
This is a free offprint provided to the author by the publisher. Copyright restrictions may apply.

MATHEMATICS OF COMPUTATION
Volume 87, Number 310, March 2018, Pages 967–986
http://dx.doi.org/10.1090/mcom/3236

Article electronically published on August 7, 2017

ZARISKI DENSITY AND COMPUTING

IN ARITHMETIC GROUPS

A. DETINKO, D. L. FLANNERY, AND A. HULPKE

Abstract. For n > 2, let Γn denote either SL(n,Z) or Sp(n,Z). We give a
practical algorithm to compute the level of the maximal principal congruence
subgroup in an arithmetic group H ≤ Γn. This forms the main component of
our methods for computing with such arithmetic groups H. More generally,
we provide algorithms for computing with Zariski dense groups in Γn. We
use our GAP implementation of the algorithms to solve problems that have
emerged recently for important classes of linear groups.

1. Introduction

This paper is the next phase in our ongoing project to build up a new area of
computational group theory: computing with linear groups given by a finite set
of generating matrices over an infinite field. Previously we established a uniform
approach for handling such groups in a computer. This is based on the use of
congruence homomorphisms, taking advantage of the residual finiteness of finitely
generated linear groups: a realisation of the ‘method of finite approximation’ [13].
We verified decidability, and then obtained efficient algorithms for solving problems
such as testing finiteness and virtual solvability. We also implemented a suite of
algorithms to perform extensive structural investigation of solvable-by-finite linear
groups.

Most finitely generated linear groups, however, are not virtually solvable, and
computing with those groups is largely unexplored territory. Obstacles include
undecidability of certain algorithmic problems, complexity issues (e.g., growth of
matrix entries), and a dearth of methods. In [11], we initiated the development
of practical algorithms for arithmetic subgroups of semisimple algebraic groups G
defined over the rational field Q. We were motivated by the pivotal role that these
groups play throughout algebra and its applications, and the concomitant demand
for practical techniques and software to work with them.

At this stage we restrict attention to G possessing the congruence subgroup prop-
erty : each arithmetic group H ≤ G(Z) contains the kernel of the congruence ho-
momorphism on G(Z) modulo some positive integer m, the so-called principal con-
gruence subgroup (PCS) of level m. Prominent examples are G(Z) = SL(n,Z) and
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Sp(n,Z) for n > 2 (see [2]). The congruence subgroup property allows us to reduce
much of the computing to the environment of matrix groups over finite rings; but
we first need to know (the level of) a PCS in H. In [11] we showed that construction
of a PCS in an arithmetic group H ≤ SL(n,Z) is decidable. As a consequence, this
proves that other algorithmic questions (e.g., membership testing, orbit-stabilizer
problems, analyzing subnormal structure) are decidable, and yields algorithms for
their solution.

The current paper gives a practical algorithm to compute a PCS in an arithmetic
subgroup H ≤ Γn = SL(n,Z) or Sp(n,Z) for degrees n > 2. More precisely, we
compute the level M = M(H) of H, i.e., the level of the unique maximal PCS in
H. Knowing M , we can undertake further computation with H (this subsumes all
algorithms from [11]).

In contrast to computing with a virtually solvable linear group, computing with
an arithmetic group H ≤ Γn entails reduction modulo ideals that may not be max-
imal. Moreover, we must consider images of H modulo all primes. Fortunately,
H and Γn are congruent modulo p for almost all primes p. This property holds
in a wider class, namely subgroups of Γn that are dense in the Zariski topology
on SL(n,C), respectively, Sp(n,C). Density is weaker than arithmeticity, easier to
test, and indeed furnishes a preliminary step in arithmeticity testing (see [36] for
justification of the significance of this problem). Dense non-arithmetic subgroups
are called thin matrix groups. If H is dense (either arithmetic or thin), then by
the strong approximation theorem H surjects onto SL(n, p), respectively, Sp(n, p),
modulo all but a finite number of primes p [30, p. 391]. We design effective al-
gorithms to compute the set Π(H) of these primes for finitely generated H ≤ Γn

containing a transvection. As a by-product, we get a simple algorithm to test den-
sity of such groups (albeit for odd n only if Γn = SL(n,Z)). Computing Π(H)
when H does not have a known transvection will be dealt with in a subsequent
paper [12]. Our next major result shows that the algorithm to compute the level
of the maximal PCS of an arithmetic subgroup also finds the minimal arithmetic
overgroup L of a finitely generated dense subgroup H of Γn. Algorithms for the
arithmetic group L (e.g., as in [11]) can thereby be used to study H.

