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Abstract: We classify the maximal irreducible periodic subgroups of PGL(q,F) , where F is a field of positive char-
acteristic p transcendental over its prime subfield, q 6= p is prime, and F× has an element of order q .
That is, we construct a list of irreducible subgroups G of GL(q,F) containing the centre F×1q of GL(q,F) ,
such that G/F×1q is a maximal periodic subgroup of PGL(q,F) , and if H is another group of this kind then
H is GL(q,F) -conjugate to a group in the list. We give criteria for determining when two listed groups are
conjugate, and show that a maximal irreducible periodic subgroup of PGL(q,F) is self-normalising.
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The classification of finite linear (matrix) groups over a field K is one of the earliest and most fundamental problemsin group theory. Periodic groups are a generalisation of finite groups. In many situations it is difficult to classifyall periodic subgroups of GL(n,K) , and, if GL(n,K) is not itself periodic, one attempts instead to describe only themaximal periodic subgroups of GL(n,K) : this approach is recommended since every periodic subgroup of GL(n,K)is contained in a maximal periodic subgroup. A description of the maximal periodic subgroups of GL(n,C) is given in[13, Theorem 7, p. 200]. Although the number of conjugacy classes of such groups is finite, a complete classificationof them seems beyond reach. In particular, the problem of classifying the primitive maximal periodic subgroupsof GL(n,C) is equivalent to the problem of classifying the primitive maximal finite subgroups of SL(n,C) , thecomplexity of which is evident from [5]. However, if K is a field F of positive characteristic p , then the classificationproblem becomes more tractable. A maximal irreducible periodic subgroup of GL(n,F) is conjugate to GL(n,Fa) ,where Fa is the subfield of F consisting of all elements that are algebraic over the prime subfield Fp (see [16,Theorem 1], and cf. [15, Theorem 1], [8, 9.23, p. 155]). That result implies ([16, Theorem 2]) that there are only finitelymany conjugacy classes of maximal periodic subgroups of GL(n,F) . Several authors [2, 3, 11, 12, 17] have extendedresults of [16] to other classical groups over F . More recently, [16] has provided theoretical background for theefficient solution of problems in computational group theory, such as deciding finiteness of matrix groups (see [4]).
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In this paper we study maximal periodic subgroups of the projective general linear group PGL(n,F) . If F = Fa thenGL(n,F) is periodic and there is nothing to discuss; hence from now on we insist that F is transcendental over
Fp . Despite the apparent connection, the classification problem for PGL(n,F) has quite a different nature to theproblem for GL(n,F) . To appreciate this, compare the descriptions in [10] and [13, Chapter 6] of Sylow subgroups ofPGL(n,F) and GL(n,F) . The study of periodic subgroups of PGL(n,F) for all n encounters difficulties not presentwhen studying periodic subgroups of GL(n,F) ; while the latter groups obviously give rise to periodic subgroups ofPGL(n,F) , there exist periodic subgroups of PGL(n,F) whose preimages in GL(n,F) are not periodic. The onlyviable approach to the problem of classifying periodic subgroups of PGL(n,F) is to first impose some restriction onthe degree n . For the corresponding problem in GL(n,C) , a strong result along those lines is the classification in[5] of the finite primitive subgroups of SL(q,C) , q prime. Also, in [1, 6], finite irreducible monomial subgroups ofGL(q,C) are classified up to conjugacy. The restriction to prime degree has significant advantages. For example, anirreducible subgroup of GL(q,F) is either abelian or absolutely irreducible, and it is either monomial or primitive.These are reasons why some important classes of linear groups have been completely classified only in prime degree.We refer here to the long-standing problem of classification of soluble linear groups. Although detailed descriptionsof soluble subgroups of GL(n,K) are available for arbitrary n , full classifications have been achieved mainly forirreducible soluble linear groups of prime degree (see e.g. [13, Chapter V]).In this paper we classify up to conjugacy the irreducible maximal periodic subgroups of PGL(q,F) , q 6= p prime.This serves as a first step towards classification in more general degrees. Furthermore, our result is connected toanother important problem in linear group theory: classification of locally nilpotent linear groups. That problemreduces to a partial case of classifying periodic projective linear groups, namely Sylow p-subgroups of PGL(qt ,K) ,where K has characteristic not equal to p (see [13, Chapter VII]). Methods developed in this paper have beenfruitfully applied in [7] to the investigation of locally nilpotent linear groups.Denote the natural projection GL(q,F)→ PGL(q,F) by π . A subgroup π(H) of PGL(q,F) will be called irreducibleif its preimage H in GL(q,F) is irreducible. We assume throughout that the multiplicative group F× of F hasan element ε of order q . Our list of the maximal irreducible periodic subgroups of PGL(q,F) is defined beforeLemma 12 below. As will be seen, groups in the list are absolutely irreducible, and, except possibly those isomorphicto PGL(q,Fa) , are soluble.By Zorn’s Lemma, each irreducible periodic subgroup of PGL(n,F) is contained in some maximal irreducible periodicsubgroup of PGL(n,F) . The corresponding statement for GL(n,F) is noted here for reference in subsequent argument(recall [16, Theorem 1]).
Theorem 1.
A periodic irreducible subgroup of GL(n,F) is conjugate to a subgroup of GL(n,Fa) .
We use the following notation. Let I be the permutation matrix ( 0 11q−1 0

