Of course, if n = 4 and

m > 1 then m is prime, and there is a wealth of information on classifying finite

linear groups of prime degree m. The finite primitive subgroups of GL(m,C) have

been described up to isomorphism of collineation group socle by Dixon and Zalesskii

[8]. Complete and irredundant lists of imprimitive (hence monomial) subgroups of

GL(m,C) appear in [2, 5]. These may be transferred to lists over Fp in the manner

of Sec. 2.

We show how to list the finite absolutely irreducible subgroups of M(n,E) for

n = 4 and n = 2 in Secs. 4 and 5, respectively. Section 5 includes additional

information about primitive subgroups of GL(2,Fp), required for manufacturing

the other finite irreducible subgroups of M(4,E) as per Sec. 3.

Section 6 concludes our solution of the main problem. A list of the irreducible

but not absolutely irreducible subgroups of M(4, q) is found by applying Secs. 3

and 5. The union of that list and a complementary one yielded by the methods of

Sec. 4 is a complete and irredundant list of the irreducible subgroups of M(4, q). In

Sec. 7 we verify the list for q = 5 is correct, and summarize the listing algorithm

developed over the course of the paper.

Finally, Sec. 8 reviews material on automorphisms of primitive permutation

groups associated to linear groups. We show that, under mild restrictions, auto-

morphisms are formed in a natural way from normalizers of monomial groups in

the full general linear group over a prime field. Furthermore, those normalizers are

monomial.

Although we are mostly interested in monomial linear groups of degree 4, the

discussion is kept general where possible, with a view to listing irreducible monomial

linear groups of other degrees over finite fields.

Notation and terminology from [12] is re-used (π is now projection from a mono-

mial linear group of arbitrary degree n into Sn). We write tr for the trace map on

square matrices.

Proofs meant to be routine are omitted and left as exercises for the reader.
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2. Finite Absolutely Irreducible Nonmodular Monomial Linear

Groups

Let G be a finite subgroup of M(n,Fp). For convenience, we sometimes consider

that G is a p′-group. One way to arrange this is to take p greater than n, for then

p does not divide |πG|, and hence does not divide |G| = |D(n,Fp) ∩G| · |πG|.
It is easy to demonstrate a faithful representation of G in M(n,C): just lift

nonzero entries in each element of G to appropriate p′-roots of unity in C. Provided

G is a p′-group, it is almost as easy to prove that this representation is irreducible if

and only if G is irreducible. We perform these tasks in the first part of this section,

thereby getting an explicit special case of the following well-known result.

Theorem 2.1. A finite irreducible p′-subgroup of GL(n,Fp) is isomorphic to an

irreducible subgroup of GL(n,C).

Proof. See e.g. [6, Corollary 3.8, p. 62].

We refer to the exposition of Brauer characters in Isaacs’ book [19, Chap. 15].

Zorn’s Lemma implies that the ring R of algebraic integers in C has a maximal

ideal I , containing p. Fix I and denote natural surjection R → R/I as ψ. By [19,

(15.1), p. 263], R/I is the algebraic closure of ψ(Z) = GF(p), so we take Fp to be

R/I . Also ψ maps the largest p′-subgroup W of C× isomorphically onto F×
p . Denote

the inverse isomorphism θ. Put θ(0) = 0, so that θ is multiplicative on Fp, ψθ is

the identity on Fp, and θψ is the identity on W ◦ = W ∪ {0}. If x is an R-matrix

then let Ψ(x) be the Fp-matrix of the same size with Ψ(x)i,j = ψ(xi,j). Obviously

Ψ is an additive and multiplicative map on sets of R-matrices. If y is an Fp-matrix

then let Θ(y) be the W ◦-matrix defined by Θ(y)i,j = θ(yi,j). We have ΨΘ(y) = y,

and ΘΨ(x) = x for a W ◦-matrix x.

Lemma 2.2. Let x, y, z be Fp-matrices such that x is monomial and xy, zx are

defined. Then Θ(xy) = Θ(x)Θ(y) and Θ(zx) = Θ(z)Θ(x).

Corollary 2.3. Θ is a faithful representation of M(n,Fp) in M(n,C), with

inverse Ψ.

Remark 2.4. Corollary 2.3 implies that there is an isomorphic copy of M(n, q) in

GL(n,C) for any q. However, if p > n and n > 2 then there is not an isomorphic

copy of GL(n, q) in GL(n,C). For suppose (by Proposition 2.14 below) that M(n,C)

has a subgroup P isomorphic to a p-subgroup of GL(n, q). Since p > n we have

πP = 1, so P is a group of diagonal matrices and is therefore abelian. On the

other hand, a Sylow p-subgroup of GL(n, q) is conjugate to the group of all upper

triangular unipotent matrices in GL(n, q), which is nonabelian if n > 2. A faithful

representation of GL(2, q) in GL(2,C) is irreducible. Assuming q is odd, such a

representation can exist only when q = 3, since the irreducible complex character

degrees of GL(2, q) are 1, q − 1, q, and q + 1; see e.g. [1, pp. 174–177]. Indeed,
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if S and U are the elements of SU(2) defined in [3, Sec. 57], then S and
√
−1U

generate a Schur cover of S4 in GL(2,C), isomorphic to GL(2, 3). (The only other

Schur cover of S4 is the binary octahedral group, realized in GL(2,C) as 〈S, U 〉.)
Summing up: when p > n, GL(n,C) has a subgroup isomorphic to GL(n, q) if and

only if n = 2 and q = 3.

Remark 2.5. Eventually we prove that the lifting Θ is an irreducible representa-

tion of each finite irreducible nonmodular subgroup of M(n,Fp) in GL(n,C). Such

representations exist for p-soluble groups (and a monomial linear group of degree

at most 4 is certainly soluble). This extends Theorem 2.1 and is a consequence of

the Fong–Rukolăıne–Swan Theorem [9, Theorem 72.1, p. 473], which tells us that

a Brauer character afforded by the identity automorphism of a finite irreducible

p-soluble subgroup G of GL(n,Fp) lifts to a complex irreducible character of G.

That character must be faithful.

Lemma 2.6. Θ(GL(n,Fp)) ⊂ GL(n,C).

Proof. Induction on n establishes that ψ(detx) = det Ψ(x) for any x ∈ Mat(n,R).

Thus, if g ∈ GL(n,Fp) then det Θ(g) 6= 0.

So Θ is not generally a homomorphism, but at least it is a bijection from

GL(n,Fp) onto a subset of GL(n,C).

Proposition 2.7. Let G and H be subgroups of M(n,Fp). If G is GL(n,Fp)-

conjugate to H then Θ(G) is GL(n,C)-conjugate to Θ(H).

Proof. Suppose Gx = H , x ∈ GL(n,Fp). By Lemma 2.2, Θ(G)y = yΘ(H) where

y = Θ(x), and y is invertible by Lemma 2.6.

Lemma 2.8. If g is a p′-element of M(n,Fp) with eigenvalues e1, . . . , en (counting

multiplicities), then the eigenvalues of Θ(g) are θ(e1), . . . , θ(en).

Proof. Since g is conjugate to diag(e1, . . . , en), the result again follows from

Lemmas 2.2 and 2.6.

The irreducible Brauer characters of a finite p′-group (with respect to the prime

p) are exactly the same as its irreducible complex characters ([19, (15.13), p. 268]).

This ensures that irreducibility of monomial p′-groups is preserved when transfer-

ring between characteristics.

Theorem 2.9. Let G be a finite irreducible p′-subgroup of Θ(M(n,Fp)). Then Ψ

is a faithful irreducible representation of G in M(n,Fp).

Proof. If g ∈ G has eigenvalues b1, . . . , bn then, by Lemma 2.8, the eigenval-

ues of Ψ(g) are ψ(b1), . . . , ψ(bn). The Brauer character afforded by Ψ has value
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∑n
i=1 θψ(bi) on g, so is just tr on G. But tr is an irreducible Brauer character of G.

Hence Ψ is irreducible.

Theorem 2.10. Let G be a finite irreducible p′-subgroup of M(n,Fp). Then Θ is a

faithful irreducible representation of G in M(n,C).

Proof. Cf. the previous proof. The complex character of G afforded by Θ coin-

cides with the Brauer character afforded by the identity automorphism of G, so is

irreducible.

Remark 2.11. It is not always necessary in Theorem 2.10 that G be a p′-group.

Let G = H wr T whereH is a nontrivial finite subgroup of F×
p , and T is a transitive

subgroup of Sn—this includes the possibilityG = M(n, q). Then Θ(G) = θ(H) wr T

is irreducible, whether or not G is a p′-group. For a second example, let G be a

finite irreducible subgroup of M(4,Fp) whose diagonal subgroup is self-centralizing

in G. Although p may divide |G|, Θ(G) is irreducible by [12, Theorem 4.2]. Actually,

Θ(G) is always irreducible when πG = A4. For if Θ(G) were reducible then G would

have scalar diagonal subgroup by [12, Lemma 2.1]; but |G: Z(G)| ≥ 16 (see e.g. [6,

the exercise on p. 36]).

If E is a subfield of Fp then the absolutely irreducible subgroups of GL(n,E)

are those subgroups that are irreducible over Fp. We spend the rest of this section

discussing how to list the finite absolutely irreducible p′-subgroups of M(n,E).

Let Ln,C be a complete and irredundant list of the finite irreducible subgroups

of M(n,C). At the time of writing there have been attempts to construct Ln,C only

for n = 4, or n a prime less than 31 (Bácskai in his Ph.D. thesis [2] accounts for

the prime degrees). Therefore, realistically the proviso p > n is not too severe: n is

small, so the number of exceptional p is small.

In practice we will have an actual list `n,C which we take to be the ideal list Ln,C.

Now there may be errors in `n,C as we have seen, and conceivably these may be

transmitted to a list of subgroups of M(n,Fp) whose construction depends on Ln,C.

This point does not affect the validity of our methods; if an error can be detected

and corrected in `n,C then it can be detected and corrected in any dependent list of

monomial groups over Fp. Nonetheless any statements about completeness of that

list must assume `n,C is correct.

We envisage that Ln,C, like the lists of [2, 5, 11, 12], has each element given by

a generating set of monomial matrices which can be written down explicitly from

an integer parameter string labeling the group. (These strings are arbitrarily long,

reflecting the fact that we can add arbitrarily many scalars to a group in Ln,C

without leaving Ln,C. However, for the application to listing subgroups of M(n, q),

lengths of the relevant strings are related to the primes dividing n!(q − 1), and so

are bounded in terms of n, q.) Suppose that in the generating set of each G ∈ Ln,C

the diagonal matrices form a generating set for D(n,C) ∩ G; then we have no

trouble calculating |G| from |D(n,C) ∩G|, as πG is obvious from the non-diagonal
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generators of G. Thus list groups should come with order functions, and the order

of a group is found by direct substitution of its defining integer parameters into its

order function (see [11, top paragraph of p. 28] for some diagonal subgroup order

functions). When p > n, the p′-groups in Ln,C can be picked out just by looking at

diagonal subgroup orders. Furthermore, if for each G all nonzero generator entries

are |G|th roots of unity then every p′-group in Ln,C is in Θ(M(n,Fp)). This latter

condition is a vital requirement of Ln,C in the algorithm for constructing a list of

the finite irreducible p′-subgroups of M(n,Fp), and is fulfilled by L4,C as in [12] if

p > 3 (we postpone verification of this until Sec. 4; see the proof of Theorem 4.1).

While a given list may not fulfill the requirement — entries of generators may

even be torsion-free — it can always be enforced, by replacing list elements G with

conjugates as necessary. Replacement is possible because there is a basis of the

underlying vector space for GL(n,C) in the G-orbit of the vector e1 = (1, 0, . . . , 0).

If x is the (monomial) change of basis matrix from any such basis to the standard

orthonormal one {ei | 1 ≤ i ≤ n}, where ei has 1 in the ith position and 0 elsewhere,

then Gx has the desired property.

Let Ln,W◦ be the sublist of Ln,C consisting of all elements that are p′-subgroups

of Θ(M(n,Fp)). By the above, we may assume Ln,W◦ contains every p′-group in

Ln,C. Set Ln,Fp
= Ψ(Ln,W◦). By Theorem 2.9, Ln,Fp

is a list of finite irreducible

p′-subgroups of M(n,Fp). By Proposition 2.7, Ln,Fp
is irredundant. Deciding com-

pleteness of Ln,Fp
can be more difficult. We now set up some machinery to be used

in that endeavor.

Proposition 2.12. Let G be a group, and denote by K the set of equivalence classes

[Ξ] of its faithful irreducible representations Ξ of degree n over a fixed field K.

Suppose K is nonempty.

(i) For each [Ξ] ∈ K and α ∈ Aut(G), define [Ξ]α to be [Ξα], where Ξα(g) =

Ξ(α(g)), g ∈ G. This defines an action of Aut(G) on K (Inn(G) acts trivially).

(ii) There is a bijection between the set of Aut(G)-orbits in K, and the set of conju-

gacy classes of irreducible subgroups of GL(n,K) isomorphic to G, which maps

the Aut(G)-orbit with representative [Ξ] to the conjugacy class with represen-

tative Ξ(G).

Theorem 2.13. Suppose G is a finite irreducible p′-subgroup of M(n,Fp), such

that any irreducible subgroup of GL(n,C) isomorphic to G is conjugate to a group

in Ln,W◦ . Then G is conjugate to a group in Ln,Fp
.

Proof. Say Aut(G) has m orbits in {ξ ∈ Irr(G) | ξ faithful, ξ(1) = n}, which is

nonempty by Theorem 2.10. By Proposition 2.12 and hypothesis, Ln,W◦ has m ele-

ments isomorphic to G. Consequently Ln,Fp
has m elements isomorphic to G. Since

Irr(G) = IBr(G), there arem orbits of Aut(G) in {ξ ∈ IBr(G) | ξ faithful, ξ(1) = n}.
This set is bijective with the set of equivalence classes of faithful irreducible
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representations of G in GL(n,Fp), so there is a conjugate of G in Ln,Fp
by

Proposition 2.12 again.

Theorem 2.13 motivates us to ask which finite irreducible subgroups of GL(n,C)

can be isomorphic to irreducible subgroups of M(n,C). Some qualified answers to

this question follow (the first merely states a well-known class of M-groups).

Proposition 2.14. Let G be a finite soluble subgroup of GL(n,C) with a normal

subgroup N such that all Sylow subgroups of N are abelian, and G/N is supersoluble.

Then G is conjugate to a subgroup of M(n,C).

Proof. See [19, (6.22), (6.23), p. 87].

Theorem 2.15. Let n be prime. If G is a finite irreducible subgroup of M(n,C)

then G is not isomorphic to a primitive subgroup of GL(n,C).

Proof. Denote the group of all scalars in GL(n,C) by Z. Suppose G is isomorphic

to a primitive subgroup H of GL(n,C). Then n ≥ 5: otherwise we get the contra-

diction that H is abelian-by-supersoluble and conjugate to a subgroup of M(n,C)

by Proposition 2.14.

An abelian normal subgroup of a primitive linear group over an algebraically

closed field is scalar (this famous result usually attributed to Blichfeldt). Hence

Z(G) = G ∩ Z is a maximal abelian normal subgroup of G. The diagonal subgroup

of G contains Z(G), so it is precisely Z(G), and G/Z(G) ∼= πG.

There is an inclusion-preserving map from each finite subgroup K of GL(n,C)

to a finite subgroup K̂ of SL(n,C), such that KZ = K̂Z and K̂/Z(K̂) ∼= K/Z(K).

Clearly Ĥ is primitive, and Ĥ/Z(Ĥ) ∼= πG. The finite primitive subgroups of

SL(n,C) are described in [8]. By [8, Lemma 1.1], S := soc(πG) is either elementary

abelian of order n2, or is a nonabelian simple group and has trivial centralizer in πG

(that is, πG is almost simple). As a transitive permutation group of prime degree,

πG has a transitive normal simple subgroupN by [17, Satz 21.1(e), pp. 607–608], so

N ≤ S. If N were abelian then G would have an abelian normal subgroup properly

containing Z(G), contradicting maximality of Z(G). Thus S = N is a nonabelian

simple group, and is listed in [8, Theorem 1.2].