When computing with arithmetic groups, the relevant congruence images are
over finite rings Zm := Z/mZ (for virtually solvable groups, the images are over
finite fields). We prove some essential results about subgroups of GL(n,Zm) in
section 2.3. These underlie subsection 2.4, wherein we present our algorithm to
compute the level M of an arithmetic group in Γn. Section 3 is dedicated to density
testing and computing Π(H) for a finitely generated dense group H ≤ Γn. In
section 4, we use our algorithms to solve computational problems that have recently
emerged for important classes of groups. The experimental results demonstrate
the efficiency of our algorithms. Finally, in section 5 we discuss our GAP [15]
implementation of density testing algorithms, including those from [34].

2. The level of an arithmetic subgroup

In this section we develop techniques for computing the level of an arithmetic
group in Γn.

2.1. Setup. We adhere to the following notation. Let R be a commutative unital
ring. The symplectic group of degree n = 2s over R is

Sp(n,R) = {x ∈ GL(n,R) | xJx� = J},
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where

J =

(
0s 1s

−1s 0s

)
.

Notice that Sp(2, R) = SL(2, R). Let tij(m) = 1n +meij ∈ SL(n,R), where eij has
1 in position (i, j) and zeros elsewhere. Define

En,m = 〈tij(m) : i �= j, 1 ≤ i, j ≤ n〉
if Γn = SL(n,R), and

En,m = {ti,s+j(m)tj,s+i(m), ts+i,j(m)ts+j,i(m) | 1 ≤ i < j ≤ s}
∪ {ti,s+i(m), ts+i,i(m) | 1 ≤ i ≤ s}

if Γn = Sp(2s,R). The En,m are elementary subgroups of Γn of level m ([11,
Section 1.1], [17, pp. 223–224]). For R = Z or Zr we have En,1 = SL(n,R) if
Γn = SL(n,R) and En,1 = Sp(n,R) if Γn = Sp(n,R).

We denote by ϕm the reduction modulo m homomorphism on R = Z or R = Zr,
and its entrywise extension to GL(n,R). This congruence homomorphism maps
Γn onto SL(n,Zm) or Sp(n,Zm), respectively. For Γn = SL(n,Z) and n > 2, the
normal closure EΓn

n,m is the principal congruence subgroup (PCS) of level m, i.e.,

the kernel of ϕm on Γn, denoted Γn,m [11, Proposition 1.6]. Similarly, EΓn
n,m is the

kernel Γn,m of ϕm on Γn = Sp(n,Z) when n > 2 [2, Proposition 13.2]. Let H ≤ Γn.
As usual Π := Π(H) is the set of primes p such that ϕp(H) �= ϕp(Γn). If |Γn : H| is
finite, then H contains some Γn,m [2]. Indeed, H contains a unique maximal PCS;
its level is defined to be the level M = M(H) of H.

2.2. Decidability. Let n > 2. Decision problems for arithmetic groups H in Γn =
SL(n,Z) were discussed in [11, Section 3.1]. Here we cover Γn = Sp(n,Z) as well.

Lemma 2.1. If Γn,m ≤ H, then ϕk(H) = ϕk(Γn) for k coprime to m.

Proof. Cf. [11, Remark 1.18]. �
Denote the set of prime divisors of a ∈ Z by π(a).

Corollary 2.2. If H has level M and Γn,m ≤ H, then Π ⊆ π(M) ⊆ π(m).

Proposition 2.3. Let H ≤ Γn be arithmetic. Then computing the level of a PCS
in H is decidable.

Proof. We can compute c = |Γn : H| by the Todd-Coxeter procedure. The core
HΓn

is a normal subgroup of Γn contained in H, and |Γn : HΓn
| divides m := c!.

So xm ∈ HΓn
for all x ∈ Γn. Thus En,m ≤ HΓn

and Γn,m ≤ H. �
Corollary 2.4. If H ≤ Γn is arithmetic, then testing membership of g ∈ Γn in H
is decidable.