) of order q . Unless stated otherwise,if F× 6= (F×)q then α is an element of F× not in (F×)q (one requirement for the existence of α is that F not bealgebraically closed). Let a be the diagonal matrix diag(1q−1, α) , and denote Ia by Iα , so Iqα = α1q . For any
β ∈ F× , Xq − β ∈ F[X ] either is irreducible or has a root in F . Hence the characteristic polynomial Xq − αof Iα is irreducible, and the F-enveloping algebra ∆α = 〈Iα〉F of 〈Iα〉 is a field extension of F1q of degree q .Let d = diag(1, ε, . . . , εq−1) ; we readily check that dIαd−1 = εIα . Then σ : x 7→ dxd−1 , x ∈ ∆α , defines an
F-automorphism of ∆α of order q . The order of Aut(∆α /F1q) divides q , and therefore ∆α /F1q is Galois (indeed,it is a cyclic field extension of F1q ). The GL(n,F) -normaliser N(∆×α ) of ∆×α is 〈∆×α , d〉 .
Lemma 2.
Suppose that h ∈ GL(q,F) and hq = β1q , β ∈ F× . If β = αrcq , 1 ≤ r ≤ q − 1 , then tht−1 = cIrα for some
t ∈ GL(q,F) .
Proof. Both c−1h and Irα have the same characteristic polynomial Xq − αr , which is F-irreducible; therefore,
c−1h and Irα are similar.
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Lemma 3.
A field extension ∆ ⊆ Mat(q,Fa) of Fa1q of degree q is cyclic.

Proof. The extension ∆/Fa1q is simple: ∆ = Fa(h) , 〈h〉 ≤ GL(q,Fa) irreducible. The extension of Fp1qgenerated by Fp1q and h has degree q , so h ∈ Fp(c) where c ∈ ∆ is a root of the polynomial Xq−δ1q for some
δ ∈ F×p \ (F×p )q . Hence ∆ = Fa(c) is cyclic over Fa1q .
Lemma 4.
If ∆ is an algebraic extension of Fa and ∆× 6= (∆×)q then ∆×/(∆×)q is finite of order q .

Proof. Let β, γ ∈ ∆× \ (∆×)q . The field K generated by β, γ , and Fp is finite, so K×/(K×)q is cyclic of order
q . Thus ∆×/(∆×)q = 〈β(∆×)q〉 = 〈γ(∆×)q〉 .
In the case that F×a 6= (F×a )q we fix an element α0 of F×a \ (F×a )q .
Lemma 5.(i) Let ∆ = F(h) ⊆ Mat(q,F) be a field, where |π(h)| = q. Then t∆t−1 = ∆α for some α ∈ F× \ (F×)q and

t ∈ GL(q,F) .
(ii) If ∆ ⊆ Mat(q,Fa) is a field extension of Fa1q of degree q then ta∆t−1

a = Fa(Iα0) for some ta ∈ GL(q,Fa) .
Proof. (i) If hq = βq1q , β ∈ F× , then β−1h ∈ 〈ε1q〉 , contradicting the choice of h . Therefore hq = α1q ,
α 6∈ (F×)q , and by Lemma 2, tht−1 = Iα for some t ∈ GL(q,F) . That is, t∆t−1 = F(tht−1) = F(Iα ) .(ii) By Lemma 3, ∆ = Fa(h) where h 6∈ Fa1q and hq = β1q ∈ F×a 1q . Just as in the previous paragraph, weverify that β 6∈ (F×a )q . Lemma 4 then yields β = αr0γq for some γ ∈ F×a and r , 1 ≤ r ≤ q − 1 . By Lemma 2,
tht−1 = γIrα0 for some t ∈ GL(q,F) , so that t∆t−1 = tFa(h)t−1 = Fa(Iα0 ) . Since h, γIrα0 ∈ GL(q,Fa) , t may bechosen in GL(q,Fa) .
Denote Fa(Iα0 )× by Da . Certainly Da is periodic, and irreducible.
Lemma 6.det(Da) = F×a .