Let L be a (normal) subgroup of H such that Z(H) ≤ L and L/Z(H) ∼= S. Since

L is nonabelian and we are in prime degree, L is irreducible by Clifford’s Theorem.

Thus Z(H) = Z(L), Z(Ĥ) = Z(L̂) and L̂/Z(Ĥ) ∼= S. L̂ splits over Z(Ĥ) (see [8,

remarks after Theorem 1.2]), and so there is a subgroup T of L̂ such that T E Ĥ ,

T ∩ Z = 1, and T ∼= S. Since L E L̂Z we have L E TZ. Denote the projection

of TZ onto T by %. Certainly %(L) E T , and L 6≤ Z implies %(L) = T . Define a

homomorphism α: T → Z/Z(L) by α(t) = zZ(L), where tz ∈ L, z ∈ Z. Of course

kerα = T , so T ≤ L. Moreover T E H . Hence M(n,C) has an irreducible subgroup

isomorphic to S. As noted in [8, proof of Theorem 1.2], a faithful permutation

representation of S has degree greater than n, unless n = 11 and S ∼= PSL(2, 11).
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But the single conjugacy class of irreducible subgroups of GL(11,C) isomorphic to

PSL(2, 11) contains only primitive groups. This completes the proof.

Remark 2.16. We commented in Sec. 1 on the rarity of nonabelian simple groups

S possessing a transitive permutation representation of the same prime degree as an

irreducible projective representation of S. If q > 2, m ≥ 3 and d = (qm − 1)/(q− 1)

is prime, then PSL(m, q) in degree d is such a group. Also, M(5,C) has a subgroup

S ∼= A5.

Theorem 2.17. Let G be a finite irreducible p′-subgroup of M(n,Fp), so Θ(G) is

conjugate to a group in Ln,C. Assuming every p′-group in Ln,C is in Ln,W◦ , if any

of the following hold then G is conjugate to a group in Ln,Fp
.

(i) πG is supersoluble.

(ii) n is prime.

(iii) |πG| = n.

Proof. All parts are instances of Theorem 2.13. By that result, (i) and (ii) follow

from Proposition 2.14 and Theorem 2.15. For (iii), let H be an irreducible subgroup

of GL(n,C) isomorphic to G and let χ be an irreducible constituent of tr on H

restricted to an abelian normal subgroup of index n. The induced character χH has

degree n and hence χH = tr by Frobenius reciprocity. Since χH is afforded by a

monomial representation, this proves (iii). (Cf. [11, Proposition 1.3.6].)

In degree 4, Theorem 2.17 is not enough to determine whether Ln,Fp
is complete.

The next result provides extra assistance (and a partial converse of Proposition 2.7).

Proposition 2.18. Let G and H be subgroups of M(n,Fp), with πG transitive.

Then G is M(n,Fp)-conjugate to H if and only if Θ(G) is M(n,C)-conjugate to

Θ(H).

Proof. (Cf. [11, Remark 1.3.8] and [12, Lemma 5.6].) Suppose Θ(G)sx =

Θ(H) for some x ∈ D(n,C) and s ∈ Sn. That is, Θ(Gs)x = Θ(H), so xx−t ∈
Θ(D(n,Fp)) for all t ∈ πGs. Since πGs is transitive, x = Θ(y) for some y ∈ D(n,Fp),

modulo scalars. Thus Gsy = H . Corollary 2.3 takes care of the other implication.

Corollary 2.19. Let G be a finite irreducible p′-subgroup of M(n,Fp). If Θ(G) is

M(n,C)-conjugate to K ∈ Ln,W◦ then G is M(n,Fp)-conjugate to Ψ(K) ∈ Ln,Fp
.

We say no more about how to prove that Ln,Fp
is complete, and suppose that

it is complete. The next step in listing absolutely irreducible subgroups of M(n,E)

for a subfield E of Fp is to recognize the E-monomial elements of Ln,Fp
, which is to

say, the groups that are GL(n,Fp)-conjugate to subgroups of M(n,E). By deleting

from Ln,Fp
the groups that are not E-monomial, and replacing each E-monomial

group with a conjugate in M(n,E), we obtain a list Ln,E. The Deuring–Noether
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Theorem [18, Theorem 1.22, p. 26] asserts that representations of a finite group over

a given field are equivalent if and only if they are equivalent over every extension of

the field. This theorem guarantees that Ln,E is a complete list of the finite absolutely

irreducible p′-subgroups of M(n,E). We know already that Ln,E is irredundant, so

it is a list of the kind sought.

The subgroups of M(n,E) in Ln,Fp
are readily apparent. To recognize the other

E-monomial groups in Ln,Fp
, we calculate traces.

Theorem 2.20. Let K be a subfield of Fp, E ⊆ K. A finite irreducible subgroup G

of GL(n,K) is conjugate to a subgroup of GL(n,E) if and only if tr(G) ⊆ E.

Proof. See [19, (9.23), p. 155].

Corollary 2.21. Let K be a subfield of Fp, E ⊆ K. Let G be a finite irreducible

r-subgroup of GL(n,K), where r 6= p is a prime. Suppose E has a primitive rth

root of unity if r > 2, and a primitive fourth root of unity if r = 2. Then G is

E-monomial if and only if tr(G) ⊆ E.

Proof. Note that if G is absolutely irreducible then n must be a power of r. By

[21, Theorems II.4 and III.4], there is a Sylow r-subgroup of GL(n,E) in M(n,E).

Then the result follows from Theorem 2.20.

Now let E = GF(q), q ≥ 3. Suppose G ∈ Ln,Fp
and tr(G) ⊆ GF(q). We seek

x ∈ GL(n,Fp) such that Gx ≤ M(n, q). Clearly G ≤ GL(n, qm) for some m ≥ 1;

GF(qm) could be the subfield of Fp generated by GF(q) and the entries of all

elements of G.

Suppose x is monomial. This can happen only if D(n,Fp) ∩ G ≤ D(n, q). We

assume that x is diagonal, because y = x(πx)−1 is diagonal and Gy ≤ M(n, q).

Then reasoning as in the proof of Proposition 2.18 shows that x acts as an element

of D(n, qm). The assumption that x is monomial therefore leads to a significant

reduction in size of a search space for x. However, if we know enough about the

πG-module structure of D(n,Fp) then we do not need to search all of D(n, qm),

since that knowledge would inform the (possibly heuristic) choice of x. When n is

prime or n = 4, this last point is illustrated in the proofs of [5, Lemma 1.7], [11,

Theorem 3.2.9], [12, Theorem 7.2], and Theorem 4.5 below.

If x is not monomial then to rewrite G in M(n, q) one can turn to the computer.

We now give a procedure for rewriting G using Magma [4]. First, we find the

smallest subfield K of GF(qm) such that GL(n,K) contains a GL(n, qm)-conjugate

G∗ of G. This may be done with the Magma function IsOverSmallerField (based

on [14]). Then the function LineOrbits is used to compute all orbits of G∗ on one-

dimensional subspaces of the underlying space GF(q)(n). We should have that (i)

K ⊆ GF(q), and (ii) there is an orbit ofG∗ consisting of n one-dimensional subspaces

〈 lj 〉, whose sum is GF(q)(n). (If (i) or (ii) is false then G is not GF(q)-monomial,

so we discard G and move on to another group in Ln,Fp
.) The Magma convention

In
t. 

J.
 A

lg
eb

ra
 C

om
pu

t. 
20

04
.1

4:
25

3-
29

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

IR
E

L
A

N
D

 o
n 

05
/1

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 1, 2004 10:10 WSPC/132-IJAC 00173

Irreducible Monomial Linear Groups of Degree Four Over Finite Fields 263

is that elements of a matrix group act on the right of the underlying space, so that

mG∗m−1 ≤ M(n, q) for the change of basis matrix m whose jth row is lj . Then

mG∗m−1 replaces G in Ln,E.

Sometimes the above procedure for computing Gx in M(n, q) can be avoided

when n = 4. In the proof of Theorem 4.5 we utilize the following lemma to good

effect, in working out conjugacy between finite irreducible subgroups of M(4,Fp)

by elements of GL(4,Fp)\M(4,Fp).

Lemma 2.22. Let G, H be subgroups of GL(n,C) consisting of R-matrices , and

suppose Gx = H for some R-matrix x ∈ GL(n,C) such that ψ(detx) 6= 0 (for

example, detx is an integer not divisible by p). Then Ψ(G) is GL(n,Fp)-conjugate

to Ψ(H).

3. Irreducible but not Absolutely Irreducible Linear Groups

The theory of irreducible representations of a finite group over extensions of the

ground field is treated in several texts, such as [6, 18, 19].

Theorem 3.1. Let E be a field of characteristic p.

(i) Let G be an irreducible but not absolutely irreducible finite subgroup of

GL(n,E). Then there are

(a) an integer m > 1 dividing n,

(b) a Galois extension K of E of degree m with Galois group Gal(K/E) =

{σi | 1 ≤ i ≤ m},
(c) an absolutely irreducible subgroup H of GL(n/m,K), where tr(H) 6⊆ L for

any proper subfield L of K containing E,

such that G is GL(n,K)-conjugate to the group G̃ of block diagonal matrices

(hσ1 , hσ2 , . . . , hσm) : =













hσ1 0 · · · 0

0 hσ2 · · · 0
...

...
. . .

...

0 0 · · · hσm













, h ∈ H .

Therefore,

(hσ1 , hσ2 , . . . , hσm) 7→ hσi (†)

defines a faithful absolutely irreducible representation of G̃ in GL(n/m,K) for

each i. In particular , G ∼= H.

(ii) Conversely , suppose m, K, and H satisfy (a), (b), and (c) in (i). Then G̃ is

conjugate to an irreducible but not absolutely irreducible subgroup of GL(n,E).

Proof. Part (i) paraphrases [19, (9.21), p. 154] and its proof. Note that E and

tr(H) generate K.
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Conversely, let Λ be the representation (†) for i = 1, assuming σ1 is the identity

of Gal(K/E). (The elements of Gal(K/E) may be ordered any way we like: conju-

gation by a permutation matrix yields G̃ as indicated with a chosen ordering.) By

[19, (9.5)(c), p. 147] and [19, (9.23), p. 155] there is a faithful irreducible represen-

tation Γ of G in GL(n,E) such that Λ is an irreducible constituent of Γ viewed

as a K-representation. Certainly Λσi is an irreducible constituent of Γ = Γσi for

all i, 1 ≤ i ≤ m. These constituents are pairwise inequivalent. Otherwise, some

nonidentity element τ of Gal(K/E) would fix the character afforded by Λ; but then

τ would fix tr(H) elementwise and so be the identity on K. Comparing degrees, we

then see that the K-irreducible constituents of Γ are precisely the Λσi . Since Γ is

completely reducible over any extension of E, with irreducible constituents uniquely

determined up to equivalence, Γ(G) is conjugate to G̃.

The notation of Theorem 3.1 is used in the next two results.

Corollary 3.2. If n is prime then G is abelian.

Corollary 3.3. Let G be abelian.

(i) G is conjugate to a cyclic subgroup of D(n,K), every element of which has all

nonzero entries of the same order (thus |G| is not divisible by p).

(ii) By (i), G is isomorphic to a subgroup of K×. However, G is not isomorphic

to a subgroup of L× for any proper subfield L of K containing E.

(iii) If H is an abelian irreducible subgroup of GL(n,E) of order |G| then H is

GL(n,E)-conjugate to G.

Proof. An absolutely irreducible abelian linear group has degree 1. Then

by Theorem 3.1, G is GL(n,K)-conjugate to the cyclic group generated by

(ωσ1 , ωσ2 , . . . , ωσn), where ω ∈ K is a primitive |G|th root of unity not in any

proper subfield of K containing E, and σ1, σ2, . . . , σn are the elements of Gal(K/E)

in some fixed order. This gives (i) and (ii); (iii) follows from the Deuring–Noether

Theorem.

The following criterion for absolute irreducibility supplements Theorem 2.9.

Corollary 3.4. Let E be a subfield of Fp. If G is a finite irreducible subgroup of

M(n,E) such that Θ(G) (in the notation of Sec. 2) is an irreducible subgroup of

M(n,C), then G is absolutely irreducible.

Proof. Of course, if G is a p′-group then by Theorem 2.9 there is nothing to do.

Only scalars in GL(n,C) centralize Θ(G). However, if G is not absolutely irre-

ducible then CGL(n,Fp)(G) has nonscalar elements by Theorem 3.1. This is a con-

tradiction, by the argument in the proof of Proposition 2.7.

Next, we derive some more consequences of Theorem 3.1 in degrees relevant to

our main problem. Denote the qth-powering automorphism of Fp as σ.
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Corollary 3.5. Suppose n = rs, r and s prime. Let G be an irreducible but not ab-

solutely irreducible nonabelian subgroup of GL(n, q). Then there is an absolutely

irreducible subgroup H of GL(n/m, qm), where tr(H) 6⊆ GF(q) and m = r or

m = s, such that G is GL(n, qm)-conjugate to {(h, hσ, hσ2

, . . . , hσm−1

) |h ∈ H}.
Conversely , any such group of block diagonal matrices is conjugate to an irreducible

but not absolutely irreducible subgroup of GL(n, q).

Proof. The Galois group here is cyclic of order m, generated by σ, so the first part

is clear. For the second, we need only observe that GF(qm) is generated by GF(q)

and tr(H), because m is prime and tr(H) 6⊆ GF(q).

Proposition 3.6. Let G be an irreducible but not absolutely irreducible nonabelian

subgroup of M(4, q), with diagonal subgroup N . As in Corollary 3.5, let H be an

absolutely irreducible subgroup of GL(2, q2) isomorphic to G, such that tr(H) 6⊆
GF(q) and G is GL(4, q2)-conjugate to {(h, hσ) |h ∈ H}. Then, up to conjugacy ,

one of the following occurs.

(i) πG is A4 or S4, Z(G) = N is scalar , and H is a primitive subgroup of GL(2, q2).

(ii) πG is a transitive 2-subgroup of S4, and H ≤ M(2, q2).

Moreover , a group as in (i) is not isomorphic to a group as in (ii).

Proof. Let Λ:G → H be an isomorphism. Suppose πG is A4 or S4. If H is im-

primitive then (as we are in prime degree) H ≤ M(2, q2) up to conjugacy. But then

G has an abelian subgroup of index 2, which is clearly false. Thus H is primitive.

By Blichfeldt’s result (referenced in the proof of Theorem 2.15), Λ(N) ≤ Z(H).

Since Z(A4) = Z(S4) = 1, it follows that Λ(N) = Z(H), and thus N = Z(G). The

conjugation action of G on the diagonal entries of an element of N is transitive, so

N must be scalar.

If πG is not A4 nor S4 then it is a transitive 2-subgroup of S4, so has order 4 or

is dihedral of order 8. Therefore H has a series Λ(N) = H0 < H1 < · · · < Hk = H

of normal subgroups, where k = 2 or 3 and |Hi+1 : Hi| = 2. Then H cannot be

isomorphic to a primitive subgroup of GL(2, q2); otherwise, we discover by repeated

use of Blichfeldt’s result that H is abelian. This completes the proof.

Remark 3.7. In Proposition 3.6(ii), G has an abelian subgroup A of index 2 such

that N ≤ A. When πG is dihedral of order 8, A can be the image of D(2, q2) ∩
H under an isomorphism H → G. Suppose |πG| = 4; then N 6= CG(N). For if

CG(N) = N then Θ(G) is irreducible by [12, Theorem 4.2], but the degree of an

irreducible complex character of G is 1 or 2 by [19, (6.15), p. 84]. Thus CG(N)/N

has a subgroup of order 2, and we may take A to be its inverse image in G.

Remark 3.8. More than the last claim in Proposition 3.6 is true, by [12,

Proposition 9.1]: if G, H are isomorphic finite subgroups of M(4,Fp) then either

πG = πH is A4 or S4, or πG and πH are both 2-groups.
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By Proposition 3.6, to list the irreducible but not absolutely irreducible

nonabelian subgroups of M(4, q), we need information about absolutely irreducible

subgroups of GL(2, q2). This is supplied in Sec. 5.

