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Abstract: We classify the maximal irreducible periodic subgroups of PGL(g,F), where F is a field of positive char-
acteristic p transcendental over its prime subfield, ¢ # p is prime, and F* has an element of order q.
That is, we construct a list of irreducible subgroups G of GL(q,F) containing the centre F*1, of GL(q,F),
such that G/F*1, is a maximal periodic subgroup of PGL(q,[F), and if H is another group of this kind then
H is GL(qg, F)-conjugate to a group in the list. We give criteria for determining when two listed groups are
conjugate, and show that a maximal irreducible periodic subgroup of PGL(q, F) is self-normalising.
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The classification of finite linear (matrix) groups over a field K is one of the earliest and most fundamental problems
in group theory. Periodic groups are a generalisation of finite groups. In many situations it is difficult to classify
all periodic subgroups of GL(n,K), and, if GL(n, K) is not itself periodic, one attempts instead to describe only the
maximal periodic subgroups of GL(n,K): this approach is recommended since every periodic subgroup of GL(n, K)
is contained in a maximal periodic subgroup. A description of the maximal periodic subgroups of GL(n, C) is given in
[13, Theorem 7, p. 200]. Although the number of conjugacy classes of such groups is finite, a complete classification
of them seems beyond reach. In particular, the problem of classifying the primitive maximal periodic subgroups
of GL(n,C) is equivalent to the problem of classifying the primitive maximal finite subgroups of SL(n,C), the
complexity of which is evident from [5]. However, if K is a field F of positive characteristic p, then the classification
problem becomes more tractable. A maximal irreducible periodic subgroup of GL(n,F) is conjugate to GL(n,F,),
where F, is the subfield of F consisting of all elements that are algebraic over the prime subfield F, (see [16,
Theorem 1], and cf. [15, Theorem 1], [8, 9.23, p. 155]). That result implies ([16, Theorem 2]) that there are only finitely
many conjugacy classes of maximal periodic subgroups of GL(n,F). Several authors [2, 3, 11, 12, 17] have extended
results of [16] to other classical groups over F. More recently, [16] has provided theoretical background for the
efficient solution of problems in computational group theory, such as deciding finiteness of matrix groups (see [4]).
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In this paper we study maximal periodic subgroups of the projective general linear group PGL(n,F). If F = F, then
GL(n,F) is periodic and there is nothing to discuss; hence from now on we insist that F is transcendental over
F,. Despite the apparent connection, the classification problem for PGL(n,F) has quite a different nature to the
problem for GL(n,F). To appreciate this, compare the descriptions in [10] and [13, Chapter 6] of Sylow subgroups of
PGL(n,F) and GL(n,F). The study of periodic subgroups of PGL(n,F) for all n encounters difficulties not present
when studying periodic subgroups of GL(n,F); while the latter groups obviously give rise to periodic subgroups of
PGL(n,F), there exist periodic subgroups of PGL(n,F) whose preimages in GL(n,F) are not periodic. The only
viable approach to the problem of classifying periodic subgroups of PGL(n, ) is to first impose some restriction on
the degree n. For the corresponding problem in GL(n, C), a strong result along those lines is the classification in
[5] of the finite primitive subgroups of SL(gq,C), g prime. Also, in [1, 6], finite irreducible monomial subgroups of
GL(q, C) are classified up to conjugacy. The restriction to prime degree has significant advantages. For example, an
irreducible subgroup of GL(g,F) is either abelian or absolutely irreducible, and it is either monomial or primitive.
These are reasons why some important classes of linear groups have been completely classified only in prime degree.
We refer here to the long-standing problem of classification of soluble linear groups. Although detailed descriptions
of soluble subgroups of GL(n,K) are available for arbitrary n, full classifications have been achieved mainly for
irreducible soluble linear groups of prime degree (see e.g. [13, Chapter V)).

In this paper we classify up to conjugacy the irreducible maximal periodic subgroups of PGL(q,F), g #+ p prime.
This serves as a first step towards classification in more general degrees. Furthermore, our result is connected to
another important problem in linear group theory: classification of locally nilpotent linear groups. That problem
reduces to a partial case of classifying periodic projective linear groups, namely Sylow p-subgroups of PGL(g", K),
where K has characteristic not equal to p (see [13, Chapter VII]). Methods developed in this paper have been
fruitfully applied in [7] to the investigation of locally nilpotent linear groups.