Knowing the level m of any PCS in H, we can determine |G : H| and the level
M of H. Therefore, computing M is equivalent to computing |Γn : H|. According
to [16, pp. 531–532], an arithmetic subgroup H ≤ G(Z) of an algebraic Q-group
G ≤ GL(n,C) is given explicitly if there is an effective way to test membership of
elements of G(Z) in H, and we have an upper bound on |G(Z) : H|. By Proposi-
tion 2.3 and Corollary 2.4, every arithmetic subgroup of G = SL(n,C) or Sp(n,C)
is explicitly given. This guarantees decidability of certain algorithmic problems for
these groups, as in [16] (see also [11, Section 3.1]).
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In practice, we would not compute M or |Γn : H| as in the proof of Propo-
sition 2.3: the runtime of the Todd-Coxeter procedure may be arbitrarily large.
Subsection 2.4 gives a practical method for computing M . This requires extra
results, to be presented in the next subsection.

2.3. Existence of supplements of congruence subgroups over Zm. Denote
the kernel of the reduction modulo r homomorphism ϕr on ϕm(Γn) = SL(n,Zm)
or Sp(n,Zm) by Kr. Let p be a prime. Our main objective in this subsection is to
prove the following theorem.

Theorem 2.5. Let a, n ≥ 2, and G = SL(n,Zpa) or Sp(2n,Zpa). Then Kpa−1 has
a proper supplement in G if and only if G is one of

(2.1) SL(2,Z4), SL(2,Z9), SL(3,Z4), SL(4,Z4).

Part of the symplectic group case of Theorem 2.5 is treated in [19].
We need several preparatory lemmas.

Lemma 2.6. Let a ≥ 2.

(i) The kernel Kpa−1 of ϕpa−1 : SL(n,Zpa) → SL(n,Zpa−1) is{
1n + pa−1x

∣∣ x ∈ Mat(n, {0, 1, . . . , p− 1}), trace(x) ≡ 0 mod p
}
.

(ii) Multiplication in Kpa−1 translates to matrix addition in Mat(n,Zp):

(1n + pa−1x)(1n + pa−1y) = 1n + pa−1z,

where z ≡ x + y mod p. In particular, Kpa−1 is an elementary abelian
p-group.

Proof. By induction on n, det(1n + pa−1x) = 1 + pa−1tr(x), so (i) follows. The
other part is obvious. �

Lemma 2.7. Let a ≥ 3 and G = SL(n,Zpa) for n ≥ 2 or G = Sp(n,Zpa) for
n ≥ 4. Then K = Kpa−1 is a central subgroup of L = Kpa−2 and has no proper
supplement in L.

Proof. Since 2a− 3 ≥ a,

(1n + pa−1x)(1n + pa−2v) = 1n + pa−1x+ pa−2v

= (1n + pa−2v)(1n + pa−1x)

in Mat(n,Zpa). Thus K ≤ Z(L).
The subgroup K is generated by pth powers of elements of L. If L = KU , then

K = Lp = KpUp ≤ U ; hence U = L. �

Lemma 2.8. Let G = Sp(4,Zp2) and H = Sp(2,Zp2), with p odd. Denote by C,
D the kernel of ϕp on G, H, respectively. If there is a proper supplement of C in
G, then there is a proper supplement of D in H.

Proof. The assignment

λ :

(
a b
c d

)
�→

⎛
⎜⎜⎝

a 0 b 0
0 1 0 0
c 0 d 0
0 0 0 1

⎞
⎟⎟⎠
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defines an embedding λ : H → G. Clearly λ(D) ≤ C. Let N be the subgroup of C
whose elements are of the form 14 + pr where

(2.2) r =

⎛
⎜⎜⎝

0 v1 0 w1

−w3 v2 w1 w2

0 v3 0 w3

v3 v4 −v1 −v2

⎞
⎟⎟⎠.

Then N complements λ(D) in C, and is normalized by λ(H). Therefore N is a
normal subgroup of W = Cλ(H) = Nλ(H).

The natural epimorphism κ : W → H with kernel N maps C to D. Suppose that
S is a supplement of C in G. Then κ(S∩W ) supplements D in H; if it does not do
so properly, then κ(S ∩C) = D. Assuming this, we prove that C ≤ S, i.e., S = G.

Note that S ∩ C � G. As Lemma 2.6 indicates, we may view C as an additive
subspace of Mat(4,Zp), replacing 14+px by its relic x with entries in {0, 1, . . . , p−1}.
Since S∩C surjects onto D, it must contain a relic a = r+e31 with r as in (2.2). Let
b1 = 14+ e13 ∈ G and a1 = a−ab1 = e11+ e13− e33+ v3(e12− e43)+w3(e23+ e14).