If H is an absolutely irreducible subgroup of GL(2, q2) not conjugate to a sub-

group of GL(2, q) then we prove in Sec. 6 that G = {(h, hσ) |h ∈ H} is conjugate

to an irreducible subgroup of M(4, q) when q ≡ 1 mod 4 and H ≤ M(2, q2). We

do the same for p ≥ 5, q ≡ 2 mod 3, and H/Z(H) ∼= A4 (the second condition is

necessary, given the other two). If H/Z(H) ∼= S4 then by the next proposition G

cannot be conjugate to a subgroup of M(4, q).

Proposition 3.9. Suppose p ≥ 5, and let G be an irreducible subgroup of M(4, q)

such that πG = S4. Then G is absolutely irreducible.

Proof. Suppose G is not absolutely irreducible. By Proposition 3.6, let H be an

absolutely irreducible primitive subgroup of GL(2, q2) isomorphic to G such that

H/Z(H) ∼= S4. Denote the centre of G by Z and the Hall 2′-subgroup of Z by Z̄.

As H i(Z/Z̄, Z̄) is trivial for all i ≥ 1, we have H2(G/Z̄, Z̄) = H2(G/Z, Z̄), and

the latter cohomology group is Ext(C2, Z̄)×Hom(H2(S4), Z̄) = 1 by the Universal

Coefficient Theorem. That is, G splits over its subgroup of odd order scalars, and

we may assume Z is a 2-group.

The rest of the proof incorporates suggestions by L. G. Kovács. Let K be a

subgroup of G such that πK ∼= S3. Choose g ∈ K ′ of order 3, so det g = 1. For

some s ∈ G, (πg)πs = πg−1, meaning gs ≡ g−1 modulo Z. Thus gs = g−1. If g is

conjugate to (h, hσ), h ∈ H , then h is inverted by an inner automorphism of H ,

and so tr(h) = tr(h−1). Hence h is conjugate to a diagonal matrix (α, α−1), α a

primitive cube root of unity. It follows that tr(h) = −1 and tr(g) = −2.

The permutation group πK is intransitive, with a single fixed point. Thus K

fixes a one-dimensional subspace of GF(q)(4). In turn K ′ fixes a nonzero vector, and

g has eigenvalue 1. The product of the other three eigenvalues of g (cube roots of

unity in Fp) is therefore 1, and their sum is −3. This is impossible in characteristic

greater than 3.

Corollary 3.10. If p ≥ 5, then an irreducible subgroup of M(4, q) isomorphic to

an absolutely irreducible subgroup of M(4, q) is absolutely irreducible.

Proof. Suppose G ≤ M(4, q) is absolutely irreducible. If πG = A4 then Z(G) 6=
D(4, q) ∩ G, and if πG is a 2-group then G does not have an abelian subgroup

of index 2. The result follows from Proposition 3.6, Remark 3.8, and Proposi-

tion 3.9.

Proposition 3.11. Let p be odd. If G is an irreducible nonabelian subgroup of

M(4, q) then |G| ≥ 16.
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Proof. If G is absolutely irreducible then |G : Z(G)| ≥ 16, so we assume G is not

absolutely irreducible. Thus G is isomorphic to an absolutely irreducible subgroup

H of GL(2, q2) such that tr(H) 6⊆ GF(q). Denote the diagonal subgroup of H by M .

|G| is properly divisible by 4. Suppose |G| = 8. Then H is (conjugate to) a

subgroup of M(2, q2). OnH\M the trace map is zero. Let h ∈ M . Either h ∈ D(2, q)

or tr(h) = ω+ω−1 = 0 for a primitive fourth root of unity ω. Thus tr(H) ⊆ GF(q),

a contradiction.

Suppose |G| = 12. Since A4 has a noncentral abelian normal subgroup, H is

monomial by Proposition 3.6. In this case M is generated by a scalar involution

and a nonscalar element of order 3 in SL(2, q2). We then calculate that tr(H) ⊆
{0,±1,±2} ⊆ GF(q).

The next result extends Proposition 3.11 to all irreducible G ≤ M(4, q).

Proposition 3.12. (i) M(4, q) has irreducible abelian (i.e. cyclic) subgroups if and

only if q ≡ 1 mod 4.

(ii) Suppose q ≡ 1 mod 4. A cyclic subgroup of M(4, q) is irreducible if and only if

it is GL(4, q)-conjugate to 〈 c(ω, 1, 1, 1) 〉, where ω ∈ GF(q)× has order (q−1)/r

for some odd divisor r of q − 1, and c is a 4-cycle in S4.

Proof. Let G be a cyclic irreducible subgroup of M(4, q). Since πG is conjugate

to 〈 c 〉, |G| is divisible by 4 and G has scalar diagonal subgroup. Thus |G| = 4s

for some divisor s of q − 1. By Corollary 3.3, |G| divides q4 − 1 but not q2 − 1.

Consequently q is odd. Also q ≡ 1 mod 4, because otherwise q2 − 1 is divisible by

4(q − 1) and hence by |G|. Similarly, if (q − 1)/s were even then |G| would divide

q2 − 1 = ((q − 1)/s)(q + 1)s.

Now suppose q ≡ 1 mod 4 and let G be a cyclic subgroup of M(4, q), |G| =

4(q − 1)/r, r odd (G = 〈 c(ω, 1, 1, 1) 〉 fits the bill). Note then that |G| divides

q4 − 1 but not q2 − 1, and that G is completely reducible by Maschke’s Theorem.

Suppose G is reducible. Then the irreducible components of G have orders dividing

q − 1, q2 − 1, or q3 − 1, and therefore dividing q2 − 1, since gcd(q4 − 1, q3 − 1) =

q− 1. However, |G| is the least common multiple of these orders: contradiction. By

Corollary 3.3(iii), we are done.

4. Finite Absolutely Irreducible Monomial Linear Groups of

Degree Four

Recall the notation of Sec. 2. In this section we let L4,C be the list `4,C of [12,

Theorem 9.2], amended as per the Appendix. Define L4,W◦ and L4,Fp
accordingly.

We first prove that L4,Fp
is a complete list of the finite irreducible subgroups of

M(4,Fp) when p ≥ 5, assuming correctness of `4,C. Then we go on to list the

absolutely irreducible subgroups of M(4, 5).

From now on, the letters a, b, c, d, and e are reserved to denote the permuta-

tion matrices obtained from the 4 × 4 identity matrix by permuting its columns

as (12)(34), (13)(24), (1234), (123), and (12), respectively. Up to conjugacy, the
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transitive subgroups of S4 are V4 = 〈 a, b 〉, C = 〈 c 〉, D = 〈 a, c 〉, A4 = 〈 a, b, d 〉,
and S4 = 〈 a, d, e 〉. For relations between generators of S4, see [12, Sec. 1]. We

have D(4,C) = XY UV , where X is all scalars, Y is the subgroup of D(4,C) whose

elements are fixed by a and inverted by b, U = Y de, and V = Y d. Note that Y UV ≤
SL(4,C). The torsion subgroup of D(4,C) is denoted B. If M is a group of diagonal

matrices (over any field) and ς is a set of primes then Mς := Oς(M). Clearly Bς is

the direct product
∏

r∈ς Br, and Br = XrYrUrVr, a direct product only if r is odd.

Every group in L4,C consists of R-matrices. Even more is true: by consulting L4,C

(and cf. [12, Theorem 3.11]), we see that

each H ∈ L4,C is the semidirect product of a diagonal matrix group

with a subgroup of B2B3S4, and H = (B2X3S4 ∩H) (B ∩H) .
(∗)

Theorem 4.1. Let p ≥ 5, and assume `4,C is correct. Then a finite irreducible

subgroup G of M(4,Fp) is conjugate to a group in L4,Fp
.

Proof. By Theorem 2.10, [12, Theorem 9.2] (and assuming `4,C is correct), Θ(G)

is conjugate to a group H ∈ L4,C. Since a finite p′-subgroup of D(n,C) is contained

in Θ(D(n,Fp)), every p′-group in L4,C is a subgroup of Θ(M(n,Fp)) by (∗), so is

in L4,W◦ . If πH ≤ D then the theorem follows from Theorem 2.17(i). If πH is A4

or S4 then [12, Theorems 7.2, 8.1] show that Θ(G) is M(4,C)-conjugate to H . This

completes the proof by Corollary 2.19.

Now we focus on finite subfields of Fp. By Proposition 3.6, the absolutely ir-

reducible subgroups of GL(4, q) are precisely the nonabelian subgroups that are

irreducible over GF(q2).

Lemma 4.2. Suppose ω ∈ F×
p has 2-power order and ω + ω−1 ∈ GF(q).

(i) If q ≡ 1 mod 4 then ω ∈ GF(q).

(ii) If q ≡ 3 mod 4 then ω ∈ GF(q2).

Proof. (i) Let j ≥ 0 be the least integer such that ω2j ∈ GF(q). Suppose j ≥ 1.

By induction, ω2j−1

+ω−2j−1 ∈ GF(q). If ω2j−1

+ω−2j−1

= 0 then ω2j−1

is a fourth

root of unity, hence ω2j−1 ∈ GF(q). But this contradicts minimality of j. Otherwise

ω2j−1

= (ω2j

+1)(ω2j−1

+ω−2j−1

)−1 ∈ GF(q), the same contradiction. Thus j = 0.

(ii) This is immediate from (i).

Lemma 4.3. Suppose G ≤ M(4,Fp) is GF(q)-monomial , and set N = D(4,Fp)∩G.

(i) O{2,3}′(G) = N{2,3}′ ≤ D(4, q).

(ii) N3 ≤ D(4, q3). Also, N3 ≤ D(4, q2) if q − 1 is not divisible by 3, and N3 ≤
D(4, q) if πG ≤ D.

(iii) N2 ≤ D(4, q4). Also, N2 ≤ D(4, q2) if q ≡ 3 mod 4. If q ≡ 1 mod 4, g ∈ N2,

and Θ(g) lies in one of X2, Y2, U2, or V2, then g ∈ D(4, q).

(iv) Suppose p ≥ 5 and q − 1 is a power of 2. If G ∈ L4,Fp
then Θ(G) ≤ B2S4.
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Proof. We observe at the outset that an element of D(n,Fp) that is GL(n,Fp)-

conjugate to an element of D(n, q) must be in D(n, q).

(i) Let g ∈ O{2,3}′(G). If m ∈ GL(4,Fp) and gm ∈ M(4, q) then πg = π(gm) = 1.

Hence g ∈ N and gm ∈ D(4, q), implying g ∈ D(4, q).

(ii) There is a Sylow 3-subgroup of M(4, q) with projection group 〈 d 〉, and expo-

nent thrice the exponent of the Sylow 3-subgroup of GF(q)×. Thus, each diagonal

entry of g ∈ N3 belongs to an extension of GF(q) that has an element whose cube

generates the Sylow 3-subgroup of GF(q)×. If the latter is trivial then 3 divides

q + 1 and the extension is GF(q2); otherwise, it is GF(q3). If πG ≤ D then g and

any conjugate of g is diagonal, so g ∈ D(4, q).

(iii) We prove only the third assertion in (iii); the others are proved as in (ii).

If g is not scalar (that is, Θ(g) 6∈ X2) then g is an S4-conjugate of (ω, ω, ω−1, ω−1)

for some 2-element ω of Fp. By Lemma 4.2, ω ∈ GF(q) as required.

(iv) Let g ∈ G. According to (∗), Θ(g) = txyuv for some t ∈ S4 and p′-elements

x, y, u, v of X,Y, U, V respectively. Since ψ(det(txyuv)) = det g ∈ GF(q)× and

det(tyuv) = ±1, it follows that x ∈ X2.

Let t = 1. If |yuv| is not divisible by 3 then it is a power of 2, because M(4, q)

is a {2, 3}-group and G is GF(q)-monomial. Say |yuv| = 2s, so y2s ∈ Y ∩UV ≤ Y2

and thus y ∈ Y2. Similarly u ∈ U2 and v ∈ V2. If |yuv| is divisible by 3 then there

exists a diagonal matrix w = (w1, w2, w3, w4) ∈ G of order 3. Since 〈 d 〉 is a Sylow

3-subgroup of M(4, q), w is conjugate to d or d2. Therefore

w1w2w3w4 = w1 + w2 + w3 + w4 = 1 . (‡)

As the Sylow 3-subgroup of D(4, q) ∩ G, 〈w 〉 is normalized by πG, and hence

normalized by C or V4. This means that an involution of V4 acts trivially on w.

Then (‡) forces 2(w1 + w−1
1 ) = 1 or 2(w1 − w−1

1 ) = 1, and consequently w1 is a

primitive cube root of unity. But w1 + w−1
1 = −1, whereas the characteristic p is

greater than 3. If 2(w1 − w−1
1 ) = 1 then w1 ∈ GF(q), which is likewise absurd.

Now let t 6= 1. By (∗) and the previous paragraph, yuv ∈ B2X3 = X2X3Y2U2V2.

Since X ∩ Y UV ≤ X2, we have Θ(g) ∈ B2S4 as claimed.

Lemma 4.3 only frames necessary conditions for a group in L4,Fp
to be GF(q)-

monomial (although in Lemma 4.3(iv), if q ≡ 1 mod 4, πG ≤ D, and tr(G) ⊆ GF(q),

then G is GF(q)-monomial by Corollary 2.21). Using this result we cut down the

infinite list L4,Fp
to finitely many potential candidates for a list L4,q of the absolutely

irreducible subgroups of M(4, q).

We are now ready to assemble L4,q. For q = p = 5, such a list is presented in

Theorem 4.5 below. (If q − 1 is a power of 2 then the diagonal subgroup of G ≤
M(4, q) is a 2-group, and this greatly simplifies things when πG = V4. Also, only E.1

of the Appendix is relevant.) In the theorem, we write a diagonal matrix w as the

vector (1, 1, 1, 1)w of its nonzero entries. Those entries are determined by setting

ψ(
√
−1) to be 2 = ψ(2) ∈ GF(5). Listed groups are given by generating sets, which

need not be minimal. The 2-elements xk ∈ X, yk ∈ Y, uk ∈ U, and vk ∈ V (all
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denoted with a second subscript “2” in [12]) are as defined in [11, p. 23]:

xk = (ωk, ωk, ωk, ωk) , yk = (ωk, ωk, ω
−1
k , ω−1

k ) , uk = yde
k , vk = yd

k .

Lemma 4.4. Let F (i, j, k, l, δ, ξ, α), C(i, j, k, δ, ξ, α) be the V4- and C-submodules

of B2 defined in [11, (3.2)–(3.8)] and [11, Theorem 4.4]. Let p = 5. If G ∈ L4,Fp
is

GF(5)-monomial then either the diagonal subgroup D(4,Fp) ∩G of G is scalar , or

its image under Θ is one of the following :

F (1, 1, 1, 1, 0, 0) F (1, 1, 1, 1, 0, 0,−1,−1) F (1, 1, 1, 1, 0, 1)

F (1, 1, 0, 0, 0, 1, 1) F (1, 1, 1, 1, 0, 1, 0) F (0, 0, 1, 1, 1, 0)

F (1, 1, 1, 1, 1, 0) F (1, 1, 1, 1, 1, 0, 1) F (0, 0, 1, 1, 1, 0,−1)

F (0, 0, 1, 1, 1, 1) F (1, 1, 1, 1, 1, 1) F (1, 1, 0, 0, 1, 1, 1)

F (0, 0, 0, 0, 1, 1, 1) F (1, 1, 1, 1, 1, 1, 1) F (0, 0, 0, 0, 1, 1, 2, 1)

F (0, 0, 0, 0, 1, 1, 2,−1) F (1, 1, 0, 0, 1, 1, 2,−1) F (1, 1, 1, 1, 1, 1, 2,−1)

C(1, 1, 1, 0, 1) C(1, 1, 1, 0, 1, 0) C(1, 1, 1, 0, 0,−1)

C(1, 1, 1, 0, 1, 1) C(0, 0, 1, 1, 1) C(1, 1, 1, 1, 1)

C(0, 0, 1, 1, 0, 1) C(1, 1, 1, 1, 1, 1) C(0, 0, 0, 1, 1, 2, 1)

C(0, 0, 0, 1, 1, 2,−1) C(1, 1, 0, 1, 1, 2,−1) C(1, 1, 1, 1, 1, 2,−1) .