Proof. For q > 2 , or q = 2 and −1 ∈ (F×a )2 , it is clear that det(Da) 6⊆ (F×a )q , because Iα0 ∈ Da . On the otherhand if q = 2 and −1 6∈ (F×a )2 then there exists ( θ ω
−ω θ

)
∈ Da , where θ, ω ∈ Fp and θ2 + ω2 = −1 . Now weappeal to Lemma 4.

Lemma 7.
Let H be a periodic abelian irreducible subgroup of GL(q,F) . Then H is conjugate to a subgroup of Da .

Proof. According to Theorem 1, H is conjugate to a subgroup H1 of GL(q,Fa) . Since 〈H1〉Fa is a degree qextension of Fa1q , H1 is conjugate to a subgroup of Da by Lemma 5.
Lemma 8.
Let π(h) be an element of order q of π(∆×α ) . Then h = βIrα for some β ∈ F× , 1 ≤ r ≤ q − 1 .

Proof. Recall that ∆α = F(h) is a cyclic extension of F1q . Kummer theory and Lemma 2 tell us that tht−1 = β1Irαfor some t ∈ GL(q,F) , β1 ∈ F× , and 1 ≤ r ≤ q−1 . Therefore tF(h)t−1 = F(β1Irα ) = F(Iα ) = ∆α ; that is, t ∈ N(∆×α ) .Write t = dmb , b ∈ ∆×α . Then h = β1t−1Irαt = β1b−1d−mIrαdmb = β1ε−mrIrα .
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Lemma 9.
The group Da is a maximal periodic subgroup of ∆×α0 . If α 6∈ F×a (F×)q then F×a1q is the unique maximal periodic
subgroup of ∆×α .

Proof. Let P be a periodic subgroup of ∆×α0 containing Da . By Lemma 7, tPt−1≤ Da for some t ∈ GL(q,F) .Since 〈P〉F = 〈Da〉F = ∆α0 it follows that t∆α0 t−1 = ∆α0 , and thus t = dmb for some b ∈ ∆×α0 and m ≥ 1 . Since
dmDad−m = Da we get that tDat−1 = dmbDab−1d−m = Da , and then tPt−1 ≤ Da implies P ≤ Da .Suppose that α 6∈ F×a (F×)q . If h ∈ ∆×α has finite order then t1ht−11 = ha ∈ GL(q,Fa) for some t1 ∈ GL(q,F) .Suppose that h 6∈ F×1q . Then ∆α = F(h) and t1∆αt−11 = F(ha) . By Lemma 5, taFa(ha)t−1

a = Fa(Iα0 ) for some
ta ∈ GL(q,Fa) . Therefore t∆αt−1 = F(Iα0 ) = ∆α0 where t = tat1 . By Lemma 8, tIαt−1 = βIrα0 for some β ∈ F× and
r . Hence det(Iα ) = det(βIrα0 ) , which gives the contradiction α ∈ F×a (F×)q . Thus h ∈ F×1q and so h ∈ F×a 1q .
Lemma 10.
If H is a subgroup of GL(q,F) such that det(H) ⊆ F×a and π(H) is periodic, then H is periodic.

Proof. Let h ∈ H , hn = β1q ∈ F×1q . Then βq = det(h)n ∈ F×a , proving h has finite order.
For a field K , we denote the group of all diagonal matrices in GL(q,K) by D(q,K) . Let D1 = D(q,Fa)F×1q .Define irreducible abelian subgroups Dα of GL(q,F) by

Dα = { DaF×1q α = α0
〈Iα ,F×1q〉 α 6∈ F×a (F×)q.