Then a2 = 1
2 (a

b1
1 − a1) = e13 ∈ S ∩ C.

Since G contains a permutation matrix t for (1, 2)(3, 4), e24 = et13 ∈ S ∩ C. We
construct more elements in S ∩ C. Let d1 = 14 + e31, d2 = 14 + e14 + e23, and
d3 = 14 + e32 + e41. Then

1
2 (a

d1
2 − a

d−1
1

2 ) = e11 − e33; conjugating by t gives e22 − e44,

1
2 (a

d3
2 − a

d−1
3

2 ) = e12 − e43; conjugating by t gives e21 − e34,

1
2 (−ad1

2 + a
d−1
1

2 + ad1d2
2 − a

d−1
1 d2

2 ) = e14 + e23,

1
2 (2a2 − ad1

2 − a
d−1
1

2 ) = e31; conjugating by t gives e42,

−a2 + ad1
2 + ad3

2 − ad1d3
2 = e32 + e41.

Modulo p, the relics of C are exactly those matrices x such that Jx is symmetric.
Thus C has Zp-dimension 10. It is readily checked that e13, e24, and the eight other
elements of S ∩ C just listed are linearly independent. So they comprise a basis of
C. Therefore C ≤ S as claimed. �

Everything is in place to prove Theorem 2.5.

Proof. If there were a proper supplement of Kpa−1 in G, then there would be a
proper supplement of Kpa−1 in Kpa−2 . So fix a = 2 by Lemma 2.7.

We appeal to [3], [41, Theorem 1], and [42]. If G is not one of the groups in
(2.1), or if G = Sp(n,Zp2) for n ≥ 6 but G �= Sp(6,Z4), then these results imply
that Kp lies in the Frattini subgroup of G. Therefore G does not have a proper
supplement.

A standard GAP computation reveals that if G is one of the groups in (2.1), then
Kp is properly supplemented.

Since Sp(2, R) = SL(2, R), it remains to prove non-supplementation of Kp in
Sp(6,Z4) and Sp(4,Zp2). The latter follows from Lemma 2.8 for p > 3; the remain-
ing parts may be verified by GAP computations. �

2.4. Computing the level. In this subsection we develop an algorithm to com-
pute the level M of an arithmetic group H ≤ Γn, provided that the set π(M) of
primes dividing M is known. To fulfill this requirement, we determine the precise
relationship between π(M) and Π(H).
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2.4.1. By Corollary 2.2, Π(H) ⊆ π(M). We will prove conversely that the odd part
of π(M) coincides with Π(H). Furthermore, we show how to decide whether M is
even.

Below, Σ stands for either SL or Sp (if Σ = Sp, then of course the degree is
even).

Lemma 2.9. Let n ≥ 3, p be a prime, a ≥ 1, and G = Σ(n,Zpa). Every proper
normal subgroup of G lies in the solvable radical R of G, unless G = Sp(4,Z2a),
which has a subgroup of index 2 containing R = ker ϕ2 (the only proper normal
subgroup of G not in R).

Proof. It is easily seen that R is the full preimage in G of the center of Σ(n, p)
under ϕp. If G = Sp(4,Z2a), then G/R ∼= Sym(6). Excluding this case, G/R is
simple. By Theorem 2.5 and induction, if N �⊆ R is a proper normal subgroup of
G, then n = 3 or 4 and p = a = 2. GAP computations confirm that such an N does
not exist in SL(3,Z4) or SL(4,Z4). The remainder of the proof is consigned as a
straightforward exercise. �

We thank Derek Holt for sharing the next lemma and its proof with us. Recall
that a section of a group G is a quotient of a subgroup of G.

Lemma 2.10 (D. F. Holt). Let S be a finite non-abelian simple group that is not
a section of PSp(4, 2), i.e., S is not isomorphic to Alt(5) or Alt(6). Suppose that
S is a section of a finite classical group G of degree n in characteristic p.

Then there exists a finite classical group Ĝ of degree n in characteristic p, or of
degree less than n, such that a subgroup of Ĝ/Z(Ĝ) is isomorphic to S.