Proof. Set H = Θ(G). By Lemma 4.3(iv), H ≤ B2S4. Suppose πH ≤ D. Then H

is in the list of [11, Theorem 6.1.1], amended as per the errata E.1, so that M =

H∩D(4,C) is F (i, j, k, l, δ, ξ, α) or C(i, j, k, δ, ξ, α) for some values of parameters. If

M = F (i, j, k, l, δ, ξ, α) then M ∩X2, M ∩Y2, M ∩U2, and M ∩V2 have orders 2i+1,

2j+1, 2k+1, and 2l+1 respectively. If M = C(i, j, k, δ, ξ, α) then M∩X2, M∩U2, and

M ∩ Y2 = M ∩ V2 have orders 2i+1, 2j+1, and 2k+1 respectively. Thus i, j, k, l ≤ 1

by Lemma 4.3(iii). Since G is GF(5)-monomial, ψ(tr(H)) ⊆ GF(5). The elements

x2u2v2, u2y2v2, x2y2v2, x2u2y2, x1u2, x1y2, x2u
−1
2 y3v3, x3u3y2v2, x3y3u2v2, and

x3u3y3v3x2u2 of B2 have traces in

{2ω, 2(ω + ω3), 2 + ω + ω3, ω + ω3} ,

ω a primitive eighth root of unity. Hence M cannot contain any of these elements,

because GF(5)× = 〈ψ(ω2) 〉 but ψ(ω) 6∈ GF(5) and ψ(ω + ω3) 6∈ GF(5). With

reference to [11, Theorem 6.1.1] and errata E.1, and heeding permissible parameter

ranges, we may then rule out as possibleM all submodules of B2 except those stated

in this lemma. If πH = A4 or πH = S4 then by the foregoing and [12, Theorems

7.2 and 8.1], either M is scalar or one of the F (i, j, k, l, δ, ξ, α) not already ruled

out.

Theorem 4.5. As µ ranges over {0, 1, 2} and ε, η range over {0, 1}, the following

constitutes a list of 142 absolutely irreducible subgroups of M(4, 5). An absolutely

irreducible subgroup of M(4, 5) is GL(4, 5)-conjugate to one and only one group in
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this list. (The notation [o, z] beside each group gives the order o of the group and

the order z of its centre.)

1. [64, 4] 〈 a(2, 1, 1, 3)ε, b(2, 1, 1, 3)ε(1, 2, 1, 3)η, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
2. [64, 4] 〈 a(2, 1, 2, 1), b(2, 1, 1, 3)ε, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
3. [64, 4] 〈 a(2, 2, 1, 1), b(2, 1, 1, 3)ε(1, 2, 1, 3)η, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
4. [128, 4] 〈 a(2, 1, 2, 1)ε, b(2, 1, 1, 3)η, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 2, 3) 〉
5. [128, 4] 〈 a(2, 1, 1, 3)ε, b(2, 2, 1, 1)η, (2, 2, 2, 2), (2, 3, 2, 3), (1, 1, 2, 3) 〉
6. [128, 4] 〈 a(2, 1, 2, 1)(2, 1, 1, 3)ε, b, (2, 2, 2, 2), (2, 3, 2, 3), (1, 1, 2, 3) 〉
7. [64, 4] 〈 c(2, 1, 1, 1), (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
8. [64, 4] 〈 a(2, 1, 1, 3), b, (2, 2, 2, 2), (2, 2, 3, 3), (4, 1, 2, 3) 〉
9. [64, 4] 〈 c(1, 1, 2, 1), (2, 2, 2, 2), (2, 3, 2, 3), (4, 2, 1, 3) 〉
10. [256, 4] 〈 a(2, 1, 2, 1)ε, b, (2, 2, 2, 2), (2, 2, 3, 3), (1, 1, 2, 3), (2, 1, 1, 3) 〉
11. [32, 2] 〈 a(2, 2, 2, 2)ε, b(2, 1, 1, 3)(1, 2, 1, 3)η, (2, 3, 2, 3), (3, 2, 2, 3) 〉
12. [32, 2] 〈 a(2, 2, 2, 2)ε, b, (2, 3, 2, 3), (3, 2, 2, 3) 〉
13. [128, 4] 〈 a(2, 1, 2, 1)ε, b(2, 1, 1, 3)(1, 2, 1, 3)η, (2, 2, 1, 1), (2, 2, 3, 3), (2, 3, 2, 3) 〉
14. [128, 4] 〈 a(2, 1, 2, 1)ε, b, (2, 2, 1, 1), (2, 2, 3, 3), (2, 3, 2, 3) 〉
15. [256, 4] 〈 a(2, 1, 1, 1)ε, b(2, 1, 1, 1)ε(1, 2, 1, 3)η, (2, 2, 2, 2), (2, 2, 1, 1), (2, 1, 2, 1) 〉
16. [64, 2] 〈 a, b(1, 2, 1, 3)ε, (2, 3, 2, 3), (2, 2, 4, 1) 〉
17. [64, 2] 〈 a(2, 2, 2, 2)ε, b, (2, 3, 2, 3), (1, 1, 2, 3) 〉
18. [256, 4] 〈 a(2, 1, 2, 1)ε, b, (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 1, 1), (1, 1, 2, 3) 〉
19. [128, 4] 〈 c(2, 1, 1, 1), (2, 1, 2, 1), (2, 2, 3, 3), (2, 3, 2, 3) 〉
20. [128, 4] 〈 a(1, 2, 2, 1), c(3, 2, 2, 4), (2, 1, 2, 1), (2, 3, 2, 3) 〉
21. [32, 2] 〈 a, b(2, 2, 2, 3), (4, 4, 1, 1), (1, 1, 4, 4) 〉
22. [512, 4] 〈 a, b(1, 1, 2, 1)ε, (2, 2, 3, 3), (2, 2, 1, 1), (1, 1, 2, 3), (2, 1, 2, 1) 〉
23. [64, 2] 〈 a, b, (4, 4, 1, 1), (4, 1, 4, 1), (2, 2, 2, 3) 〉
24. [64, 2] 〈 a, b, (4, 1, 1, 1) 〉 ∼= C2 wr V4

25. [256, 4] 〈 a, c(2, 1, 1, 1), (2, 2, 2, 2), (2, 2, 3, 3), (2, 1, 2, 1) 〉
26. [1024, 4] 〈 a, b, (2, 1, 1, 1) 〉 = D(4, 5) o V4

∼= C4 wr V4

27. [128, 4] 〈 c(2, 1, 1, 1)µ, (2, 2, 2, 2), (2, 2, 3, 3), (1, 2, 1, 3) 〉
28. [256, 4] 〈 c(2, 1, 1, 1)µ, (2, 2, 2, 2), (1, 2, 1, 3), (2, 1, 1, 3) 〉
29. [128, 4] 〈 c(2, 1, 1, 1)ε, (2, 2, 2, 2), (2, 3, 2, 3), (2, 2, 3, 3), (2, 2, 2, 3) 〉
30. [256, 4] 〈 c(2, 1, 1, 1)ε, (2, 2, 2, 2), (1, 2, 1, 3), (2, 2, 1, 1) 〉
31. [64, 2] 〈 c(4, 1, 1, 1)ε, (2, 2, 3, 3), (1, 2, 1, 3) 〉
32. [256, 4] 〈 c(2, 1, 1, 1)ε, (2, 2, 2, 2), (2, 2, 3, 3), (2, 1, 2, 1), (1, 2, 1, 3) 〉
33. [64, 2] 〈 c(4, 1, 1, 1)ε, (2, 2, 3, 3), (2, 4, 2, 1) 〉
34. [512, 4] 〈 c(2, 1, 1, 1)ε, (2, 1, 2, 1), (2, 3, 2, 3), (1, 2, 1, 3), (2, 2, 1, 1) 〉
35. [64, 2] 〈 c, (4, 1, 4, 1), (4, 1, 1, 4), (2, 2, 2, 3) 〉
36. [64, 2] 〈 c, (4, 1, 1, 1) 〉 ∼= C2 wr C

37. [256, 4] 〈 a(1, 2, 1, 3), c(1, 1, 2, 1), (2, 2, 2, 2), (2, 1, 2, 1) 〉
38. [1024, 4] 〈 c, (2, 1, 1, 1) 〉 = D(4, 5) o C ∼= C4 wr C

39. [256, 4] 〈 a(1, 2, 1, 3)ε, c, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 2, 3) 〉
40. [256, 4] 〈 a(2, 2, 1, 1)ε(2, 1, 1, 2)1−ε, c(2, 1, 1, 1), (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 2, 3) 〉
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41. [256, 4] 〈 a(2, 1, 2, 1)ε, c(2, 1, 2, 1)1−ε, (2, 2, 2, 2), (2, 2, 3, 3), (1, 2, 1, 3) 〉
42. [256, 4] 〈 a(2, 2, 1, 1)ε(2, 1, 1, 3)1−ε, c(2, 1, 2, 1)η, (2, 2, 2, 2), (2, 2, 3, 3), (1, 2, 1, 3) 〉
43. [512, 4] 〈 a(2, 1, 2, 1)ε, c, (2, 2, 2, 2), (1, 2, 1, 3), (2, 2, 1, 1) 〉
44. [512, 4] 〈 a(1, 2, 1, 1)ε(1, 1, 1, 3)1−ε, c(2, 1, 1, 1), (1, 2, 1, 3), (2, 2, 1, 1) 〉
45. [512, 4] 〈 a(2, 1, 2, 1)ε, c(2, 1, 2, 1)η, (2, 2, 2, 2), (1, 2, 1, 3), (2, 1, 1, 3) 〉
46. [128, 2] 〈 a(2, 1, 1, 3)ε, c(2, 1, 2, 1)εη, (2, 2, 3, 3), (2, 4, 2, 1) 〉
47. [128, 2] 〈 a(2, 2, 2, 2)ε, c(2, 1, 2, 1)η, (2, 2, 3, 3), (1, 2, 1, 3) 〉
48. [512, 4] 〈 a(2, 2, 1, 1)ε, c(2, 1, 1, 1)η, (2, 2, 2, 2), (2, 2, 3, 3), (2, 1, 2, 1), (1, 2, 1, 3) 〉
49. [1024, 4] 〈 a(1, 2, 1, 1), c(2, 1, 1, 1)ε, (2, 1, 2, 1), (2, 3, 2, 3), (1, 2, 1, 3), (2, 2, 1, 1) 〉
50. [1024, 4] 〈 a(1, 1, 2, 3)ε, c(1, 2, 1, 1)ε, (2, 1, 2, 1), (2, 3, 2, 3), (1, 2, 1, 3), (2, 2, 1, 1) 〉
51. [2048, 4] 〈 a, c, (2, 1, 1, 1) 〉 = D(4, 5) oD ∼= C4 wr D

52. [192, 4] 〈 a(2, 1, 1, 3)ε, b(1, 1, 2, 3)ε, d, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
53. [384, 4] 〈 a(1, 2, 2, 1)ε, b(1, 1, 2, 3)ε, d, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 2, 3) 〉
54. [768, 4] 〈 a, b, d, (2, 2, 2, 2), (1, 1, 2, 3), (2, 1, 1, 3) 〉
55. [96, 2] 〈 a, b, d, (4, 4, 1, 1), (1, 1, 4, 4), (4, 1, 4, 1) 〉
56. [1536, 4] 〈 a, b, d, (2, 2, 1, 1), (2, 2, 3, 3), (1, 1, 2, 3), (2, 1, 2, 1) 〉
57. [192, 2] 〈 a, b, d, (4, 4, 1, 1), (4, 1, 4, 1), (2, 2, 2, 3) 〉
58. [192, 2] 〈 a, b, d, (4, 1, 1, 1) 〉 ∼= C2 wr A4

59. [3072, 4] 〈 a, b, d, (2, 1, 1, 1) 〉 = D(4, 5) oA4
∼= C4 wr A4

60. [48, 2] 〈 a(2, 2, 2, 2), b(2, 3, 2, 3), d(2, 3, 1, 1), e(2, 2, 2, 2)ε(4, 1, 2, 3) 〉
61. [96, 4] 〈 a, b(2, 3, 2, 3), d(2, 3, 1, 1), e(4, 1, 2, 3), (2, 2, 2, 2) 〉
62. [384, 4] 〈 a, b, d, e(2, 2, 2, 3)ε, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉
63. [768, 4] 〈 a, b, d, e, (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3), (2, 2, 2, 3) 〉
64. [768, 4] 〈 a(2, 1, 2, 1), b(2, 1, 1, 3), d(1, 1, 2, 3), e(1, 1, 3, 1), (2, 2, 2, 3) 〉
65. [1536, 4] 〈 a, b, d, e(2, 2, 1, 1)ε, (2, 2, 2, 2), (1, 1, 2, 3), (2, 1, 1, 3) 〉
66. [192, 2] 〈 a, b, d, e(2, 2, 2, 3)ε(2, 2, 2, 2)η, (4, 4, 1, 1), (1, 1, 4, 4), (4, 1, 4, 1) 〉
67. [3072, 4] 〈 a, b, d, e(1, 1, 1, 3)ε, (2, 2, 1, 1), (2, 2, 3, 3), (1, 1, 2, 3), (2, 1, 2, 1) 〉
68. [384, 2] 〈 a, b, d, e(2, 2, 2, 2)ε, (4, 4, 1, 1), (4, 1, 4, 1), (2, 2, 2, 3) 〉
69. [384, 2] 〈 a, b, d, e, (4, 1, 1, 1) 〉 ∼= C2 wr S4

70. [384, 2] 〈 a, b, d, e(2, 2, 2, 2), (4, 1, 1, 1) 〉
71. [6144, 4] 〈 a, b, d, e, (2, 1, 1, 1) 〉 = M(4, 5) ∼= C4 wr S4 .

Proof. Let L4,Fp
be defined for p = 5. As before, ψ(

√
−1) = 2 ∈ GF(5). This proof

makes heavy use of the S4-conjugation action on Y UV , exhibited in [12, preamble

of Sec. 2]. Suppose G ∈ L4,Fp
is GF(5)-monomial and set H = Θ(G). Lemma 4.4

lists the diagonal subgroup M of H .

Let M = F (1, 1, 1, 1, 0, 0). By [11, Theorem 6.1.1] and errata E.1, H is one of

the groups

〈 ayε
2, bu

ε
2v

η
2 , M 〉 , 〈 ax2, bu

ε
2, M 〉 , 〈 ax2y2, bu

ε
2v

η
2 , M 〉 .

We have

〈 ayε
2, bu

ε
2v

η
2 , M 〉 ∼uε

3
yε+η
3

〈 a(y2u2)
ε, b(u2y2)

ε(v2y2)
η, M 〉
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〈 ax2, bu
ε
2, M 〉 ∼ yε

3
〈 ax2u2, b(u2y2)

ε, M 〉

〈 ax2y2, bu
ε
2v

η
2 , M 〉 ∼ yε+η

3

〈 ax2y2, b(u2y2)
ε(v2y2)

η , M 〉,

where, for K, K̄ ≤ GL(4,Fp) and m ∈ GL(4,Fp), K ∼m K̄ signifies that Km = K̄.

The images of u2y2, v2y2, x2y2, x2u2, x1, y1, and u1 under Ψ are, in the same order,

(2, 1, 1, 3), (1, 2, 1, 3), (2, 2, 1, 1), (2, 1, 2, 1), (2, 2, 2, 2), (2, 2, 3, 3), and (2, 3, 2, 3). By

Corollary 2.19, G is therefore M(4,Fp)-conjugate to a group at lines 1–3 in the list

L4,5 of this theorem. Group orders are calculated from the formula in [11, p. 28]. If

M = F (i, j, k, l, δ, ξ, α) or M = C(i, j, k, δ, ξ, α) then |Z(G)| = 2i+1.

The bulk of L4,5 is compiled as above. In particular this is true for the groups

at lines 4–6, which have diagonal subgroup Ψ(M), M = F (1, 1, 1, 1, 0, 0,−1,−1) or

M = F (1, 1, 1, 1, 0, 1).