Proposition 11.
The group π(D1) is the unique maximal periodic subgroup of π(D(q,F)) , and π(Dα ) is the unique maximal periodic
subgroup of π(∆×α ) .
Proof. Let a = diag(a1, . . . , aq) be an element of D(q,F) such that an ∈ F×1q . Then a =diag(a1, ε2a1, . . . , εqa1) ∈ D1 where εi ∈ F×a , εni = 1, i = 2, . . . , q .Now we proceed to the second claim. Let π(h) be an element of π(∆×α ) of finite order. We show that h ∈ Dα .Assume |π(h)| > 1 (otherwise h ∈ F×1q ≤ Dα ) . Note that if |π(h)| = q then h ∈ Dα by Lemma 8. Set det(h) = γ .Then det(γ−1hq) = 1 and, by Lemma 10, γ−1hq is a finite order element of ∆×α . Consequently, if α 6∈ F×a (F×)qthen by Lemma 9, γ−1hq ∈ F×a 1q ; that is, |π(h)| = q . Let α = α0 , so γ−1hq ∈ Da . By Lemmas 4 and 6 wehave Da = 〈c, Dq

a〉 , det(c) 6∈ (F×a )q . Hence γ−1hq = cmbq for some b ∈ Da and 0 ≤ m ≤ q − 1 , which impliesdet(c)m ∈ (F×a )q . If m > 0 then det(c) ∈ (F×a )q : thus (hb−1)q = γ1q , so |π(hb−1)| = q or hb−1 ∈ F×1q . In eithersituation hb−1 ∈ Dα . Since b ∈ Da ≤ Dα , we are done.
We introduce some more notation:

t1b = Ib, b ∈ D(q,F)
t2b = t2b(α) = db, b ∈ ∆×α
G1 = GL(q,Fa)F×1q
G2 = G2(α, b) = 〈Dα , t2b〉, det(t2b) 6∈ 〈α,F×a (F×)q〉
G3 = G3(b) = 〈D1, t1b〉, det(t1b) 6∈ det(D1) = F×a (F×)q.

For i = 1, 2, 3 , define Mi to be the set of subgroups of GL(q,F) that are conjugate to groups of the form Gi , anddefine M∗
i := {π(H) | H ∈ Mi} . Note that for some fields F , M2,M3 are empty; for example this happens if Fis algebraically closed. Denote M1 ∪M2 ∪M3 by M , and M∗1 ∪M∗2 ∪M∗3 by M∗ .
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Lemma 12.
For all i = 1, 2, 3 , Gi is irreducible and π(Gi) is periodic.

Proof. Obviously G1 and G2 ≥ Dα are irreducible. A D(q,Fa) -submodule of the underlying space for GL(q,F)is a direct sum of 1-dimensional submodules. The only such sum invariant under action of Ib is the entire space:in other words G3 is irreducible.The groups π(G1) , π(D1) , and π(Dα ) are periodic. So too is π(G3) , for (Ib)q = det(b)1q and D1 EG3(b) . Similarly,we observe that Dα E G2(α, b) and
tq2b = dbdb · · · db = dbd−1d2bd−2· · · dq−1bd−(q−1)dqb = σ (b) · · · σq−1(b)b = det(b)1q,

and the proof is complete.
Remark 13.
|G2(α, b)/Dα | = |G3(b)/D1| = q .
Lemma 14.
Let G be an irreducible subgroup of GL(q,K) , where K is any field. If G is not absolutely irreducible then G is
abelian.

Proof. This follows from [14, 1.19, p. 12].
Theorem 15.
Each irreducible periodic subgroup of PGL(q,F) is contained in an element of M∗ .