Proof. Suppose that G is a counterexample with n minimal and |G| minimal for
this n, with S a quotient of H ≤ G and |H| minimal as well. Since S is simple, it
must be a section of G/Z(G). We may therefore assume that Z(G) ≤ H. When
H = G, the non-solvable group G/Z(G) is either simple (then the lemma holds for

Ĝ = G); or, if it is O+
4 (q), a direct product of two copies of PSL(2, q) (then we can

take Ĝ = PSL(2, q)). So suppose that H �= G. We apply Aschbacher’s theorem [1]
to H.

If H is in class C1, C3, or C4, then S is a section of a classical group of smaller
degree in characteristic p, contrary to the minimality of n. If H ∈ C2 ∪ C7, then
either the same is true or S is a section of Sym(n) with n ≥ 5. However, Sym(n)
has a faithful representation of degree n− 1 (in any characteristic).

If H ∈ C5 ∪ C8, then S is a section of a smaller classical group of degree n in
characteristic p, contradicting minimality of |G|.

If H ∈ C6, then n = rk > 2 is an odd prime power and P is a section of
PSp(2k, r). Unless k = r = 2 we have 2k < n. In the remaining case that k =
r = 2, S would have to be a section of PSp(4, 2), which was ruled out from the
beginning. �

Lemma 2.11. Let n ≥ 3 and p, q be distinct primes. If P = PΣ(n, q) is a section
of Σ(n, p), then P = PSL(3, 2) or PSp(4, 2).

Proof. Suppose that P = PΣ(n, q) is a section of the classical group G = Σ(n, p).

By Lemma 2.10, P will be isomorphic to a subgroup of Ĝ/Z(Ĝ) for a classical group

Ĝ of degree less than n, or of degree n and in the same characteristic p as G. This
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implies that P has a faithful projective representation ρ of degree less than n, or
of degree n in characteristic p �= q.

Let Σ = SL. By [25, p. 419], the smallest degree of a non-trivial projective
representation of PSL(n, q) in characteristic p �= q and for (n, q) �= (3, 2) is at least
qn−1 − 1 > n. In characteristic q, the minimal degree is n by [24, p. 201]. So the
existence of ρ disposes of this option.

Now let Σ = Sp. The same references as above give the smallest degree dp(n, q) of
a faithful projective representation of PSp(n, q) in characteristic q as dq(n, p) = n,
in coprime characteristic p �= q as dp(n, q) = 1

2 (q
n
2 − 1) for odd q, dp(n, 2) =

2
n
2 −2(2

n
2 −1 − 1) for n > 6, and dp(6, 2) = 7 > 6. Unless (n, q) = (4, 3), the

existence of ρ once more gives a contradiction.
The only remaining case is P = PSp(4, 3) as a section of PSp(4, q) for q �= 3.

Inspection of the maximal subgroups of PSp(4, q) (see [6, Tables 8.12 and 8.13])
shows that this is impossible. �

By happenstance the exceptions of Lemma 2.11 are close to those of Theorem 2.5
and Lemma 2.9 (degree at most 4 and characteristic a power of 2). So the prime
p = 2 will be treated as exceptional if the degree n is 3 or 4. If n > 4 or p is an
odd prime, then we call the pair (n, p) unexceptional.

Lemma 2.12. Let n ≥ 3, a ≥ 1, q ≥ 3 be odd, and let p be a prime not dividing
q such that (n, p) is unexceptional. Suppose that U ≤ Σ(n,Zpaq) = Σ(n,Zpa) ×
Σ(n,Zq) maps onto Σ(n,Zpa) under natural projection of the entire direct product
onto its first factor. Then U contains Σ(n,Zpa).

Proof. The group U is a subdirect product of its projections A, B into Σ(n,Zpa)
and Σ(n,Zq), respectively, where A is all of Σ(n,Zpa). Assuming first that q = rb

is a prime power, we claim that B ≤ U , i.e., U = A×B. If not, then A and B have
isomorphic non-trivial quotients. By Lemma 2.9, any non-trivial quotient of A has
a quotient isomorphic to A/R ∼= PΣ(n, p), where R is the solvable radical of A. In
turn, A/R must be a section of the radical quotient PΣ(n, r) of Σ(n,Zq); but this
contradicts Lemma 2.11.