Denote the natural projection GL(q,F) — PGL(g,F) by ;. A subgroup m(H) of PGL(g, F) will be called irreducible
if its preimage H in GL(q,F) is irreducible. We assume throughout that the multiplicative group F* of F has
an element e of order g. Our list of the maximal irreducible periodic subgroups of PGL(q,F) is defined before
Lemma 12 below. As will be seen, groups in the list are absolutely irreducible, and, except possibly those isomorphic
to PGL(q,F,), are soluble.

By Zorn's Lemma, each irreducible periodic subgroup of PGL(n, F) is contained in some maximal irreducible periodic
subgroup of PGL(n, F). The corresponding statement for GL(n, F) is noted here for reference in subsequent argument
(recall [16, Theorem 1)).

Theorem 1.
A periodic irreducible subgroup of GL(n,F) is conjugate to a subgroup of GL(n,F,).

We use the following notation. Let / be the permutation matrix (1 0 (1)) of order g. Unless stated otherwise,
q—1

if F* # (F*)9 then « is an element of F* not in (F*)7 (one requirement for the existence of a is that ' not be
algebraically closed). Let a be the diagonal matrix diag(14-1, @), and denote la by Iy, so I§ = al,. For any
B € F*, X9 — B € F[X] either is irreducible or has a root in F. Hence the characteristic polynomial X7 — «
of I, is irreducible, and the F-enveloping algebra A, = (l,)r of (/) is a field extension of F1, of degree q.
Let d = dlag(1,e,...,€q_1); we readily check that dlud™ = €l,. Then o : x — dxd~', x € A,, defines an
F-automorphism of A, of order g. The order of Aut(A,/F1,) divides g, and therefore A,/F1, is Galois (indeed,
it is a cyclic field extension of F1,). The GL(n,F)-normaliser N(AY) of AX is (AZ,d).

a

Lemma 2.
Suppose that h € GL(q,F) and h? = B1,, BEF*. If B=a'c?, 1 <r < q—1, then tht™" = cl', for some
t e Gl(q,F).

Proof. Both ¢ 'h and I7. have the same characteristic polynomial X7 — a”, which is F-irreducible; therefore,
¢ 'h and I’ are similar. O
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F
Lemma 3.

A field extension A C Mat(q,F,) of F,1, of degree q is cyclic.

Proof. The extension A/F,1, is simple: A = F,(h), (h) < GL(q,F,) irreducible. The extension of F,1,
generated by F,1, and h has degree g, so h € F,(c) where c € A is a root of the polynomial X7 —91, for some
0eF, \(F;)q. Hence A =TF,(c) is cyclic over F,1,. O

Lemma 4.
If A is an algebraic extension of F, and A* # (A*)7 then A*[/(A*)? is finite of order q.

Proof. Let B,y € A*\ (A*)7. The field K generated by B, y, and F, is finite, so K*/(K*)9 is cyclic of order
g. Thus A*/(AX)T = (B(AX)7) = (y(A*)7). O

In the case that F # (FX)? we fix an element oy of FX \ (F).

Lemma 5.
(i) Let A = F(h) C Mat(q,F) be a field, where |x(h)| = q. Then tAt™" = A, for some a € F* \ (F*)9 and
t € GL(q,F).

(i) If A C Mat(q,F,) is a field extension of F,1, of degree q then t,At,"= Fq(ly,) for some t, € GL(q,F,).

Proof. (i If h? = B91,, B € F*, then B~'h € (el,), contradicting the choice of h. Therefore h? = al,,
a ¢ (F*)7, and by Lemma 2, tht™" = I, for some t € GL(q,F). That is, tAt™" = F(tht™") = F(l,).

(ii) By Lemma 3, A = F,(h) where h & F,1, and h? = B1, € F;1,. Just as in the previous paragraph, we
verify that B ¢ (F7)7. Lemma 4 then yields B = agy? for some y € F} and r, 1 < r < g —1. By Lemma 2,
tht™' =yl for some t € GlL(q,F), so that tAt™! = tF,(h)t™" = F,(l,). Since h,yl; € GL(q,F,), t may be
chosen in GL(q,F,). O

Denote F,(lo))* by D,. Certainly D, is periodic, and irreducible.