Proof. Let H be an irreducible subgroup of GL(q,F) containing F×1q such that π(H) is periodic. Denote thenormal subgroup {h ∈ H | det(h) ∈ F×a } of H by B . By Theorem 1 and Lemma 10 we may assume B ≤ GL(q,Fa) .Suppose that B is absolutely irreducible; then 〈B〉Fa = Mat(q,Fa) . Each element g of H induces (by conjugation)an automorphism of the simple Fa -algebra Mat(q,Fa) , so by the Noether-Skolem Theorem gxg centralises B forsome xg ∈ GL(q,Fa) . Since B is absolutely irreducible we have gxg ∈ F×1q , demonstrating that H ≤ G1 .Suppose that B is irreducible but not absolutely irreducible. Then B is abelian by Lemma 14, and by Lemma 7we may further assume B ≤ Da . Hence 〈B〉F = 〈Da〉F = ∆α0 , so H ≤ N(∆×α0 ) . By Proposition 11, H ≤ N(Dα0 )and H ∩ ∆×α0 = H ∩Dα0 . Then |HDα0 /Dα0 | = |H∆×α0 /∆×α0 | divides |N(∆×α0 )/∆×α0 | = q , and thus H ≤ 〈Dα0 , t2b〉 where
t2b = db , b ∈ ∆×α0 . If H 6≤ Dα0 and det(t2b) ∈ F×a (F×)q then H = 〈t2b, H ∩ Dα0〉 and det(ct2b) ∈ F×a for some
c ∈ F× ; that is dbc ∈ B ≤ ∆×α0 , and since bc ∈ ∆×α0 it follows that d ∈ ∆×α0 . This contradiction forces H ≤ G1 or
H ≤ G2(α0, b) .Suppose that H is primitive and B is reducible, so that B = F×a1q by Clifford’s Theorem. As [H,H] ≤ B , H isabelian or class 2 nilpotent. For the moment let H be nonabelian. The irreducible maximal metabelian subgroupsof GL(n,K) for any field K are classified in [9, Theorem 1]. By that result, H is conjugate to a subgroup of
H1 := 〈Ic, db,F×1q〉 where c = diag(1q−1, c1) , c1 ∈ F× , and b ∈ GL(q,F) commutes with Ic . If c1 = c2cq3 ,
c2 ∈ F×a , c3 ∈ F× , then det(c−13 Ic) = ±c2 ; but B is scalar. Thus Ic = Iα , α 6∈ F×a (F×)q , and b ∈ C(Iα ) = ∆×α . Thatis, H1 = 〈Dα , t2b〉 . If det(t2b) = νqαsγ for some ν ∈ F× , γ ∈ F×a , and integer s , then ν−1I−sα t2b ∈ B , which yieldsthe absurdity d ∈ ∆×α . We have verified that H ≤ G2(α, b) , H nonabelian. If H is abelian then 〈H〉F = F(h) isa simple extension of F1q . Let det(h) = γ , |π(h)| = r > 1 , and β be an element of F× such that hr = β1q . If
βm = βr1 for some β1 ∈ F× , m ≥ 1 , then hmr = βm1q and γmr = βmq = βrq1 . That is, γm = δβq1 where δ ∈ F×a ,
δr = 1. Thus det(β−11 hm) ∈ F×a , so β−11 hm ∈ B and hm ∈ F×1q . Then since h 6∈ F×1q , m = r if m divides r .Now βq = γr ∈ (F×)r , so that β ∈ (F×)r if q does not divide r ; however, we then infer r = 1 from the preceding(with m = 1). Hence q divides r and, again by the preceding (with m = q ), r = q . Thus |π(h)| = q and byLemma 5 and Proposition 11, H is contained in an element of M2 .Now let H be imprimitive. In prime degree q , this means H is monomial: H is a subgroup of the full mono-mial group D(q,F) o Sym(q) , up to conjugacy. Since H normalises D(q,F) , it follows from Proposition 11 that
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H ∩ D(q,F) = H ∩ D1 . Since H is irreducible, HD1/D1 is isomorphic to a transitive subgroup of Sym(q) . If
B 6≤ D1 then BD1/D1 , as a nontrivial normal subgroup of the transitive prime degree permutation group HD1/D1 ,is transitive. Therefore BD1 is irreducible. By Lemma 14, BD1 is absolutely irreducible. As shown at the beginningof the proof, HD(q,Fa) is then conjugate to a subgroup of G1 . Hence we may take B ≤ D(q,Fa) .Let h ∈ H \ H ∩ D1 , and set det(h) = η . Then η−1hq ∈ B , implying hq ∈ D1 . Thus H/H ∩ D1 is isomorphic to a
q-subgroup of Sym(q) , and so |H/H ∩ D1| = q . Moreover H is conjugate to 〈H ∩ D1, t1b〉 for some b ∈ D(q,F) .Since B is diagonal but I is not, det(t1b) 6∈ F×a (F×)q . Hence H is contained in an element of M3 .
Lemma 16.
For H ∈Mi and i = 2, 3 , |det(H)/(F×)q| = q2 . If F×a (F×)q ⊆ det(G2(α, b)) then α = α0 .