Suppose now that q = rbs with r prime and gcd(r, s) = 1. By the preceding
paragraph, Σ(n,Zpa) ≤ ϕparb(U). Thus U ∩ Σ(n,Zpas) projects onto Σ(n,Zpa)
modulo pa. The lemma follows by induction. �

Theorem 2.13. Let n > 2 and let H ≤ Γn be arithmetic of level M > 1. Suppose
that (n, p) is unexceptional and ϕp(H) = Σ(n, p). Then p � M .

Proof. Assume that ϕpk−1(H) = Σ(n,Zpk−1) for some k ≥ 2. Then ϕpk(H) is
a supplement of kerϕpk−1 in Σ(n,Zpk), so ϕpk(H) = Σ(n,Zpk) by Theorem 2.5.
Hence ϕpk(H) = SL(n,Zpk) for all k ≥ 1 by induction.

If M = paq with gcd(p, q) = 1, then Γn,q ≤ H by Lemma 2.12. Since H has level
M , this forces a = 0. �

Corollary 2.14. Suppose that H ≤ Γn is arithmetic, n > 2, and ϕp(H) = ϕp(Γn)
for all odd primes p. Then the level of H is a 2-power. If additionally n ≥ 5 and
ϕ2(H) = ϕ2(Γn), then H = Γn.

Remark 2.15. There are finitely generated subgroups H of Γn with infinite index
such that Π(H) = ∅; see [21, 39].
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Let H ≤ Γn for n > 2. Define

δH(m) = |Γn : Γn,mH|.
That is, δH(m) = |ϕm(Γn) : ϕm(H)|. We record a few properties of the delta
function.

Lemma 2.16. Let m, m′ be positive integers.

(a) If m
∣∣m′, then δH(m)

∣∣δH(m′).
(b) Suppose that H is arithmetic of level M , so δH(M) = |Γn : H|. Then

(i) δH(m)
∣∣δH(M);

(ii) δH(m) = δH(M) if and only if M
∣∣m.

The next theorem gives a criterion to test whether M is even (when 2 �∈ Π).

Theorem 2.17. Let n > 2 and H ≤ Γn be arithmetic of level M > 1. Let q be the
product of all odd primes in Π(H). Then M is even if and only if δH(q) < δH(4q).

Proof. By Theorem 2.13, q is the product of all odd primes dividing M .
If M is odd, then Γn,4qΓn,M = Γn,q, so δH(4q) = δH(q).
For the rest of the proof, suppose that M is even: say M = 2ls, l ≥ 1, s ≥ 1

odd. By Lemma 2.16, δH(s) < δH(2ks) for 1 ≤ k ≤ l. So choose the least k and
least multiple r of q dividing s such that δH(r) < δH(2kr). Then let m = 2kr, A =
ϕ2k(H), B = ϕr(H), and N = ϕm(Γn,r ∩H).

If A �= Σ(n,Z2k), then by the same argument as in the first paragraph of the
proof of Theorem 2.13 (here avoiding the exceptions for p = 2 in small degrees),
ϕ4(H) �= Σ(n,Z4). So δH(q) < δH(4q).

Henceforth A = Σ(n,Z2k). Then ϕ2k(N) is a proper (normal) subgroup of A;
otherwise,

Γn,r ≤ Γn = (Γn,r ∩H)Γn,2k

⇒ Γn,r ≤ (Γn,r ∩H)(Γn,2k ∩ Γn,r)

⇒ Γn,r ≤ (Γn,r ∩H)Γn,m ⇒ δH(r) = δH(m).

By Lemma 2.9, ϕ2k(N)R �= A, where R is the solvable radical of A. Since R
contains the kernel of ϕ2 on A, ϕ2(N) �= Σ(n, 2). We conclude that δH(r) < δH(2r).
Therefore k = 1.

Let L = ϕm(Γn,2 ∩H). Then L �= ϕm(H) and A/ϕ2(N) ∼= B/ϕr(L). Let K be
the kernel of ϕq on ϕr(H), i.e., K = ϕr(H) ∩ ϕr(Γn,q) = ϕr(H ∩ Γn,q). We show
that Kϕr(L) �= B. This will imply that ϕ2q(H) is a proper subdirect product of
A = ϕ2(H) and ϕq(H), so δH(q) < δH(2q) ≤ δH(4q) as desired.