Lemma 6.
det(D,) = Fx.

Proof. For g >2,0r g =2 and —1 € (F%)?, it is clear that det(D,) € (F})?, because lo, € D,. On the other
hand if g =2 and —1 ¢ (FX)? then there exists (_3 ‘g
appeal to Lemma 4. O

) € D,, where 6,w € F, and 6> + w?> = —1. Now we

Lemma 7.
Let H be a periodic abelian irreducible subgroup of GL(q,F). Then H is conjugate to a subgroup of D,.

Proof. According to Theorem 1, H is conjugate to a subgroup H; of GL(q,F,). Since (Hi)g, is a degree g
extension of F,1,, H; is conjugate to a subgroup of D, by Lemma 5. O

Lemma 8.
Let mt(h) be an element of order q of w(AY). Then h = B}, for some B F*, 1<r<gq—1.

Proof. Recall that A, = F(h) is a cyclic extension of F1,. Kummer theory and Lemma 2 tell us that tht™" = B/
forsome t € GL(q,F), By € F*,and 1 < r < g—1. Therefore tF(h)t™' = F(B1/7) = F(l,) = A,; thatis, t € N(AX).
Write t = d"b, b € AX. Then h =Bt 'I't = B1b~'d="I"d"b = Bie™™I",. O
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Lemma 9.
The group D, is a maximal periodic subgroup of Ay . If a ¢ F;(F*)7 then Fy1, is the unique maximal periodic
subgroup of A}.

Proof. Let P be a periodic subgroup of A, containing D,. By Lemma 7, tPt='< D, for some t € GlL(q,TF).
Since (P)r = (Da)r = Ay, it follows that tAgt™" = Ay, and thus t = d”b for some b € A} and m > 1. Since
d"D,d™™ = D, we get that tD,t™' = d"bD,b~'d~" = D,,, and then tPt~' < D, implies P < D, .

Suppose that a ¢ FX(F*)7. If h € A has finite order then t;ht;' = h, € GL(q,F,) for some t; € GL(q,F).
Suppose that h & F*1,. Then A, = F(h) and At = F(h,). By Lemma 5, t,Fy(ho)t;" = Fy(ly,) for some
t, € GL(q,F,). Therefore tA,t™" = F(lo,) = Ag, Where t =t t;. By Lemma 8, tht™' = BI[X0 for some B € F* and
r. Hence det(l,) = det(BIf,), which gives the contradiction a € Fy(F*)?. Thus h € F*1; andso h € F31,. O

Lemma 10.
If H is a subgroup of GL(q,F) such that det(H) C FX and n(H) is periodic, then H is periodic.

Proof. Let h e H, h" =1, € F*1,. Then B9 = det(h)" € F, proving h has finite order. O

For a field K, we denote the group of all diagonal matrices in GL(g,K) by D(q,K). Let D; = D(q,F,)F*1,.
Define irreducible abelian subgroups D, of GL(q,F) by

D — D,F*1, a=q
¢ (lo, F*14) a ¢ Fy(Fx)9.

Proposition 11.
The group 7t(Dy) is the unique maximal periodic subgroup of 7(D(q,F)), and n(D,) is the unique maximal periodic
subgroup of w(A)).

Proof. Let a = diag(ay,...,a,) be an element of D(q,F) such that a" € F*1,. Then a =
diag(ay, 2a1,...,€4a1) € Dy where ¢, €F), e =1,i=2,...,q9.

Now we proceed to the second claim. Let s(h) be an element of m(AX) of finite order. We show that h € D, .
Assume |7t(h)] > 1 (otherwise h € F*1, < D,). Note thatif |(h)| = g then h € D, by Lemma 8. Set det(h) = y.
Then det(y="h9) = 1 and, by Lemma 10, y~'h9 is a finite order element of AX. Consequently, if a ¢ FX(F*)9
then by Lemma 9, y~'h? € Fy1,; that is, |n(h)] = q. Let a = ap, so y 'h? € D,. By Lemmas 4 and 6 we
have D, = (¢, D¢), det(c) & (FX). Hence y~'h9 = ¢"b9 for some b € D, and 0 < m < g — 1, which implies
det(c)™ € (FX)9. If m > 0 then det(c) € (FX)?: thus (hb=")7 = y14, so |n(hb™")| = q or hb™" € F*1,. In either
situation hb~' € D,. Since b € D, < D,, we are done. O

We introduce some more notation:

tw = Ib, b e D(q,F)

t = ty(a) = db, b € AX

Gy = GL(q, Fo)F*1,

Gy = Gy(a, b) = (Dq, tay), det(ts) ¢ (a,F(F*)7)

Gs = Gs3(b) = (Dy, t1p), det(t1p) & det(Dq) = Fx(F*)9.