Proof. Let H = 〈Dα , t2b〉 , det(t2b) 6∈ 〈α,F×a (F×)q〉 . If α = α0 then det(Dα ) = F×a (F×)q = 〈α0, (F×)q〉by Lemma 6, and if α 6∈ F×a (F×)q then det(Dα ) = 〈(−1)q−1α, (F×)q〉 ; in both cases det(H)/(F×)q is an el-ementary abelian q-group of rank 2. Moreover if F×a (F×)q ⊆ det(G2(α, b)) then α = α0 , for otherwisedet(t2b) ∈ 〈α0, (−1)q−1α, (F×)q〉 ≤ 〈α,F×a (F×)q〉 . The rest of the proof is left as an exercise.
We now strengthen Theorem 15, thereby showing that each irreducible periodic subgroup of PGL(q,F) is containedin an element of M∗ . This affords a complete and explicit description of the maximal irreducible periodic subgroupsof PGL(q,F) up to conjugacy.
Theorem 17.
Each group in M∗ is an irreducible maximal periodic subgroup of PGL(q,F) .
Proof. By Lemma 12, we only have to prove the maximality assertions. Let H∗ := π(H) ∈M∗ , and let L∗ := π(L)be a periodic subgroup of PGL(q,F) , H ≤ L ≤ GL(q,F) . By Theorem 15, tHt−1 ≤ tLt−1 ≤ Gi for some i and
t ∈ GL(q,F) .Let H = G1 . Then H is primitive, and since groups in M3 are monomial, i 6= 3. Suppose that tLt−1 ≤ G2(α, b) ,so det(H) = F×a (F×)q ⊆ det(G2(α, b)) . By Lemma 16, G2(α, b) = 〈Dα0 , t2b〉 , det(t2b) 6∈ F×a (F×)q = det(Dα0 ) . Thus
tHt−1 ≤ Dα0 . However H is certainly not abelian. Therefore i = 1; that is, t ∈ N(G1) = G1 , and so H = L = G1 .Let H = G2(α, b) . Since det(H) 6⊆ F×a (F×)q , i is not 1. Suppose that tLt−1 ≤ G3(b1) . By Lemma 16,det(H) = det(G3(b1)) ⊇ F×a (F×)q and α = α0 , so H = 〈Dα0 , t2b〉 , det(t2b) 6∈ det(Dα0 ) = F×a (F×)q . Sincedet(t1b1 ) 6∈ det(D1) = F×a (F×)q , it follows that tDα0 t−1 ≤ D1 . However tDα0 t−1 is irreducible, hence nota subgroup of D(q,F) . This contradiction leaves us to consider that tLt−1 ≤ G2(α1, b1) . By Lemma 16,det(G2(α, b)) = det(G2(α1, b1)) , and α = α0 if and only if α1 = α0 . Suppose that α = α0 , so det(t2b) ,det(t2b1 ) 6∈ det(Dα0 ) = F×a (F×)q , and t ∈ N(Dα0 ) . Hence

tHt−1 = t〈Dα0 , t2b〉t−1 = 〈Dα0 , tt2bt−1〉 ≤ tLt−1 ≤ 〈Dα0 , t2b1〉.

Since |G2(α0, b)/Dα0 | = |G2(α0, b1)/Dα0 | = q , we get H = L . Similarly, if α 6= α0 then
|G2(α, b)/F×1q| = |G2(α, b1)/F×1q| = q2 , and as a consequence H = L .Let H = G3(b) . We immediately rule out i = 1 because det(G3(b)) 6⊆ F×a (F×)q = det(G1) . Suppose that
tLt−1 ≤ G2(α, b1) . By Lemma 16, α = α0 . Since det(t2b1) 6∈ F×a (F×)q we have tD1t−1 ≤ Dα0 , so that theelement t−1Iα0 t of GL(q,F) centralising D(q,Fa) must itself be diagonal. However 〈t−1Iα0 t〉 is irreducible. Finally,suppose that tLt−1 ≤ G3(b1) . Since then t normalises D1 , and |G3(b)/D1| = |G3(b1)/D1| = q , we get tHt−1 = tLt−1as required.
Remark 18.By Theorem 15, if Fa is finite then every irreducible periodic subgroup of PGL(q,F) is finite. Even if Fa is infinite,PGL(q,F) can have finite periodic subgroups: π(H) , where H = G2(α, b) , α 6= α0 , is finite. In fact π(H) is aSylow q-subgroup of PGL(q,F) of order q2 .
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Corollary 19.
If (F×)q = F× (e.g. if F is algebraically closed) then every irreducible maximal periodic subgroup of PGL(q,F) is
conjugate to π(G1) ∼= PGL(q,Fa) .
Next, we investigate conjugacy between groups in M∗ . Of course, it is sufficient to determine when groups in Mare GL(q,F) -conjugate.
Proposition 20.
Groups in different lists Mi , i = 1, 2, 3 , are not conjugate.