If M = F (1, 1, 0, 0, 0, 1, 1) then G has diagonal subgroup

Ψ(M) = 〈 (2, 2, 2, 2), (2, 2, 3, 3), (2ω, 3ω, 2ω, 3ω) 〉

where ω ∈ GF(25) is a square root of 2. Thus G is not M(4,Fp)-conjugate to a

subgroup of M(4, 5). However tr(g) = 0 for all g ∈ G\〈 (2, 2, 2, 2), (2, 2, 3, 3) 〉, so

tr(G) ⊆ GF(5) and G is GF(5)-monomial by Corollary 2.21. We could adopt the

Magma procedure at the end of Sec. 2 to compute a conjugate of G in M(4, 5).

Instead, as it is no extra effort, we do the rewriting by hand with the aid of

Lemma 2.22. Let f be the Kronecker product I2 ⊗ h = (h, h), where

h =

(

1 −1

1 1

)

.

The conjugation action of f on various monomial matrices is given by [11, (3.22)–

(3.24)]; note f acts trivially on elements of Y . Also (u2v2)
f = aex−1

2 y2 and ef =

x2y2u
−1
2 v2. Hence if H = 〈 a, bx3u2v2,M 〉 then

H ∼f 〈 bex3y2, x1, y1, u1 〉

∼de 〈 cx3u2, x1, y1, u1 〉

∼y3
〈 cx3y3v

−1
3 u2, x1, y1, u1 〉

∼u−1

4

〈 cx3y3u3v
−1
3 , x1, y1, u1 〉 .

Now Ψ(x3y3u3v
−1
3 ) = (2, 1, 1, 1) and det(fdey3u

−1
4 ) = −det f = 1, so by

Lemma 2.22, G is GL(4,Fp)-conjugate to

Ψ(〈 cx3y3u3v
−1
3 , x1, y1, u1 〉) = 〈 c(2, 1, 1, 1), (2, 2, 2, 2), (2, 2, 3, 3), (2, 3, 2, 3) 〉 ,

the group at line 7. Similarly, if H = 〈 ay2, b, M 〉 then

H ∼fu2fu3
〈 ay2u2, b, x2y2u1, x1, y1 〉

and it follows that G is conjugate to

〈 a(2, 1, 1, 3), b, (2, 2, 2, 2), (2, 2, 3, 3), (4, 1, 2, 3) 〉 ,
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which is at line 8. For the third group H ∈ L4,C with M = F (1, 1, 0, 0, 0, 1, 1),

H = 〈 ay2, bx3u2v2, M 〉 ∼f 〈 bex3y2, x1, y1, y2u1 〉
∼y−3

4
u−1

2

〈 bex3y3u2v2, x1, y1, y2u1 〉
∼f 〈 ay2, bex3y

−1
3 u2v

−1
2 , x1, y1 〉

∼y3u3
〈 ay2u2, bex3y3u

−1
3 v3, x1, y1 〉

∼de 〈 by2u2, cx3y
−1
3 u3v3, x1, u1 〉

= 〈 cx3y
−1
3 u3v3, x1, u1, x2u2y1 〉.

Therefore we list 〈 c(1, 1, 2, 1), (2, 2, 2, 2), (2, 3, 2, 3), (4, 2, 1, 3) 〉, at line 9.

Groups at lines 10–18 correspond to G with M one of

F (1, 1, 1, 1, 0, 1, 0), F (0, 0, 1, 1, 1, 0), F (1, 1, 1, 1, 1, 0), F (1, 1, 1, 1, 1, 0, 1),

F (0, 0, 1, 1, 1, 0,−1), F (0, 0, 1, 1, 1, 1), F (1, 1, 1, 1, 1, 1) .

For all such G, Ψ(M) ≤ D(4, 5) and G is M(4,Fp)-conjugate to a subgroup of

M(4, 5).

At lines 19 and 20, M = F (1, 1, 0, 0, 1, 1, 1) = 〈x2y2, y1, x2u1 〉. Since

〈 a, bx3u2v2, M 〉 ∼fu3y−1

4
de 〈 cx3y3u3v

−1
3 , x2u2, u1, y1 〉

and

〈 ax3y3, bv2, M 〉 ∼u2u3v3fv3
〈 bex−1

3 y3u3v3v1, bx2v2, x2y2, y1 〉
∼de 〈 ax2v2, cx

−1
3 u3y3v3v1, x2u2, u1 〉 ,

G is conjugate to

〈 c(2, 1, 1, 1), (2, 1, 2, 1), (2, 2, 3, 3), (2, 3, 2, 3) 〉

in the first case and

〈 a(1, 2, 2, 1), c(3, 2, 2, 4), (2, 1, 2, 1), (2, 3, 2, 3) 〉

in the second.

The groups at lines 21–24 and 26 are M(4,Fp)-conjugate to elements of L4,Fp
.

(At line 24, G ∼= C2 wr V4 because H splits over M = F (0, 0, 0, 0, 1, 1, 2,−1), and

(1, 1, 1,−1) = x−1
2 y2u2v2 ∈ M .) For line 25 we invoke errata E.1 and

〈 a, b, F (1, 1, 0, 0, 1, 1, 2,−1) 〉 ∼fu3de 〈 a, cx3y3u3v
−1
3 , x1, y1, x2u2 〉 .

From line 27 to line 38, M is one of the C(i, j, k, δ, ξ, α), πG = C, and the

Appendix is irrelevant. It may be shown that Gm ≤ M(4, 5) for some power m of

Ψ(u4y3), except when M = C(1, 1, 0, 1, 1, 2,−1): then H = 〈 c, M 〉 and

H ∼f ′ 〈 ax2y
−1
2 u2v2, x2u2, bu2, x3u

−1
3 ac−1x−1

2 u2 〉
= 〈 ay2v2, cx3u3y

−1
2 v2, , x2u2, x1 〉

∼y3
〈 ay2v2, cx3y

−1
3 u3v3, x2u2, x1 〉
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where f ′ = fde, using cf
′

= ax2y
−1
2 u2v2. Thus G is conjugate to

〈 a(1, 2, 1, 3), c(1, 1, 2, 1), (2, 2, 2, 2), (2, 1, 2, 1) 〉 .

Fortunately Ψ(M) ≤ D(4, 5) for all remaining groupsH . If w = (w1, w2, w3, w4),

note that tr(acw) = w2+w4, tr(dw) = w4, tr(ew) = w3+w4, and tr(aew) = w1+w2.

The rest of L4,5 is then found in the familiar way, by taking M(4,Fp)-conjugates

of groups in L4,Fp
not excluded by trace evaluations and Lemma 4.4. (Remember

H ≤ B2S4. We include 〈 ax2u2, c, C(1, 1, 1, 0, 1) 〉, not in [11, Theorem 6.1.1], by

the Appendix. No other errata are relevant.) There is a single group in L4,Fp
that

is not GF(5)-monomial yet is conjugate to a subgroup of GL(4, 5), namely

G = 〈 a, b(2, 3, 2, 3), d(2, 3, 1, 1), g 〉 ,

where g = e(2ω, 3ω, ω, 4ω). For suppose Gm ≤ M(4, 5), m ∈ GL(4,Fp). Then

π(Gm) = S4 by [12, Proposition 9.1] and Proposition 2.7. Since V4 = soc(S4) is

characteristic in S4 and m induces an automorphism of S4, π(gm) = t for some

involution t ∈ S4\V4. But whereas g2 = (2, 2, 2, 2), there is no ḡ ∈ M(4, 5) such that

πḡ = t and ḡ2 = (2, 2, 2, 2).

Remark 4.6. If H = 〈 a, c, C(0, 0, 1, 1, 1) 〉 = 〈 a, c, y1, y2v2 〉 then

H ∼f ′y2
〈 a, c, x2y

−1
2 u2v2 〉 ∼= C2 wr D

and Ψ(H) = 〈 a, c, (2, 2, 3, 3), (1, 2, 1, 3) 〉 ∈ L4,5 (line 47). This completes identi-

fication in L4,5 of all wreath products C2r wr T , 1 ≤ r ≤ 2, and T a transitive

subgroup of S4.

Remark 4.7. M(n,E) is almost always a maximal subgroup of GL(n,E) for a field

(or even division ring) E; see [22, Theorem 1]. Thus GL(4,Fp) = 〈 f, M(4,Fp) 〉.
Since f2 is monomial, it is not surprising that only f and monomial matrices can

be used to rewrite the GF(q)-monomial elements of L4,Fp
in M(4, q).

We should be aware of an intrinsic ambiguity in the construction of Ln,q from

Ln,C. To get explicit matrix generators for groups in L4,5, one must decide the

value of ψ(
√
−1) in GF(5). We fixed this as 2. But equally we could have fixed

ψ(
√
−1) as 3, which amounts to replacing the original choice of maximal ideal of

R defining Fp by its complex conjugate. Although we do not pursue the matter

here, it is possible to show that this is an instance of a general phenomenon: if

t ∈ Z has multiplicative order p − 1 mod p then there is a maximal ideal I of R

containing p such that ωp−1− t ∈ I , where ωp−1 is the primitive (p − 1)th root of

unity exp(2π
√
−1/p − 1). Thus for our purposes ψ(ωp−1) may be chosen as any

generator of GF(p)×. However, the conjugacy class represented by an element of

Ln,q may vary with I .

To end the section we give a proof of Proposition 3.9 by looking up groups in

L4,C. Confirmation of known results in this fashion is welcome, as evidence that a

list is correct.
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Proposition 4.8. Let p be any odd prime. If G is an irreducible subgroup of M(4, q)

such that πG = S4, then G is absolutely irreducible.

Proof. Set H = Θ(G) and suppose G is not absolutely irreducible. As in the proof

of Proposition 3.9, we assume the diagonal subgroup of G is a scalar 2-group. Let

M ≤ B be a finite normal nonscalar {2, 3}′-subgroup of M(4,C). Then HM is an

irreducible subgroup of M(4,C) by [12, Theorem 4.2], and HmM is in the list S of

[12, Theorem 8.1] for some m ∈ M(4,C). By Schur–Zassenhaus, the possible Hm

are then immediately visible. Actually, those groups that are irreducible cannot be

conjugate to H , by Corollary 3.4. The other possibilities are S4N and 〈 a, d, ex 〉N ,

where N ≤ X2 and x ∈ X2, N = 〈x2 〉. If H were M(4,C)-conjugate to the first

group then by Proposition 2.18, G would be M(4,Fp)-conjugate to a split extension

of S4 by scalars in M(4, q), and thus would be reducible over GF(q). Suppose G is

M(4,Fp)-conjugate to 〈 a, d, ex̂ 〉, x̂ = Ψ(x). Since tr(ex̂) ∈ GF(q), so x̂ ∈ D(4, q).

But then again G is reducible in M(4, q), as a subgroup of S4〈 x̂ 〉.

5. Finite Absolutely Irreducible Linear Groups of Degree Two

In this section p is odd. An irreducible subgroup of GL(2,Fp) is primitive or mono-

mial. We consider monomial groups first.

The finite nonabelian 2-subgroups of M(2,Fp) are known by Conlon’s classifica-

tion in [5] of the finite irreducible 2-subgroups of GL(2,Fp). We need abelian groups

as well, and these are obtained by Conlon’s techniques. Then we proceed as in [12],

taking semidirect products with groups of odd order diagonal matrices.

Inductively select primitive 2i+1th roots of unity ωi ∈ Fp such that ω2
i+1 = ωi,

i ≥ 0. Define zi, wi ∈ D(2,Fp) by

zi = (ωi, ωi) , wi = (ωi, ω
−1
i ) .

A Sylow 2-subgroup of M(2,Fp), and of GL(2,Fp), is

lim
−→

i,j≥0

〈 zi, wj 〉 o S2
∼= C2∞ wr S2 .

For integers i, j ≥ 0 and 1 ≤ k ≤ 3, define subgroups H(i, j, k) of M(2,Fp) by

H(i, j, 1) = 〈 a1, zi, wj 〉

H(i, j, 2) = 〈 a1zi+1, wj 〉

H(i, j, 3) = 〈 a1, zi+1wj+1, wj 〉

where a1 is the permutation matrix generating S2. Note that H(i, j, k) is abelian

if and only if k = 1 or 2 and j = 0. (Conlon labels only nonabelian groups. In his

notation, H(i− 1, j− 1, 1) is Pj i 0, H(i− 1, j− 1, 2) is Pj i 2, and H(i− 1, j− 2, 3) is

Pj i 1, i ≥ 1, j ≥ 2.) We have |H(i, j, 1)| = |H(i, j, 2)| = 2i+j+2, |H(i, j, 3)| = 2i+j+3,

and Z(H(i, j, k)) = 〈 zi 〉, of order 2i+1. Then H(i, j, k) = H(i′, j′, k′) implies i = i′,

j = j′, and k = k′.
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Theorem 5.1. A finite irreducible subgroup H of M(2,Fp) is GL(2,Fp)-conjugate

to H2′ oH2, where H2′ := O2′(H) is a finite odd order ZS2-submodule of D(2,Fp),

and

(i) if H2′ is scalar then H2 is one of the H(i, j, k), i ≥ 0, j ≥ 1, 1 ≤ k ≤ 3;

(ii) if H2′ is nonscalar then H2 is 〈 a1 〉 or one of the H(i, j, k), i, j ≥ 0, 1 ≤ k ≤ 3.

Proof. H2′ ≤ D(2,Fp), H2′ E M(2,Fp), and H splits over H2′ by a Sylow

2-subgroup H2. We assume H2 ≤ lim
→

〈 zi, wj 〉S2, replacing H by an M(2,Fp)-

conjugate if necessary.

By [5, Proposition 1.8] or [11, pp. 9–10], if the diagonal subgroup N of H2 is

nontrivial then it is 〈 zi, wj 〉 or 〈 zi+1wj+1, wj 〉, for some i, j ≥ 0. An element of

H2\N has the form a1zw, where z is scalar and w ∈ D(2,Fp) ∩ SL(2,Fp). Choose

w̄ ∈ SL(2,Fp) such that w̄2 = w−1, and replace H , H2 by Hw̄, Hw̄
2 respectively.

Then a1z ∈ H2 and z2 ∈ N . Hence z ∈ 〈 zi+1 〉. If zi+1wj+1 ∈ N (maybe N = 1, i

and j taking the exceptional value −1) then a1 ∈ H2 or a1 ∈ H
wj+2

2 . For the other

N , z ∈ N or z ∈ zi+1N . We have proved that H2 is M(2,Fp)-conjugate to 〈 a1 〉 or

some H(i, j, k).

If H2′ is nonscalar then H is irreducible by Maschke’s Theorem. Let H =

H(i, j, k)H2′ and suppose H2′ is scalar. Then H(i, j, k) must be nonabelian, so

j ≥ 1 if k = 1 or k = 2. Let h be the 2 × 2 Hadamard matrix in the proof of

Theorem 4.5. Since ah
1 = z1w

−1
1 and wh

1 = a1z
−1
1 , we get H(i, 0, 3)h = H(i, 1, 2)

for i ≥ 1 and H(0, 0, 3)w2h = H(0, 1, 1). Thus j can also be restricted to j ≥ 1 if

k = 3.

Remark 5.2. For each odd prime r 6= p and i ≥ −1, define the scalar zi,r and

the diagonal matrix wi,r ∈ SL(2,Fp) as zi, wi were defined for the prime 2, so that

|zi,r| = |wi,r| = ri+1. Then a finite ZS2-submodule of D(2,Fp) of odd order is a

direct product
∏

r〈 zir ,r, wjr ,r 〉.
The next result extends [5, Proposition 4.2] in degree 2.

Theorem 5.3. Let H = H2′H2 and K = K2′K2 be finite irreducible subgroups

of M(2,Fp) as in Theorem 5.1. If H ∼= K then H = K (so two finite irreducible

subgroups of M(2,Fp) are GL(2,Fp)-conjugate if and only if they are isomorphic).