If A/ϕ2(N) is solvable, then |A : ϕ2(N)| = 2 by Lemma 2.9. Thus Kϕr(L) �= B
because K has odd order. If A/ϕ2(N) is not solvable, then neither is B/ϕr(L), and
the result again follows. �

For n > 2 and any H ≤ Γn, define

(2.3) Π̃(H) =

{
{2} ∪Π(H) if n ≤ 4, 2 �∈ Π(H), and δH(4q) > δH(q),

Π(H) otherwise,

where q is the product of all odd primes in Π(H). Combining Theorems 2.13
and 2.17 yields the next theorem.

Theorem 2.18. If H is arithmetic of level M > 1, then π(M) = Π̃(H).
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We leave the problem of finding Π(H) aside for the moment, returning to it in
section 3.

2.4.2. Now we aim for our promised algorithm to compute M from π(M).

Lemma 2.19.

(i) Suppose that δH(kpa) = δH(kpa+1) for some prime p, positive integer a,
and k coprime to p. Then δH(kpb) = δH(kpa) for all b ≥ a.

(ii) Let p, a, and k be as in (i). Then δH(lpb) = δH(lpa) for all b ≥ a and any
multiple l of k such that π(l) = π(k).

Proof. (i) If b > a+ 1 is minimal subject to δH(kpb) �= δH(kpa), then δH(kpb−2) =
δH(kpb−1) = δH(kpa). So Γn,kpb−2 ≤ Γn,kpb−1H, implying that Γn,kpb−2 ∩ H is a
proper supplement of Γn,kpb−1 in Γn,kpb−2 . Since

Γn,kpb−2/Γn,kpb
∼= Γn,pb−2/Γn,pb ,

with Γn,kpb−1/Γn,kpb corresponding to Γn,pb−1/Γn,pb under the isomorphism, this
contradicts Lemma 2.7.

(ii) Suppose that there are b ≥ a, and l divisible by k with π(l) = π(k), such that
δH(lpb) �= δH(lpb+1). By (i), δH(kpb) = δH(kpb+1). Define H̄ = Γn,kpb ∩Γn,lpb+1H.

We observe that Γn,kpb = Γn,kpb+1H̄ and H̄/Γn,lpb+1 is a proper subgroup of

Γn,kpb/Γn,lpb+1 = Γn,lpb/Γn,lpb+1 × Γn,kpb+1/Γn,lpb+1 .

The factors of this direct product have coprime orders: one is isomorphic to the
p-group Γn,pb/Γn,pb+1 ; the other is isomorphic to Γn,k/Γn,l, which is a p′-group
because π(l) = π(k). Hence Γn,kpb+1H̄ = Γn,kpb+1K for some K < Γn,lpb in H̄ such

that K ∩ Γn,kpb+1 = Γn,lpb+1 ; but then Γn,kpb+1H̄ �= Γn,kpb . �

The following procedure computes the level of an arithmetic group H. The idea
is to add higher powers of prime divisors of the level while δH increases, until δH
reaches a stabilized value as dictated by Lemma 2.19. (We keep the specification
of input and output completely general at this stage.)

LevelMaxPCS(S, σ)

Input: a generating set S for a subgroup H ≤ Γn; a finite set σ of primes.
Output: an integer N .

For each p ∈ σ let μp = 1 and zp =
∏

q∈σ,q �=p q.

While ∃ p ∈ σ such that δH(pμp+1 · zp) > δH(pμp · zp)
increment μp by 1 and repeat.

Return N =
∏

p∈σ p
μp .

Remark 2.20. The test for even M in Theorem 2.17 (which is invoked only when
n ≤ 4 and we have discovered that 2 �∈ Π(H)) makes a similar comparison of indices
δH , and can be implemented using the same subroutines as above.

Remark 2.21. A reader might ask whether LevelMaxPCS is unduly complicated:
perhaps the least pa such that δH(pa) = δH(pa+1) is the p-part of the level of an
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input arithmetic group? This supposition is false, as the following example (con-
structed from a subdirect product of Γ3,3/Γ3,9

∼= C8
3 with a subgroup of PSL(3, 5)

of order 3) illustrates. Let

H =
〈
Γ3,45,

⎛
⎝ 1 30 0

0 1 0
0 0 1

⎞
⎠,

⎛
⎝ −29 0 −30

0 1 0
30 0 31

⎞
⎠,

⎛
⎝ −29 −45 15

30 1 30
30 0 31

⎞
⎠,

⎛
⎝ 1 0 0

15 −29 −30
30 30 31

⎞
⎠,

⎛
⎝ 16 15 0

−255 −239 0
0 0 1

⎞
⎠,

⎛
⎝ 16 15 30

−255 −239 15
0 0 1

⎞
⎠,

⎛
⎝ 1 0 30

0 1 30
0 0 1

⎞
⎠,

⎛
⎝ 10 0 9

36 −137 66
−99 −453 22

⎞
⎠〉

.