Proof. This has already been established in the proof of Theorem 17 (take L = H there).
Groups in M1 are pairwise conjugate, by definition. Several auxiliary results are needed to obtain criteria fordetermining conjugacy between groups in the same list M2 or M3 .
Lemma 21.
Suppose that H ∈ M2 , det(H) 6⊇ F×a (F×)q , and (−1)q−1α ∈ det(H) , α 6∈ F×a (F×)q . Then H is conjugate to
G2(α, b) ∈M2 .

Proof. Without loss of generality let H = G2(α1, b1) , α1 6∈ F×a (F×)q .Suppose that (−1)q−1α ∈ det(Dα1) = 〈(−1)q−1α1, (F×)q〉 . That is, α = αr1cq for some c ∈ F× and 1 ≤ r ≤ q − 1 .By Lemma 2, tDα1 t−1 = Dα for some t ∈ GL(q,F) , and then tHt−1 = 〈Dα , g〉 , where g = tt2b1 t−1 . Since Dα1 EH ,so Dα E tHt−1 .Suppose that (−1)q−1α 6∈ det(Dα1) . In this case det(t2b1a) = (−1)q−1αr for some a ∈ Dα1 and 1 ≤ r ≤ q − 1 ,whereby we may assume det(t2b1) = (−1)q−1αr , and thus det(b1) = αr . Recall from the proof of Lemma 12 that
tq2b1 = det(b1)1q . By Lemma 2, tt2b1 t−1 = Irα for some t ∈ GL(q,F) . Therefore tH ′t−1 = Dα where H ′ = 〈t2b1 ,F×1q〉 .Also H = 〈H ′, Iα1〉 and tHt−1 = 〈Dα , tIα1 t−1〉 . Note that DαEtHt−1 . Indeed, since Iα1d = ε−1dIα1 and Iα1 , b1 ∈ ∆×α1commute, Iα1 t2b1 I−1

α1 = Iα1db1I−1
α1 = ε−1db1 = ε−1t2b1 . Thus H ′ EH and Dα E tHt−1 .We have shown that H is conjugate to a group 〈Dα , g〉 where g ∈ N(Dα ) , so that g = dmg1 for some g1 ∈ ∆×αand 1 ≤ m ≤ q − 1 (H is nonabelian). Thus 〈Dα , g〉 = 〈Dα , t2b〉 , b ∈ ∆×α . If det(t2b) ∈ 〈α,F×a (F×)q〉 thendet(H) ⊆ 〈α,F×a (F×)q〉 and by Lemma 16, det(H) = 〈α,F×a (F×)q〉 . Therefore H is conjugate to G2(α, b) ∈ M2 asclaimed.

Lemma 22.
Define ta = Ia and tb = Ib , where a = diag(a2, . . . , aq, a1), b = diag(b2, . . . , bq, b1). Let g ∈ D(q,F) . Then
gtag−1 = tb if and only if det(ta) = det(tb) and g = βdiag(g2, . . . , gq, 1), where gi = ai · · · aq(bi · · · bq)−1 ,2 ≤ i ≤ q, and β ∈ F× .

Proof. Let g = diag(c1, . . . , cq) . Easy calculations show that gtag−1 = tb if and only if a1 · · · aq = b1 · · · bqand ci = ai+1b−1
i+1ci+1 , 1 ≤ i ≤ q − 1 . Then by recursion ci = ai+1 · · · aq(bi+1 · · · bq)−1cq . Hence

g = cqdiag(g2, . . . , gq, 1) .
Lemma 23.
Let g, bi ∈ ∆×α , i = 1, 2 , and put ti = dbi . Then gt1g−1 = t2 if and only if det(t1) = det(t2) and t2 = t1a, where
a = σ−1(g)g−1 .