Proof. SupposeH(i, j, k) ∼= H(i′, j′, k′). These groups have the same centre, mean-

ing i = i′. If j, j′ ≥ 1 then j = j′ and k = k′ by [5, Proposition 3.3]. If j = j ′ = 0

then k = k′ = 3 or k, k′ ∈ {1, 2}, for the groups to have the same order; but

H(i, 0, 2) is cyclic whereas H(i, 0, 1) is not, so k = k′. Let j = 0, j′ ≥ 1. By another

order comparison, k = 3, j ′ = 1, and k′ = 1 or 2. Indeed, H(i, 0, 3) is isomorphic to

H(i, 1, 2) if i ≥ 1 and to H(i, 1, 1) if i = 0, as shown in the proof of Theorem 5.1.

We conclude that these are the only isomorphisms between the H(i, j, k).

Suppose H ∼= K. Then H2,K2 are isomorphic, as Sylow 2-subgroups of H,K.

For each odd prime r dividing |H |, Or(H) and Or(K) have the same order and the
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same scalar subgroup. Thus (see Remark 5.2), Or(H) = Or(K) and so H2′ = K2′ .

By the previous paragraph and Theorem 5.1, if H2 6= K2 then H ′
2 is nonscalar and

either H2,K2 ∈ {H(0, 0, 3), H(0, 1, 1)} or H2,K2 ∈ {H(i, 0, 3), H(i, 1, 2)}, i ≥ 1.

Any abelian subgroup A of index 2 in H contains H2′ , and if H2′ is nonscalar then

A = D(2,Fp)∩H . In that event an isomorphismH → K restricts to an isomorphism

D(2,Fp)∩H2 → D(2,Fp)∩K2. However, the diagonal subgroups of the nominated

H2, K2 have isomorphism types C2×C2, C4, and C2i+2 , C2×C2i+1 for i ≥ 1. Hence

H2 = K2.

Theorems 5.1 and 5.3 together with Remark 5.2 give a complete and irredundant

list of the finite irreducible subgroups of M(2,Fp). Section 2 is not needed because

[5] applies to monomial groups over any field, like Fp, that has elements of every

2-power order and whose characteristic is not 2.

Next, we list finite primitive subgroups of GL(2,Fp) as required by

Proposition 3.6(i).

Theorem 5.4. Suppose p ≥ 5. Let H be a finite primitive subgroup of GL(2,Fp)

such that H/Z(H) ∼= A4. Write Z(H) = Z = 〈 z 〉. Let ω ∈ Fp be a primitive fourth

root of unity , and define

s =
1

2

(

ω − 1 ω − 1

ω + 1 −(ω + 1)

)

.

Choose ν ∈ Fp\Z such that ν3 = z (denoting a scalar matrix by its nonzero entry).

Then |Z| is even,

〈 (ω,−ω), s, z 〉 , 〈 (ω,−ω), νs 〉

are distinct primitive subgroups of GL(2,Fp) with centre 〈 z 〉 and central quotient

A4, and H is conjugate to precisely one of them.

Proof. (Cf. [25, Sec. 5.3].) For each prime r dividing |Z|, denote the Sylow

r-subgroup of Z by Zr. If Z2 6= 1 then by the Universal Coefficient Theorem,

H2(A4, Z) = Ext(A4/A
′
4, Z3) × Hom(H2(A4), Z2) ∼=

{

C3 × C2 Z3 6= 1

C2 Z3 = 1
.

The 2-cocycle classes in H2(A4, Z) and presentations for corresponding extensions

of Z by A4 may be calculated by the algorithm in [13]. For example, if [ξ] ∈
Ext(A4/A

′
4, Z3) and E is a corresponding extension, then because ξ is trivial on

V4 = A′
4, E has an abelian normal subgroup N containing Z such that N/Z ∼= V4.

Since an abelian normal subgroup of H is cyclic, H 6∼= E. Thus the extension

equivalence class of H cannot be in Ext(A4/A
′
4, Z3), so Z2 cannot be trivial.

In the usual way Aut(A4) acts on H2(A4, Z), and 2-cocycle classes in the same

Aut(A4)-orbit give rise to isomorphic extensions. The inner automorphism of S4

that is conjugation by (12), restricted to A4, inverts each element of H2(A4, Z)
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of order 3 (if any exist). Hence there are at most two possible isomorphism types

for H . The one corresponding to the nontrivial element of Hom(H2(A4), Z2) has a

subgroupK isomorphic to SL(2, 3) (the unique nonsplit extension of C2 by A4) such

that K ∩Z = 〈 (−1,−1) 〉, and thus H = KZ. The other type exists only if Z3 6= 1.

It does not have a subgroup isomorphic to SL(2, 3), since its Sylow 3-subgroups are

cyclic of order 3|Z3|, and so its elements of order 3 are central.

Since p does not divide |SL(2, 3)|, we see from its character table that SL(2, 3)

has exactly three inequivalent faithful irreducible representations in GL(2,Fp). Two

of these are related by an outer automorphism of SL(2, 3), so there are at most two

non-conjugate irreducible subgroups of GL(2,Fp) isomorphic to SL(2, 3). Indeed, if

µ ∈ Fp is a primitive cube root of unity then

K1 = 〈 (ω,−ω), s 〉 , K2 = 〈 (ω,−ω), µs 〉

are both isomorphic to SL(2, 3), and are therefore irreducible by Maschke’s Theo-

rem. Each Ki is primitive because it does not have an abelian subgroup of index 2.

K1 but not K2 is in SL(2,Fp), so K1 and K2 are not conjugate.

If H has a subgroup isomorphic to SL(2, 3) then H is conjugate to K1Z or

K2Z. Now suppose H does not have a subgroup isomorphic to SL(2, 3). Choose

h ∈ H\Z and a scalar ν not in Z such that h3 = z and ν3 = z (as p > 3, such a ν

surely exists). Then 〈H, ν 〉 has a subgroup K ∼= SL(2, 3), generated by ν−1h and a

nonsplit extension of 〈 (−1,−1) 〉 by V4. For some x ∈ GL(2,Fp), we have Kx = Kj ,

j = 1 or 2, so Hx/Z ∼= A4 is a subgroup of 〈KjZ, ν 〉/Z ∼= A4 × C3. Here µ ∈ Z3,

so K1Z = K2Z. There are three subgroups of 〈K1Z, ν 〉 whose quotient modulo Z

is isomorphic to A4, namely

K1Z , 〈 (ω,−ω), νs 〉 , 〈 (ω,−ω), ν2s, z 〉 .

The second and third groups are conjugate by (α, α−1), where α ∈ Fp is a square

root of ω.

So far we have proved that H is conjugate to one of

〈 (ω,−ω), s, z 〉 〈 (ω,−ω), µs, z 〉 〈 (ω,−ω), νs 〉 .

As noted above, if Z3 6= 1 then the first and second groups are equal. If Z3 = 1

then we may choose ν ∈ µZ, and the second and third groups coincide.

Remark 5.5. Let G ≤ GL(n,Fp) be primitive, p any prime. It seems to be rea-

sonably well-known that Fit(G)/Z(G) is a finite p′-group. Thus if G/Z(G) ∼= A4 or

S4 then p 6= 2.

Remark 5.6. The generators for the primitive absolutely irreducible linear groups

in Theorem 5.4 were chosen with classical results of Klein and Jordan in mind ([3,

Chap. 3]). These results amount to a complete and irredundant list of the finite

subgroups of SL(2,C). A finite primitive p′-subgroup of GL(2,Fp) has the same

collineation group as some primitive subgroup of SL(2,C).
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6. Solution of the Main Listing Problem

Again p is odd throughout. Recall the definitions of ωi, zi, wi, wi,r and H(i, j, k)

made in Sec. 5.

Proposition 6.1. Let G be an irreducible but not absolutely irreducible nonabelian

subgroup of M(4, q) with πG a 2-group. Then G is conjugate to G2G2′ , where

G2 = {(h, hσ) |h ∈ H2} , G2′ = {(h, hσ) |h ∈ H2′}

for some irreducible subgroup H2H2′ of M(2,Fp) as stated in Theorem 5.1. Further-

more

(i) H2′ ≤ D(2, q) and G2′ ≤ D(4, q).

(ii) If q ≡ 1 mod 4 and the Sylow 2-subgroup of GF(q2)× has order 2t+1 then H2

= H(i, j, k), where 0 ≤ i, j ≤ t, j ≥ 1 if H2′ is scalar , and

i = t or j = t , 1 ≤ k ≤ 2

i = j = t

i = t− 1, j ≤ t− 2

i ≤ t− 2, j = t− 1















k = 3.

(iii) If q ≡ 3 mod 4 then H2 is one of

H(0, 2, 1), q ≡ 3 mod 8 only

H(1, j, k), 0 ≤ j ≤ 1, 1 ≤ k ≤ 2

H(0, 1, k), 1 ≤ k ≤ 2

H(0, 1, 3), q ≡ 7 mod 8 only

H(1, 1, 3) ,

where H2 6= H(1, 0, k), H(0, 1, k) if H2′ is scalar , and H2′ is scalar if H2 =

H(0, 2, 1) or H(0, 1, 3).

(iv) Conversely , if H2 ≤ M(2,Fp) is conjugate to H(i, j, k) for any i, j, k as stipu-

lated in (ii) or (iii) then G2G2′ is conjugate to an irreducible but not absolutely

irreducible subgroup of GL(4, q).

Proof. By Proposition 3.6, G is conjugate to G̃ = {(h, hσ) |h ∈ H}, where H

is an absolutely irreducible subgroup of M(2, q2) such that tr(H) 6⊆ GF(q). By

Theorem 5.1, Hx = H2H2′ for some x ∈ GL(2,Fp) and H2H
′
2 as in the theorem.

Then G̃(x,xσ) = G2G2′ .

(i) G2′ ≤ D(4, q) by Lemma 4.3(i) and (ii), so clearly H2′ ≤ D(2, q).

(ii) The Sylow 2-subgroup of GF(q)× has order 2t. From (i), tr(H2) ⊆ GF(q2)

yet tr(H2) 6⊆ GF(q). Thus H2 = H(i, j, k) for some i, j ≥ 0. Evaluating tr(zi) and

tr(wj), we infer that i ≤ t, and j ≤ t by Lemma 4.2.
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Suppose k = 1 or 2. If i and j are both less than t then tr(H2) ⊆ GF(q). Hence

i = t or j = t. Now suppose k = 3. If i = t then j = t: otherwise, tr(zt+1wj+1wk,r) ∈
GF(q2), r an odd prime dividing q−1, forces ωt+1 ∈ GF(q2) (we only need to choose

wk,r 6= 1 when j = 0 and H ′
2 is nonscalar). If i = t − 1 then similarly j 6= t by

Lemma 4.2; nor can we have j = t− 1, to ensure that H2 6≤ M(2, q). For the same

reason j ≥ t− 1 if i ≤ t− 2, in which case j 6= t by Lemma 4.2.

(iii) Here a Sylow 2-subgroup of M(4, q) has exponent 8, which is therefore an

upper bound on the exponent of G2. An element of M(4, q) of order 8 projects on

to a 4-cycle in S4 and thus has zero trace.

Since N := O2(D(4, q) ∩ G) is elementary abelian, if |N | ≥ 8 then G acts

faithfully onN andG is absolutely irreducible. Hence |N | ≤ 4 and |H2| = |G2| ≤ 32.

Trace calculations show that |H2| > 4.

Let H2 = H(i, j, k); then i ≤ 2, because |Z(H(i, j, k))| = 2i+1. If i = 2 then G

has an element of order 8, conjugate to (ω2, ω2, ω
q
2 , ω

q
2). However ω2 + ωq

2 6= 0.

For k = 1 or 2, 1 ≤ i + j ≤ 3. Since i ≤ 1, tr(H) 6⊆ GF(q), and no element of

H2 can have order greater than 8, we see that (i, j) ∈ {(0, 2), (1, 0), (1, 1), (1, 2)}, or

(i, j) = (0, 1) and H2′ is nonscalar. On the other hand (i, j) ∈ {(0, 1), (1, 0), (1, 1)}
if k = 3.

We have ωq
2 = ω2ω

(q−1)/2
1 and ω−q

2 = ω2ω
(q+1)/2
1 . If H2 = H(i, 2, k) then the

element (ω2, ω
−1
2 , ωq

2, ω
−q
2 ) of G2 has order 8, and for this matrix to have zero trace,

q ≡ 3 mod 8. Similarly q must be congruent to 7 mod 8 when H2 = H(0, 1, 3).

Suppose H2 = H(1, 2, k), so that K := 〈 z1, w2 〉 ≤ H2. If {(h, hσ) |h ∈ K} were

conjugate to a subgroup of M(4, q) then that subgroup would have projection C4

in S4, and would therefore contain four different scalars. But a Sylow 2-subgroup

of M(4, q) has just two scalars. There is a unique involution in H(0, 2, 2) ∼= Q16,

whereas a subgroup of M(4, q) conjugate to {(h, hσ) |h ∈ H(0, 2, 2)} could only

be an extension of 〈 (−1,−1,−1,−1) 〉 by D, with nonscalar involutions. We have

proved that H2 is not H(1, 2, 1) nor H(1, 2, 2) nor H(0, 2, 2).

If H2 has a diagonal element of order 8 then there exists an abelian index 2

subgroup ofG with projection C4 in S4. As this subgroup contains O2′(G), the latter

is central in G, so H2′ is central in H2H2′ . Hence H2′ is scalar if H2 = H(0, 2, 1) or

H(0, 1, 3) (z2w1 ∈ H(1, 0, 3) and |z2w1| = 8, but H2 6= H(1, 0, 3) by Theorem 5.1(i)

if H2′ is scalar).

(iv) This follows from Corollary 3.5, as tr(H) 6⊆ GF(q) for the stipulated values

of i, j, k.

Lemma 6.2. Define

m =

(

ωt ωt−1

−1 ωt

)

⊗ I2 ∈ GL(4, q2)

where 2t is the order of the Sylow 2-subgroup of GF(q)×.

(i) If h ∈ GL(2, q) then (h, hσ)m = (h, h).
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(ii) If h is (ωt, 1), (1, ωt), zt, or wt then (h, hσ)m is ac(1, 1, ωt−1, 1),

ac−1(1, 1, 1, ωt−1), b(1, 1, ωt−1, ωt−1), or b(1, ω−1
t−1, ωt−1, 1), respectively.

Definition 6.3. For each odd prime r dividing q− 1, choose a generator αr of the

Sylow r-subgroup of GF(q)×. Define G2′ to be the list of all direct products
∏

r∈4

〈 (αr, αr, αr, αr)
rkr

, (αr , α
−1
r , αr, α

−1
r )rlr 〉

as 4 ranges over subsets of the set of odd prime divisors of q − 1, and 0 ≤ kr, lr ≤
logr |αr|. If G2′ is a subgroup of D(4, q) arising from an odd order ZS2-submodule

H2′ of D(2, q) as in Proposition 6.1, then G2′ ∈ G2′ by Remark 5.2.

Theorem 6.4. Suppose q ≡ 1 mod 4 and let 2t be the order of the Sylow 2-subgroup

of GF(q)×. Define lists G2,1 and G2,2 of 2-subgroups of M(4, q) as follows :

G2,1 : 〈 a, b(1, 1, ωt−1, ωt−1), (ωt−1, 1, ωt−1, 1) 〉
〈 c(1, 1, ωt−1, 1), (ωt−1, 1, ωt−1, 1) 〉
〈 a, c(1, 1, ωt−1, 1), (ωt−1, 1, ωt−1, 1) 〉
〈 a, b(1, ω−1

t−1, ωt−1, 1), (ωi, ωi, ωi, ωi) 〉 0 ≤ i ≤ t− 1

〈 a(ωi, 1, ωi, 1), b(1, ω−1
t−1, ωt−1, 1) 〉 0 ≤ i ≤ t− 1

〈 a, b(ωi+1, ωi+1ω
−1
t−1, ωi+1ωt−1, ωi+1), (ωt−1, ω

−1
t−1, ωt−1, ω

−1
t−1) 〉 0 ≤ i ≤ t− 2

〈 a, b(1, 1, ωt−1, ωt−1), (ωi, ω
−1
i , ωi, ω

−1
i ) 〉 1 ≤ i ≤ t− 1

〈 c(1, 1, ωt−1, 1), (ωi, ω
−1
i , ωi, ω

−1
i ) 〉 1 ≤ i ≤ t− 1

〈 a, b(ωi+1, ω
−1
i+1, ωi+1ωt−1, ω

−1
i+1ωt−1), (ωi, ω

−1
i , ωi, ω

−1
i ) 〉 1 ≤ i ≤ t− 2 .