For i =1,2,3, define M, to be the set of subgroups of GL(g,F) that are conjugate to groups of the form G;, and
define M7 := {n(H) | H € M;}. Note that for some fields F, M;, M5 are empty; for example this happens if F
is algebraically closed. Denote My UM, UM;3 by M, and M7 U M35 UM by M*.
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Lemma 12.
Forall i =1,2,3, G; is irreducible and n(G;) is periodic.

Proof. Obviously Gy and G, > D, are irreducible. A D(q, F,)-submodule of the underlying space for GL(q, F)
is a direct sum of 1-dimensional submodules. The only such sum invariant under action of /b is the entire space:
in other words Gs is irreducible.

The groups 7(Gy), m1(Dy), and 7(D,) are periodic. So too is 7(G3), for (/b)? = det(b)1, and D; < Gs(b). Similarly,
we observe that D, < G,(a, b) and

t3, = dbdb---db = dbd~'d’bd™?---d" 'bd~""db = g(b)--- 097" (b)b = det(b)1,,
and the proof is complete. O

Remark 13.
|Ga(a, b)[Dqy| = |G3(b)/D1| = q.

Lemma 14.

Let G be an irreducible subgroup of GL(q,K), where K is any field. If G is not absolutely irreducible then G is
abelian.

Proof. This follows from [14, 1.19, p. 12]. 0O

Theorem 15.
Each irreducible periodic subgroup of PGL(q,F) is contained in an element of M*.

Proof. Let H be an irreducible subgroup of GL(g,F) containing F*1, such that s(H) is periodic. Denote the
normal subgroup {h € H | det(h) € F} of H by B. By Theorem 1 and Lemma 10 we may assume B < GL(g,F,).
Suppose that B is absolutely irreducible; then (B)r, = Mat(q,F,). Each element g of H induces (by conjugation)
an automorphism of the simple F,-algebra Mat(q,F,), so by the Noether-Skolem Theorem gx, centralises B for
some x; € GL(q,F,). Since B is absolutely irreducible we have gx, € F*1,, demonstrating that H < G .
Suppose that B is irreducible but not absolutely irreducible. Then B is abelian by Lemma 14, and by Lemma 7
we may further assume B < D,. Hence (B)r = (Da)r = Agy, s0 H < N(Ay). By Proposition 11, H < N(Dy)
and HNAY = HN Dy, . Then [HDy/Dyy| = [HAZ [AZ | divides IN(AZ)/Ax | = g, and thus H < (D, t2) where
tw =db, b€ Ay . If H« Dy and det(ty) € Fi(F*)9 then H = (top, H N Dyy) and det(cty) € Fyy for some
c e F*; that is dbc € B < A;O, and since bc € A;O it follows that d € A;O. This contradiction forces H < Gy or
H < Gz(ao,b).

Suppose that H is primitive and B is reducible, so that B = 1, by Clifford's Theorem. As [H,H] < B, H is
abelian or class 2 nilpotent. For the moment let H be nonabelian. The irreducible maximal metabelian subgroups
of GL(n,K) for any field K are classified in [9, Theorem 1]. By that result, H is conjugate to a subgroup of
Hy = (lc,db,F*1,) where ¢ = diag(14-1,¢1), ¢1 € F*, and b € GL(q,F) commutes with lc. If ¢; = g,
c2 € FX, c3 € F*, then det(c5'/c) = +£¢3; but B is scalar. Thus lc = 1,, a & FX(F*)7, and b € C(l,) = A}. That
is, Hi = (D, typ). If det(tp) = via®y for some v € F*, y € FX, and integer s, then v='/;%t,, € B, which yields
the absurdity d € AZ. We have verified that H < Gy(a, b), H nonabelian. If H is abelian then (H)y = F(h) is
a simple extension of F1,. Let det(h) =y, |n(h)] =r > 1, and B be an element of F* such that h" = B1,. If
B" = B; for some B € F*, m > 1, then h™ = ™, and y™ = B™ = B%. Thatis, y" = 6B] where ¢ € F,
0" = 1. Thus det(B;'h™) € FX, so B;'h™ € B and h™ € F*1,. Then since h ¢ F*1,, m = r if m divides r.
Now B7 = y" € (F*)", so that B € (F*)" if g does not divide r; however, we then infer r =1 from the preceding
(with m = 1). Hence g divides r and, again by the preceding (with m = q), r = q. Thus |n(h)] = ¢ and by
Lemma 5 and Proposition 11, H is contained in an element of M.