Proof. Suppose that gt1g−1 = t2 . Then t1a = db1d−1gdg−1 = dd−1gdb1g−1 = gt1g−1 = t2 . Conversely, if
t2 = t1a then gt1g−1 = gt2a−1g−1 = gt2σ−1(g−1)gg−1 = gdb2d−1g−1d = gg−1db2d−1d = db2 = t2 .
Proposition 24.(i) H1, H2 ∈M3 are conjugate if and only if det(H1) = det(H2) .
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(ii) Hi = 〈Dαi , t2bi〉 ∈ M2 , i = 1, 2 , are conjugate if and only if det(H1) = det(H2) and det(b1) = det(b2c) for
some c ∈ Dα .

Proof. (i) Let Hi = 〈D1, t1bi〉 ∈ M3 , i = 1, 2, and suppose that det(H1) = det(H2) . Since det(t1bi ) 6∈ det(D1) ,we have det(t1b1) = det((t1b2)rc) for some c ∈ D1 , 1 ≤ r ≤ q− 1 . There exist a permutation matrix x and diagonalmatrix b such that x(t1b2)rcx−1 = t1b . Then by Lemma 22, H1 and H2 are conjugate (by a monomial matrix).(ii) By virtue of Lemmas 16 and 21 we may assume α1 = α2 = α . Suppose that det(H1) = det(H2) anddet(b1) = det(b′2) , b′2 = b2c , c ∈ Dα . By Hilbert’s Theorem 90, b′2b−11 = σ−1(g)g−1 for some g ∈ ∆×α . Hence
gt2b1g−1 = t2b′2 = t2b2c by Lemma 23, and since gDαg−1 = Dα , so gH1g−1 = H2 .Now suppose that gH1g−1 = H2 , g ∈ GL(q,F) . If g 6∈ N(Dα ) then t2b1 ∈ Dα (g−1Dαg) , implyingdet(t2b1) ∈ det(Dα ) , in violation of Lemma 16. Thus g ∈ N(Dα ) = 〈∆×α , d〉 , and then t2b′1a = tr2b2c for a con-jugate b′1 of b1 in ∆×α , a ∈ ∆×α such that det(a) = 1 , c ∈ Dα , and 1 ≤ r ≤ q − 1 . Obviously r = 1, sodet(b1) = det(b2c) .
We round out the paper with Proposition 26 below, which is another interesting fact about conjugacy betweenirreducible periodic subgroups of PGL(q,F) .
Lemma 25.N(D(q,Fa)) = N(D(q,F)) is the full monomial subgroup of GL(q,F) .
Proof. This follows easily from Clifford’s theorem.
Proposition 26.
Groups in M∗ are self-normalising in PGL(q,F) .
Proof. We show that N := N(H) = H for each H ∈ M . If H = G1 then N = H is clear. Let
H = 〈Dα , t2b〉 ∈ M2 and g ∈ N . Then g ∈ N(Dα ) = N(∆×α ) and since t2b ∈ N \ N1 where N1 = N ∩ ∆×α ,we get that N = 〈N1, t2b〉 . If g ∈ N1 then gt2bg−1 = t2bσ−1(g)g−1 ∈ H , so c = σ−1(g)g−1 ∈ H . For some n ≥ 1 ,
cn is a scalar β1q of order q (det(c) = 1). Thus σ−1(gqn) = gqn . That is, gqn is scalar, and so by Proposition 11,
g ∈ Dα . Hence N1 = Dα , and N = H .Let H = 〈D1, t1b〉 ∈ M3 . Since det(t1b) 6∈ det(D1) , so gD1g−1 = D1 for all g ∈ N , and gt1bg−1D1 = tr1bD1for some r , 1 ≤ r ≤ q − 1 . We see that r must be 1; otherwise det(t1b) ∈ det(D1) . Thus by Lemma 25, andbecause the centraliser in Sym(q) of the Sylow q-subgroup 〈I〉 is 〈I〉 itself, g ∈ 〈D(q,F), I〉 . Since t1b ∈ N but
t1b 6∈ N2 := N∩D(q,F) , we have N = 〈N2, t1b〉 . Let g ∈ N2 . Then gt1bg−1 = t1bc for some c ∈ D1 . By Lemma 10,
c is periodic, say c = diag(ε2, . . . εq, ε1) ∈ D(q,Fa) . By Lemma 22, it follows that g = βdiag(g2, . . . , gq, g1) ,
β ∈ F× , gi = (εi · · · εq)−1 . Therefore g ∈ D1 , N2 = D1 , and once more N = H .
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