G2,2 : 〈 a, b(1, 1, ωt−1, ωt−1) 〉 ,
〈 c(1, 1, ωt−1, 1) 〉 ,
〈 a, b(ω1,−ω1, ωt−1ω1,−ωt−1ω1) 〉 .

The list G consisting of all groups G2G2′ , G2′ ∈ G2′ (see Definition 6.3), and G2 ∈
G2,1 or G2 ∈ G2,1 ∪ G2,2 if G2′ is scalar or nonscalar , respectively , is a complete and

irredundant list of the nonabelian irreducible but not absolutely irreducible subgroups

G of M(4, q) with πG a 2-group.

Proof. A group in G has the form {(h, hσ) |h ∈ H}m where m is the matrix of

Lemma 6.2 (which centralizes every element of G2′ by Lemma 6.2(i)) and H is an

irreducible subgroup H2H2′ of M(2,Fp) as specified in Proposition 6.1(ii), except

when H2 = H(t, j, 2), 0 ≤ j ≤ t (then H = H(t, j, 2)wt+2H2′), or when H2 =

H(i, t, 2), 0 ≤ i ≤ t − 1 (then H = H(i, t, 2)wi+2H2′). This claim summarizes the

routine compilation of G, details of which are omitted. Note that if H2′ is nonscalar
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then G2′ is nonscalar (and vice versa) and H2 could be H(t, 0, 1), H(t, 0, 2), or

H(t− 1, 0, 3); these give rise to the groups in G2,2.

Every group in G is irreducible by Proposition 6.1(ii). Also by Proposition 6.1

and the Deuring–Noether Theorem, G is complete. SupposeG, Ḡ ∈ G are isomorphic

and arise from (isomorphic) subgroups H , H̄ of M(2,Fp). If H , H̄ are listed in

Theorem 5.1 then H = H̄ by Theorem 5.3, and thus G = Ḡ. Otherwise H and H̄

both have Sylow 2-subgroup H(t, j, 2)wt+2 or H(i, t, 2)wi+2 . Since Hw and H̄w are

then listed in Theorem 5.1 for some w ∈ D(2,Fp), one more appeal to Theorem 5.3

finishes the proof that G is irredundant.

Theorem 6.5. Suppose q ≡ 3 mod 4 and define lists G2,1, G2,2, and G2,3 of 2-

subgroups of M(4, q) as follows :

G2,1 : 〈 a(1, 1,−1,−1), c(1, 1,−1, 1) 〉 q ≡ 3 mod 8 only

〈 a(1,−1,−1, 1), c(1, 1,−1, 1) 〉 q ≡ 7 mod 8 only .

G2,2 : 〈 a, b(1, 1,−1,−1) 〉
〈 a, b(1,−1,−1, 1) 〉
〈 c(1, 1,−1, 1) 〉
〈 a(1,−1, 1,−1), b(1,−1,−1, 1) 〉 .

G2,3 : 〈 a, b(1, 1,−1,−1), (1,−1, 1,−1) 〉
〈 c(1, 1,−1, 1), (1,−1, 1,−1) 〉
〈 a, c(1, 1,−1, 1), (1,−1, 1,−1) 〉 .

The list consisting of all groups G2G2′ , where G2′ ∈ G2′ (see Definition 6.3), and

G2 ∈ G2,1 ∪ G2,3 or G2 ∈ G2,2 ∪ G2,3 if G2′ is scalar or nonscalar , respectively ,

is a complete and irredundant list of the nonabelian irreducible but not absolutely

irreducible subgroups G of M(4, q) with πG a 2-group.

Proof. Let H2H2′ be as in Proposition 6.1(iii). If H2 contains no diagonal element

of order 8 then we can get a conjugate of {(h, hσ) |h ∈ H2H2′} in M(4, q) by

Lemma 6.2. That leaves us with the (more onerous) conjugacy problem for H2H2′

where H2 = H(0, 2, 1) or H2 = H(0, 1, 3) and H2′ is scalar. Let

m =













−ω2ω1 1 −ω2 −ω1

ω2 1 ω2ω1 ω1

−ω2 1 −ω2ω1 ω1

ω2ω1 1 ω2 −ω1













.

Row reduction shows that m ∈ GL(4,Fp). Also

(a(ω2,−ω2ω1, ω2ω1,−ω2))
m = a(1, 1,−1,−1)
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and

(ω2,−ω2ω1, ω2ω1,−ω2)
m = c−1(1,−1, 1, 1) ;

hence the group listed first in G2,1. The second group results from similar manipu-

lations. For all other statements, cf. the proof of Theorem 6.4.

Proposition 6.6. Suppose p ≥ 5. Then M(4, q) has an irreducible but not abso-

lutely irreducible subgroup G such that πG = A4 if and only if q− 1 is not divisible

by 3. If q − 1 is not divisible by 3 then |Z(G)| is even and G is GL(4, q)-conjugate

to

〈 a(1,−1,−1, 1), d, Z(G) 〉 .

Proof. Suppose G exists. By Proposition 3.6 and Theorem 5.4, G is conjugate to

{(h, hσ) |h ∈ H}, where H is 〈 (ω,−ω), s, z 〉 or 〈 (ω,−ω), νs, z 〉, Z(H) = 〈 z 〉, and

tr(H) ⊆ GF(q2) yet tr(H) 6⊆ GF(q). Additionally Z(G) = 〈 (z, zσ) 〉 is scalar, so

that z ∈ GF(q).

Since each element of 〈 (ω,−ω), s 〉 ∼= SL(2, 3) has trace in {0,±1,±2} ⊆ GF(q),

H cannot be 〈 (ω,−ω), s, z 〉. If 3 divides q − 1 then GF(q2)×, GF(q)× have the

same Sylow 3-subgroup, which contains some element of νZ(H), and we exhaust

all choices for H .

Henceforth in the proof, 3 does not divide q − 1. There is an element of νZ(H)

with trivial cube, so we assume ν3 = 1, and thus ν ∈ GF(q2)\GF(q). Define m ∈
GL(4,Fp) by

m =

(

m1 m2

m′
1 m′

2

)

,

where

m1 =

(

1 ν(ω − ν)

−ω −ν(νω + 1)

)

, m2 =

(

1 ν(νω − 1)

−ω −ν(ω + ν)

)

and m′
i = mi(−1, 1)a1, i = 1, 2.

Let q ≡ 1 mod 4. Then (h, hσ) is (ω,−ω, ω,−ω) if h = (ω,−ω), and ν(s, νs) if

h = νs. We check that

(ω,−ω, ω,−ω) = (a(1,−1,−1, 1))m , ν(s, νs) = dm .

Thus G is conjugate to the subgroup 〈 a(1,−1,−1, 1), d, Z(G) 〉 of GL(4, q), which

is irreducible by Corollary 3.5. The proof in this case is then complete.

Suppose now that q ≡ 3 mod 4. Then (h, hσ) is (ω,−ω,−ω, ω) if h = (ω,−ω),

and ν(s, νs(12)(1,−1)) if h = νs. Since

(ω,−ω,−ω, ω) = (ω,−ω, ω,−ω)ae(1,1,1,−1) = (a(1,−1,−1, 1))mae(1,1,1,−1)

and

ν(s, νs(12)(1,−1)) = ν(s, νs)ae(1,1,1,−1) = dmae(1,1,1,−1) ,

we are done.
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Theorem 6.7. The following are irreducible but not absolutely irreducible sub-

groups of M(4, 5):

〈 a, b(1, 1, 2, 2), (2, 1, 2, 1) 〉

〈 c(1, 1, 2, 1), (2, 1, 2, 1) 〉

〈 a, c(1, 1, 2, 1), (2, 1, 2, 1) 〉

〈 a, b(1, 3, 2, 1), (4, 4, 4, 4) 〉

〈 a, b(1, 3, 2, 1), (2, 2, 2, 2) 〉

〈 a(4, 1, 4, 1), b(1, 3, 2, 1) 〉

〈 a(2, 1, 2, 1), b(1, 3, 2, 1) 〉

〈 a, b(2, 1, 4, 2), (2, 3, 2, 3) 〉

〈 a, b(1, 1, 2, 2), (2, 3, 2, 3) 〉

〈 c(1, 1, 2, 1), (2, 3, 2, 3) 〉

〈 a(1, 4, 4, 1), d, (4, 4, 4, 4) 〉

〈 a(1, 4, 4, 1), d, (2, 2, 2, 2) 〉

〈 c(2, 1, 1, 1) 〉 .

The union of this list and the one in Theorem 4.5 is a complete and irredundant

list of the irreducible subgroups of M(4, 5).

Proof. We combine Theorem 6.4 and Propositions 3.12 and 6.6, for q = 5. The

union is complete and irredundant by these results, Propositions 3.6 and 3.9, and

Theorem 4.5.

7. Computing Lists of Irreducible Monomial Linear Groups

Many of the basic computational problems for finite degree permutation groups

have been solved. This contrasts markedly with the current situation for linear

groups over finite fields. To list the irreducible subgroups of M(n, q) by computer

we therefore work in a permutation group setting. (Alternatively, if n ≤ 4 then

M(n, q) is soluble and we may work with a polycyclic presentation of M(n, q).)

We begin by representing M(n, q) faithfully as a permutation group P(n, q) via its

action on the set

{(ωi1 , 0, . . . , 0), (0, ωi2 , 0, . . . , 0), . . . , (0, . . . , 0, ωin) | 0 ≤ i1, i2, . . . , in ≤ q − 2}

of nq−n vectors in GF(q)(n), where GF(q)× = 〈ω 〉. Then we compute the subgroup

lattice of P(n, q), which is returned as a list S of subgroups of Sym(nq−n). With the

elements of S represented in M(n, q), the reducible ones are eliminated, producing a

list M. An irreducible subgroup of M(n, q) is M(n, q)-conjugate to a single element
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of M. We use the faithful permutation representation of GL(n, q) in Sym(qn) arising

from the natural action on GF(q)(n) to refine M to a list whose elements are not

GL(n, q)-conjugate.

For n = 4 and q = 5 we compute that M has 216 elements, and these fuse

into 155 GL(4, 5)-conjugacy classes — just as predicted by Theorems 4.5 and 6.7.

We may check by computer that the groups listed in Theorems 4.5 and 6.7 are all

irreducible, and that distinct groups are not GL(4, 5)-conjugate. Thus we verify our

list is correct. (Other tests are possible.)

The naive approach to computing irreducible subgroups of M(n, q), above, is

limited by the sorting of groups into GL(n, q)-conjugacy classes, since that employs

a permutation representation of degree qn. To overcome the limitation, we propose

listing algorithms modeled on ideas in this paper. Combined output from these

algorithms is a complete and irredundant list of the irreducible monomial subgroups

of GL(n, q), where n < 31 is a prime or 4, and q is a power of a prime p > n. Each

group is returned as a generating set of monomial matrices. We recap the principal

ideas below.

One algorithm deals with the non-absolutely irreducible groups. Its input is

just n and q, and it is wholly deterministic: if n = 4, the algorithm would be an

implementation of Proposition 3.12 and Sec. 6; if n is (any) prime then there are

only cyclic groups to worry about, and it is not difficult to formulate a thorough

description of those groups (cf. Proposition 3.12) for implementation.

As well as n, q, input to the algorithm for listing the absolutely irreducible

subgroups of M(n, q) is a finite sublist L of a list Ln,C of the finite irreducible

subgroups of M(n,C). Like all existing lists, Ln,C has a prescribed format, suited

to our objective. Groups are given by parametrized generating sets of monomial

matrices. Nonzero entries of generators for p′-groups are p′-roots of unity (see the

second last paragraph before Proposition 2.12 for an explanation of why matrix

entries can always be chosen this way). The diagonal matrices in each generating set

generate the diagonal subgroup of the group, and by this fact one gets a pre-defined

order function for each listed group (a function of integer parameters labeling the

group). Given N , we can then find the finitely many groups in Ln,C of order N .

Hence we can find the finite sublist L of Ln,C whose elements have orders dividing

n!(q − 1)n. Further cut downs of L come from analyzing diagonal subgroups; for

n = 4, cf. Lemmas 4.3 and 4.4. We emphasize that all of these considerations are

purely theoretical ones, to be settled in advance. They are not part of the algorithm

proper.

Reduction mod p of the generating sets for the groups in L produces a list Ψ(L)

of finite irreducible p′-subgroups of M(n,Fp) that is complete (by Theorems 2.17

and 4.1) and irredundant (by Proposition 2.7). Say all nonzero entries of generators

of groups in L belong to 〈ω 〉 ≤ C×, and let ζ ∈ Fp be a primitive |ω|th root of

unity. Then the mod p reduction of L is simply putting ζ i for ωi everywhere in

generating sets of groups in L.
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The reduced list Ψ(L) contains, up to conjugacy, a list of the absolutely irre-

ducible subgroups of M(n, q). Conjugacy classes of each group in Ψ(L) are com-

puted, and a group is deleted from Ψ(L) if some conjugacy class representative fails

to have trace in GF(q).

The final stage is rewriting in M(n, q) the remaining groups G ∈ Ψ(L) that are

GF(q)-monomial, a randomized process discussed after Corollary 2.21. A conjugate

G∗ of G in GL(n, q) is found by the algorithm of [14], and then the orbits of G∗ on

the lines of GF(q)(n) are computed. If there is not a length n orbit o whose elements

sum to GF(q)(n) then G is deleted. Otherwise, o is used to rewrite G∗ in M(n, q).

We remark that variations of the above algorithms may be viable for other

degrees n, provided one has the necessary lists of irreducible linear groups of degrees

dividing n, and also the necessary analogues of Theorems 2.17 and 4.1.

8. Isomorphism and Associated Primitive Permutation Groups

One may associate a primitive permutation group of finite degree to an irreducible

linear group over a finite field, and vice versa. This classical equivalence goes back

to Jordan and Galois, and is one of the original motivations for listing irreducible

linear groups, especially soluble ones, over finite fields; cf. [25, Theorem 2.1.6] and

[7, Sec. 4.7]. The topic of this section is isomorphism between linear groups and its

relation to isomorphism between associated permutation groups under the equiv-

alence. Our goal is to show how the automorphism groups of certain primitive

permutation groups with abelian socle can be constructed from irreducible mono-

mial linear groups. The determination of these automorphism groups is required in

the specific context of [25, Theorem 1.1.1], for example.

Theorem 8.1. Let G and H be groups acting on an additive abelian group V, and

write the semidirect products G n V, H n V with respect to these actions as GV,

HV . A map α:GV → HV is an isomorphism such that α(V ) = V if and only if

there exist

(i) an isomorphism β:G → H,

(ii) a ZG-isomorphism γ from V to Vβ , where Vβ has the same elements as V and

G acts by vg = vβ(g),

(iii) a derivation δ:G → Vβ ,

such that α(g, v) = (β(g), γ(v) + δ(g)) for all g ∈ G, v ∈ V .

Now we take V to be the n-dimensional vector space over some field E.

Corollary 8.2. Let G and H be irreducible subgroups of GL(n,E), acting naturally

on V .
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(i) If G and H are conjugate then GV ∼= HV .

(ii) When E = GF(p), GV ∼= HV if and only if G and H are conjugate.

Proof. (i) Suppose Gx = H for some x ∈ GL(n,E). Then in Theorem 8.1, set

δ = 0 and define β, γ by β(g) = gx, γ(v) = vx.

(ii) We have soc(GV ) = soc(HV ) = V (by [18, Theorem 1.16(d), p. 18], this

much is true when E is any finite subfield of Fp). Therefore, if α:GV → HV is an

isomorphism then α(V ) = V , so let β, γ be as in Theorem 8.1. Now γ acts as some

x ∈ GL(n, p), and thus β(g) = gx because γ(vg) = γ(v)β(g) for all v ∈ V .