Now let H be imprimitive. In prime degree g, this means H is monomial: H is a subgroup of the full mono-
mial group D(q,FF) x Sym(q), up to conjugacy. Since H normalises D(q,F), it follows from Proposition 11 that
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HND(q,F) = Hn Dy. Since H is irreducible, HD;/D; is isomorphic to a transitive subgroup of Sym(q). If
B « Dy then BD;/Dy, as a nontrivial normal subgroup of the transitive prime degree permutation group HD,/Dy,
is transitive. Therefore BD; is irreducible. By Lemma 14, BD; is absolutely irreducible. As shown at the beginning
of the proof, HD(q, F,) is then conjugate to a subgroup of G;. Hence we may take B < D(q,F,).

Let h € H\ HN Dy, and set det(h) = n. Then n='h9 € B, implying h9 € D;. Thus H/H N Dy is isomorphic to a
g -subgroup of Sym(q), and so |H/H N Dy| = q. Moreover H is conjugate to (H N Dy, t;5) for some b € D(q,F).
Since B is diagonal but [ is not, det(t1,) & FX(F*)?. Hence H is contained in an element of M. O

Lemma 16.
For He M; and i = 2,3,

det(H)/(F¥)7| = 2. If FX(F*)7 C det(Gy(a, b)) then a = aq.

Proof. Let H = (D, tp), det(tsy) ¢ (o, FX(F*)9). If a = ay then det(D,) = FX(F*)? = (ap, (F*)7)
by Lemma 6, and if a ¢ FX(F*)9 then det(D,) = {(—1)?'a, (F*)?); in both cases det(H)/(F*)? is an el-
ementary abelian g-group of rank 2. Moreover if FX(F*)? C det(Gy(a,b)) then a = a, for otherwise
det(tz) € {ap, (=19 @, (F*)9) < {(a, FX(F*)9). The rest of the proof is left as an exercise. O

P

We now strengthen Theorem 15, thereby showing that each irreducible periodic subgroup of PGL(q, F) is contained
in an element of M*. This affords a complete and explicit description of the maximal irreducible periodic subgroups
of PGL(g,F) up to conjugacy.

Theorem 17.
Each group in M* is an irreducible maximal periodic subgroup of PGL(q, F).

Proof. By LlLemma 12, we only have to prove the maximality assertions. Let H* := s(H) € M*, and let L* := m(L)
be a periodic subgroup of PGL(q,F), H < L < GL(q,F). By Theorem 15, tHt' < tLt' < G; for some i and
t e Gl(q,F).

Let H = Gy. Then H is primitive, and since groups in M3 are monomial, i # 3. Suppose that tLt~! < Gy(a, b),
so det(H) = F;(F*)7 C det(Gy(a, b)). By Lemma 16, Gy(a, b) = (Dq,, t2), det(ts) & Fi(F*)7 = det(Dy,). Thus
tHt' < Dg,. However H is certainly not abelian. Therefore i = 1; thatis, t € N(Gy) = Gy, andso H =L = Gy.
Let H = Gy(a,b). Since det(H) ¢ FX(F*)?, i is not 1. Suppose that tLt™' < Gs(bs). By Lemma 16,
det(H) = det(Gs(by)) 2 F;(F*)9 and a = ay, so H = (Dqy, top), det(t) ¢ det(Dy) = Fy(F*)?. Since
det(tip,) ¢ det(Dy) = FX(F*)7, it follows that tDgt™" < Dy. However tDyt™" is irreducible, hence not
a subgroup of D(q,F). This contradiction leaves us to consider that tLt~' < Gy(a,bs). By Lemma 16,
det(Gy(a, b)) = det(Gy(an, b)), and a = o if and only if &4 = a. Suppose that a = ay, so det(ty),
det(tyy,) & det(Dg,) = F;(F*)9, and t € N(Dy,). Hence

tHt ™" = t(Doy, tap)t " = (Dgy, ttapt ') < tLt™ < (Dyy, top, )-

Since |Gy(ao, b)/Dgy| = 1Gaao, b1)/Dgy| = gq, we get H = L. Similarly, f a # «a then
|Go(a, b)[F*14] = |Ga(a, b1)[F*14| = g2, and as a consequence H = L.