Let L be a complete and irredundant list of the irreducible subgroups of

GL(n, p). If G ∈ L then the image of GV under the faithful permutation repre-

sentation mapping (g, v) to the affine transformation of V defined by u 7→ ug+ v is

a primitive subgroup of Sym(V ) ∼= Spn . Thus we may obtain a list P of prim-

itive permutation groups of degree pn with abelian socle directly from L. By

Corollary 8.2(ii), distinct elements of P are not isomorphic. In fact P is also com-

plete with respect to permutational isomorphism, which is the other half of the

equivalence mentioned at the beginning of this section. So Corollary 8.2(ii) says

that two primitive subgroups of Spn with abelian socle are isomorphic if and only

if they are conjugate in Spn .

Now we consider the problem of finding the automorphism group of each element

of P . Since V is regular, if G ∈ L then NSpn (GV ) is embedded in GL(n, p)V by

[7, Corollary 4.2B, p. 110]. Since G is irreducible, GV has trivial centralizer in

GL(n, p)V . Thus NSpn (GV ) = NGL(n,p)V (GV ) is embedded in Aut(GV ). We next

give a criterion for these two groups to coincide. If this happens then Aut(GV )

splits over V , with a complement that is conjugate to an element of L.

Proposition 8.3. Let G be an irreducible subgroup of GL(n, p). Then Aut(GV ) is

the group NGL(n,p)(G)V, acting by conjugation, if and only if H1(G, V ) = 0.

Proof. Let α ∈ Aut(GV ), with β ∈ Aut(G) induced from α as usual. Sup-

pose H1(G, V ) = 0, so that H1(G, Vβ) = 0. By Theorem 8.1 and the proof of

Corollary 8.2, for all g ∈ G and v ∈ V we have α(g, v) = (gx, vx + δ(g)) for some

x ∈ NGL(n,p)(G) and inner derivation δ:G → Vβ ; say δ(g) = u(1 − gx), u ∈ V .

Hence α(g, v) = (g, v)(x,u). The other direction is equally easy.

Remark 8.4. Aut(GV ) = NGL(n,p)(G)V if and only if Out(GV ) ∼= NGL(n,p)(G)/G.

Thus Proposition 8.3 also follows from [24, (4.5)].

Corollary 8.5. Let G be an irreducible subgroup of GL(n, p). If Op′(G) 6= 1 then

Aut(GV ) = NGL(n,p)(G)V .

Proof. H1(G, V ) = 0 by [15, Theorem 1].
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The hypothesis Op′(G) 6= 1 holds if G is soluble, and it obviously holds in

our favorite situation G ≤ M(n, p), p > n. So in the sequel we concentrate on

normalizers of monomial linear groups.

Let us revert to general E. Denote the normalizer in GL(n,E) of a subgroup G

as N(G). When G is monomial, we show that in some circumstances N(G) is also

monomial, so that if E = GF(p) and G is irreducible, finding the automorphism

group of the associated primitive permutation group GV boils down to finding the

irreducible subgroup N(G) = NM(n,p)(G) of M(n, p). If a list of such groups exists

then we might try to recognize N(G) in the list. However, we cannot as yet offer a

general recognition method. But when E is finite, knowing that N(G) is monomial

is at least helpful computationally. For then the computation of N(G) can take

place entirely in M(n, p), which has a smaller degree permutation representation

than GL(n, p) does; even better, M(n, p) has a polycyclic presentation if n ≤ 4 (cf.

Sec. 7).

Below, G ≤ M(n,E), D(n,E) ∩G := A, and αi is the linear E-representation of

A that maps an element to its ith diagonal entry.

Lemma 8.6. If the αis are distinct on A then N(A) ≤ M(n,E).

Proof. Cf. [11, proof of Proposition 1.3.7].

Proposition 8.7. Suppose CG(A) = A and πG has an abelian transitive subgroup

T . Then N(A) ≤ M(n,E).

Proof. Suppose at least two of the αis are equal. Then T acts imprimitively on the

set {α1, . . . , αn}, where each block of imprimitivity consists of equal characters. Say

the number of blocks is m, so m < n, and a factor of T is isomorphic to a regular

subgroup of Sm. That factor is not T , because T is also regular in degree n. Hence

some nontrivial subgroup of T acts trivially on {α1, . . . , αn}, which contradicts

CG(A) = A. The result follows from Lemma 8.6.

Corollary 8.8. Let n be prime. If A is nonscalar and πG is transitive then N(A)

≤ M(n,E).

Proof. πG is a primitive permutation group. If CG(A) 6= A then πCG(A) is a

nontrivial normal subgroup of πG, and as such is transitive. But then A is scalar.

Since πG contains an n-cycle, we get the result by Proposition 8.7.

Proposition 8.9. Suppose G is irreducible, CG(A) = A, and n = qr, where q and

r are primes. If

(i) r = q, or

(ii) r > q, and either r2 divides |πG|, or q2 divides |πG| and q > r/2,

then N(A) ≤ M(n,E).
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Proof. Remember that πG is transitive, so n divides |πG|.
(i) By Clifford’s Theorem, VA has q homogeneous components all of dimension

q, or q2 components all of dimension 1. The permutation representation of πG

arising from its action on the set of components has kernel that centralizes A, so is

trivial. Then since q2 divides |πG|, there must be q2 components. The corresponding

E-characters αi are pairwise distinct.

(ii) As in (i), it may be seen that VA cannot have r homogeneous components

of dimension q, nor vice versa.

Theorem 8.10. Let G be irreducible. In each of the following cases , N(G) is an

irreducible subgroup of M(n,E).

(i) n is prime, A is nonscalar (so Z(G) is scalar), and either |A : Z(G)| 6= n or

πG is insoluble.

(ii) n = 4, CG(A) = A, and A is characteristic in G.

(iii) n = 6, CG(A) = A, A is characteristic in G, and either (a) πG 6∼= S3, or

(b) πG ∼= S3 and A is not centralized by any element of CS6
(πG) (which is

conjugate to πG).

(iv) G = H wr Sn, where H is any subgroup of E
× if n > 2, and any subgroup of

E× that is not “special dihedral” if n = 2 (for finite E, this means |E| ≥ 4).

Proof. (i) Let x ∈ N(G). Since πAx is a normal subgroup of πG, it is transitive. If

πAx is nontrivial then it is regular, and is therefore the unique Sylow n-subgroup

of πG. An insoluble transitive permutation group of prime degree n has more than

one Sylow n-subgroup (see [7, Exercise 3.5.1, p. 91]). So if πG is insoluble then

πAx = 1; that is, x ∈ N(A). This establishes part of the claim by Corollary 8.8.

If πZ(G) were nontrivial then it would be transitive on A, so A would be scalar.

Thus Z(G) ≤ A. If x 6∈ N(A) then A ∩ Ax ≤ Z(G) and |A : A ∩ Ax| = n, since πAx

is regular. Therefore Z(G) = A ∩ Ax.

(ii) Here N(G) ≤ N(A), and then Proposition 8.9(i) applies.

(iii) By [7, Table 2.1, p. 60], a transitive subgroup of S6 is cyclic, or has order

divisible by 4 or 9, or is isomorphic to S3 (there is an error in the “Generators” col-

umn at line T6.2 of the table, which can be rectified by replacing the second stated

generator with (153)(246)). Then (a) follows from Proposition 8.7 and Proposi-

tion 8.9(ii). Suppose πG ∼= S3, and {α1, . . . , α6} splits into three blocks of two

equal characters each; say s = (s1s2)(s3s4)(s5s6) ∈ S6\πG centralizes A. Since st

centralizes A for all t ∈ πG, 〈 s, st 〉 is a transitive subgroup of S6 if st 6= s for some

t. But then A is scalar. Thus s ∈ CS6
(πG).

(iv) By [23, Theorem 9.12], the base group of G is a characteristic subgroup. Its

normalizer is monomial by Lemma 8.6.

Remark 8.11. In Theorem 8.10(ii), let E = Fp and G be finite; then CG(A) = A

up to conjugacy except perhaps when πG = S4 and A is scalar. If G is a p′-group

then this is a consequence of [12, Theorem 4.2] and reasoning like that in the proof
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of Theorem 2.17(iii). Still with G a p′-group, we comment on the other requirement

in Theorem 8.10(ii), namely that A be a characteristic subgroup of G. This is a

stronger hypothesis than is necessary, but it has the benefit of allowing us again to

transfer from E = Fp to E = C. If πG ≥ A4 and A is a characteristic subgroup of

the inverse image π−1V4 of V4 in G then A is characteristic in G, because π−1V4

is characteristic in G. Hence suppose first that πG = V4. If A is not characteristic

in G then A contains a normal subgroup N of G such that O2′(A) ≤ N and either

|O2(A) : O2(A) ∩N | = |πCG(N)| = 2, or |O2(A) : O2(A) ∩N | = 4 and N is scalar.

In both cases, if O2(A) is noncyclic then O2(A) has a nonscalar subgroup of index

2 centralized by an involution of V4. The possible O2(A) can then be identified (up

to conjugacy) from [11, Example 3.1.11]. Similar deliberations are possible when

πG = C or D; see the discussion after [11, Lemma 4.5] and [11, Proposition 5.11].

Remark 8.12. M(n,E) is not normalized by GL(n,E), so Theorem 8.10(iv) for

H = E× may also be deduced from the main theorem in [22].

Corollary 8.13. If p > n and n > 2, or p ≥ 5 and n = 2, then Aut(M(n, p)V ) =

Inn(M(n, p)V ) ∼= M(n, p)V .

Remark 8.14. |Out(M(2, 3)V )| = 2.

Let G be a nonabelian irreducible but not absolutely irreducible subgroup of

M(r2, q), r prime. If NGL(r2,q)(G) is not absolutely irreducible then it is determined

by NGL(r,qr)(H) for some absolutely irreducible subgroup H of GL(r, qr). Suppose,

then, that n is prime, G is an absolutely irreducible subgroup of M(n, q), and E =

Fp. Of course NGL(n,q)(G) = N(G) ∩ GL(n, q). Assume πG is soluble, so that G has

a normal subgroup Q containing A such that |Q : A| = n. If |A : Z(G)| 6= n then

A and thus Q is characteristic in G; that is, N(G) ≤ N(Q). Hence the problem of

finding N(G) for soluble G mostly reduces to the case |πG| = n. In [5, Sec. 6], N(G)

is described for some n-groups G. We solve the easiest version of the more general

problem, taking G to be a finite irreducible subgroup of M(2,Fp), p odd.

By Theorem 5.1, let G = HG2′ , where H is H(i, j, k) or 〈 a1 〉 and G2′ = O2′(G).

Either G2′ is scalar, or N(G2′) and thus N(G) is monomial (apply Corollary 8.8 to

〈 a1, G2′ 〉). In the former case N(G) = N(H). In the latter, N(G) = M(H)G2′ ,

where M(H) := N(H) ∩ M(2,E), by the Frattini argument. M(H) is stated in

Theorem 8.15 below. By Theorem 8.10(i) and Theorem 5.1, it remains to find

N(H) when H = H(i, j, k), 1 ≤ k ≤ 2 and j = 1. We do so next.

Let x ∈ N(H). If ax
1 is diagonal then ax

1 = z±1
1 w1, which implies x = hm for

some monomial matrix m and h the Hadamard matrix in the proof of Theorem 4.5.

Recall that ah
1 = z1w

−1
1 and wh

1 = a1z
−1
1 . If ax

1 is not diagonal then axw
1 = a1

for some w ∈ SL(2,Fp) ∩ D(2,Fp). Therefore xw is symmetric and has constant

diagonal. Since wxw
1 is monomial, (xw)11 = ±(xw)12 ω1 if xw is not monomial, and

then xw is a scalar multiple of

g :=

(

ω1 1

1 ω1

)
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or g−1. Note that wg
1 = a1z1w1. Thus x is one of m, hm, or g±1m, for some

m ∈ M(2,Fp).

Let H = H(i, 1, 1). We see that Hh = Hg = H if i ≥ 1. If i = 0 then Hh,

Hg , and Hg−1

(yet definitely not H) are M(2,Fp)-conjugate to H(0, 0, 3), whence

x must be monomial. We have proved that

N(H) =

{

M(H) i = 0

〈M(H), h, g 〉 i ≥ 1 .
(I)

Let H = H(i, 1, 2). If i = 0 then Hh = Hg = H . If i ≥ 1 then Hh, Hg , Hg−1

are M(2,Fp)-conjugate to H(i, 0, 3). Therefore

N(H) =

{

〈M(H), h, g 〉 i = 0

M(H) i ≥ 1 .
(II)

Theorem 8.15 (Cf. Theorem 8.10(i)).

(i) Suppose G2′ is nonscalar. Then N(G) = M(H)G2′ , where M(H) = 〈 a1, Z 〉 if

H = 〈 a1 〉 and M(H) = 〈 a1, wj+1, Z 〉 if H = H(i, j, k), i, j ≥ 0, where Z is

the group of all scalars in GL(2,Fp).

(ii) Suppose G2′ is scalar. Then H = H(i, j, k), i ≥ 0, j ≥ 1, and N(G) = M(H)

as in (i), unless 1 ≤ k ≤ 2 and j = 1. N(G) = N(H) is given by (I) if k = 1,

j = 1, and by (II) if k = 2, j = 1.
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Appendix

The first set of errata, E.1, pertains to [11]. The construction in [12] relies on [11]

and so we have to make corrections there that follow from E.1; this is done in parts

(a) and (b) of the second set of errata, E.2. Part (c) of E.2 pertains solely to [12].

In
t. 

J.
 A

lg
eb

ra
 C

om
pu

t. 
20

04
.1

4:
25

3-
29

4.
 D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

A
T

IO
N

A
L

 U
N

IV
E

R
SI

T
Y

 O
F 

IR
E

L
A

N
D

 o
n 

05
/1

7/
20

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



June 1, 2004 10:10 WSPC/132-IJAC 00173

Irreducible Monomial Linear Groups of Degree Four Over Finite Fields 293

E.1. Amend the list in [11, Theorem 6.1.1] by adding 〈 ax2u2, c, C(1, 1, 1, 0, 1) 〉
and the groups

〈 ayj+1, buj+1, F (i, j, j, j, 0, 0) 〉
〈 a, b, F (i, j, 0, 0, 1, 1, 2, 1) 〉
〈 a, b, F (i, j, 0, 0, 1, 1, 2,−1) 〉











i, j ≥ 1 (])

and (also noted in [12, Sec. 6.1]) deleting the reducible groups

〈 axε
i+1y

η
j+1, bx

µ(1−ε)
i+1 , F (i, j, 0, 0, 0, 1) 〉 i, j ≥ 1

〈 axε
i+1, b, F (i, j, 0, 0, 1, 1) 〉 i, j ≥ 1 or i = j = 0 ,

ε, η, µ ranging freely over {0, 1}.

E.2. Amend the lists D and F of [12] as follows.

(a) To D1 and D2 as defined before [12, Theorem 6.3.3] add the groups

〈 ax2u2, c, C(1, 1, 1, 0, 1) 〉N .

(b) To F1, F2, F3, and F ′
3 as defined around [12, Remark 6.1.3], add all groups

G2N , where G2 is a group at (]).

(c) Further add to F all groups G2N , where

for any finite nonscalar V4-submodule N of X2′U2′ , G2 is one of

〈 axε
i+1,2y

η
j+1,2, bx

µ(1−ε)
i+1,2 , F (i, j, 0, 0, 0, 1) 〉 i, j ≥ 1

〈 axε
i+1,2, b, F (i, j, 0, 0, 1, 1) 〉 i = j = 0 or i, j ≥ 1

〈 axε
1,2y

η
i+1,2, bx

µ(1−ε)
1,2 , M(−1, i,−1,−1) 〉 i ≥ 2

〈 axε
1,2y2,2, bx

µ(1−ε)
1,2 , M(−1, 1,−1,−1) 〉

〈 a, bx1,2, M(−1, 1,−1,−1) 〉
〈 axε

1,2, b, M(1, i+ 1,−1,−1) 〉 i ≥ 1 ,

and for any finite nonscalar V4-submodule N of X2′V2′ , G2 is one of

〈 axi+1,2y
η
j+1,2, b, F (i, j, 0, 0, 0, 1) 〉 i, j ≥ 1

〈 ax1,2y
η
i+1,2, b, M(−1, i,−1,−1) 〉 i ≥ 1 ,

ε, η, µ ranging freely over {0, 1}.
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