Let H = Gs(b). We immediately rule out i = 1 because det(Gs3(b)) € FX(F*)9 = det(Gi). Suppose that
tLt™" < Gy(a,b1). By Lemma 16, a = ap. Since det(ty,) & FX(F*)? we have tDit' < D,,, so that the
element t~"/, t of GL(q,F) centralising D(q,F,) must itself be diagonal. However {t~"/, ) is irreducible. Finally,
suppose that tLt~" < G3(b1). Since then t normalises Dy, and |G3(b)/D+| = |G3(b1)/D1| = q, we get tHt™" = tL ¢
as required. O

Remark 18.

By Theorem 15, if F, is finite then every irreducible periodic subgroup of PGL(q,F) is finite. Even if F, is infinite,
PGL(q,F) can have finite periodic subgroups: m(H), where H = Gy(a,b), a # a, is finite. In fact w(H) is a
Sylow g-subgroup of PGL(q,F) of order g°.
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Corollary 19.
If (F*)9 =TF* (e.g. if F is algebraically closed) then every irreducible maximal periodic subgroup of PGL(q,F) is
conjugate to 7(Gy) = PGL(q,F,).

Next, we investigate conjugacy between groups in M*. Of course, it is sufficient to determine when groups in M
are GL(q, F)-conjugate.

Proposition 20.
Groups in different lists M;, i =1,2,3, are not conjugate.

Proof. This has already been established in the proof of Theorem 17 (take L = H there). O

Groups in M are pairwise conjugate, by definition. Several auxiliary results are needed to obtain criteria for
determining conjugacy between groups in the same list M, or Ms3.

Lemma 21.
Suppose that H € M, det(H) 2 FX(F*)9, and (—1)9'a € det(H), a ¢ FX(F*)7. Then H is conjugate to
Gy(a, b) € M.

Proof. Without loss of generality let H = Gy(a1, b1), a1 & FX(F*)7.

Suppose that (—1)9"'a € det(Dq,) = ((—1)9"ay, (F*)7). That is, a = afc? for some c € F* and 1 <r<q—1.
By Lemma 2, tD,t" = D, for some t € GL(q,F), and then tHt™' =(D,, g), where g = tty, t~". Since Do, <H,
so D, < tHt™'.

Suppose that (—1)7"'a ¢ det(D,,). In this case det(t,a) = (—1)7"'a" for some a € Do, and 1 < r < g —1,
whereby we may assume det(tz,) = (—1)97'a’, and thus det(by) = a". Recall from the proof of Lemma 12 that
t§b1 = det(b1)1,. By Lemma 2, tty, t~" = I/ for some t € GL(q,F). Therefore tH't~" = D, where H' = (t,,F*1,).
Also H = (H', I, and tHt™" = (D,, tl,,t"). Note that D,<tHt~". Indeed, since lo,d = €~ 'dl,, and I, by € A
commute, lo, top, I = loydbyl! = €7 'dby = € 'ty . Thus H' A H and D, I tHt™'.

We have shown that H is conjugate to a group (D,,g) where g € N(D,), so that g = d"gy for some g € A
and 1 < m < g —1 (H is nonabelian). Thus (D,,g) = (D,, t2s), b € AX. If det(ty) € (a,F(F*)7) then
det(H) C {a,F}(F*)?) and by Lemma 16, det(H) = (a,F;(F*)?). Therefore H is conjugate to Gy(a,b) € M, as
claimed. O

Lemma 22.

Define t, = la and t, = Ib, where a = diag(az,...,a4,a1),b = diag(b,,...,bq, b1). Let g € D(q,F). Then
gt.g™" = t, if and only if det(t,) = det(ty) and g = Bdiag(ga,...,gq, 1), where g; = a;---ag(b;---by)™",
2<i<gq,and BeF~.

Proof. Let g = diag(ci,...,c,). Easy calculations show that gt,g™" =t, if and only if ay---a, = by--- by

and ¢ = ai+1bf+11 ct1, 1 < i < g—1. Then by recursion ¢; = aiy1---ag(bit ---bq)_1cq. Hence
g = cqdiag(g2, ..., g4.1). O
Lemma 23.

Let g,b; € AX, i=1,2, and put t; = db;. Then gtig~" = t, if and only if det(t;) = det(t2) and t, = tia, where
a=0"(g)g7".

Proof. Suppose that gtig~" = t,. Then tja = dbyd~'gdg™ = dd~"gdbig™" = gtig~"' = t,. Conversely, if
t, = tja then gtig™"' = gtba 'g™" = gt,o7 ' (¢ ")gg™" = gdb,d'g7'd = gg'db,d™'d = db, = t;. O

Proposition 24.
(i) Hi, H, € M3 are conjugate if and only if det(H;) = det(H>).
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(it) H; = (Dq, tan,) € M, i = 1,2, are conjugate if and only if det(H;) = det(H,) and det(b1) = det(bac) for
some ¢ € D,.

Proof. (i) Let H; = (Dy, t1p,) € M3, i =1, 2, and suppose that det(H;) = det(H,). Since det(t1s,) ¢ det(Dy),
we have det(ty,,) = det((ti5,) c) for some c € Dy, 1 < r < q—1. There exist a permutation matrix x and diagonal
matrix b such that x(t5,)"cx~" = t1,. Then by Lemma 22, H; and H, are conjugate (by a monomial matrix).

(i) By virtue of Lemmas 16 and 21 we may assume o = a = «a. Suppose that det(H;) = det(H,) and
det(bs) = det(b)), b, = byc, ¢ € D,. By Hilbert's Theorem 90, bb;" = a7 '(g)g~" for some g € AX. Hence
gtw, g~ = ta, = t,¢ by Lemma 23, and since gD.g7' = Dy, 50 gHig™" = H,.

Now suppose that gHig™" = H,, g € GL(q,F). If g ¢ N(D,) then t, € D,(g7'Dyg), implying
det(t,) € det(D,), in violation of Lemma 16. Thus g € N(D,) = (AZ,d), and then by a = ty, ¢ for a con-
jugate by of by in AY, a € A} such that det(a) =1, c € Dy, and 1 < r < g —1. Obviously r = 1, so

a

det(by) = det(bsc). O

We round out the paper with Proposition 26 below, which is another interesting fact about conjugacy between
irreducible periodic subgroups of PGL(q, F).

Lemma 25.
N(D(q.F,)) = N(D(q,F)) is the full monomial subgroup of GL(q,TF).

Proof. This follows easily from Clifford’s theorem. O

Proposition 26.
Groups in M* are self-normalising in PGL(q, F).

Proof. We show that N := N(H) = H for each H € M. If H = G; then N = H is clear. Let
H = (D, tay) € M3 and g € N. Then g € N(D,) = N(A) and since t;, € N\ N; where N; = NNAY,
we get that N = (Nj, t2p). If g € Ny then gt~ = tyo7'(g)g™" € H,s0 c = 07"(g)g™"' € H. For some n > 1,
" is a scalar B1, of order g (det(c) =1). Thus 07"(g7") = g?". That is, g7 is scalar, and so by Proposition 11,
g e D,. Hence Ny =D,, and N = H.

Let H = (D1, t15) € Ms. Since det(tiy) & det(Dy), so gDig™" = Dy for all ¢ € N, and gti,g~ "Dy = t;,D;
for some r, 1 < r < g —1. We see that r must be 1; otherwise det(t;;) € det(D;). Thus by Lemma 25, and
because the centraliser in Sym(g) of the Sylow g-subgroup (/) is (/) itself, g € (D(q,F), /). Since t;, € N but
tiy & No:= NND(q,F), we have N = (N5, t1). Let g € No. Then gt1,g~" = t;,¢ for some ¢ € D;. By Lemma 10,
c is periodic, say ¢ = diag(e,... €, ) € D(q,F,). By Lemma 22, it follows that g = Bdiag(gz,..., g4, 91),
BeF*, g =(e- - eq)*1. Therefore g € Dy, N, = Dy, and once more N = H. O
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