Then δH(3) = δH(9) = 5616, δH(5) = δH(25) = 124000, δH(15) = 696384000, and
δH(45) = 2089152000. Hence H has level 45, not 15.

This example is a phenomenon of mixed primes: if the level ofH is a prime-power
pr for unexceptional (n, p), and δH(pa) = δH(pa+1) for a ≥ 1, then r ≤ a.

The next theorem justifies correctness of LevelMaxPCS in our main situation.

Theorem 2.22. If H = 〈S〉 is arithmetic of level M , then LevelMaxPCS with input
S and σ = π(M) terminates, returning M .

Proof. The values of δH encountered in the while-loop are bounded, because δH(m)
divides δH(M) for all m. Thus LevelMaxPCS terminates.

If pa is the p-part of M , and q
∣∣M is coprime to p, then δH(pa+1q) = δH(paq).

So the output N of LevelMaxPCS must divide M . Since π(N) = π(M), this implies
that δH(M) = δH(N) by Lemma 2.19, and M

∣∣N by Lemma 2.16. �

3. Computing with Zariski dense subgroups

Let n > 2 and H be a finitely generated subgroup of Γn = SL(n,Z) or Sp(n,Z).
We describe how to compute Π(H) when H is arithmetic or, more generally, dense.
This relies on knowing a transvection t ∈ H (which is true of all groups in section 4),
and we restrict to odd degree n for Γn = SL(n,Z). Note that if H is arithmetic,
then it contains transvections, whereas if H is dense, then it need not even contain
a unipotent element [40, Proposition 5.3].

We also provide a simple algorithm to test density of H. Here again H should
contain a known transvection, and n is odd if Γn = SL(n,Z). Less restricted
density testing algorithms are discussed in subsection 3.2. Then subsection 3.3
extends LevelMaxPCS to dense input groups.

3.1. Density and transvections. We formulate various conditions for density.
The first result is truly fundamental (see [27], [31], and [35, Theorem 2.4]).

Theorem 3.1. H is dense if and only if ϕp(H) = ϕp(Γn) for some prime p > 3.

Let F be a field. An element t of GL(n,F) is a transvection if it is unipotent and
1n − t has rank 1.

Theorem 3.2 ([43]). Let n > 2 and p be an odd prime. If G ≤ GL(n, p) is irre-
ducible and generated by transvections, then either G = SL(n, p) or G is conjugate
to Sp(n, p).
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Corollary 3.3. Suppose that n > 2, p is an odd prime, and G ≤ GL(n, p) has a
transvection t such that the normal closure 〈t〉G is irreducible. Then G contains
SL(n, p) or a conjugate of Sp(n, p). In particular, SL(n, p) ≤ G for odd n.

Lemma 3.4. Suppose that G is an irreducible subgroup of GL(n,F) and t ∈ G is
a transvection such that 〈t〉G is reducible. Then G is imprimitive.

Proof. By Clifford’s Theorem, Fn = W1 ⊕ · · · ⊕Wk, where k > 1 and the Wi are
irreducible modules for 〈t〉G. Then t|Wi

must be a transvection for some i, and
t|Wj

= 1Wj
for j �= i. Thus Fn has more than one homogeneous component. �

Corollary 3.5. If H ≤ Γn has a transvection t such that 〈t〉H is not absolutely
irreducible, then H is not dense.

Proof. We may assume that H is absolutely irreducible, so that H is imprimitive
by Lemma 3.4. Since ϕp(Γn) is (absolutely) primitive, ϕp(H) �= ϕp(Γn) for almost
all primes p. �

Corollary 3.6. Let G ≤ GL(n,F) and t ∈ G be a transvection. Then 〈t〉G is
irreducible if and only if G is primitive.

Proof. One direction follows from [43, (1.9)], the other from Lemma 3.4. �

In Proposition 3.7 and Lemma 3.8, H ≤ SL(n,Z) for odd n > 2, or H ≤ Sp(n,Z)
for n > 2.

Proposition 3.7. Suppose that H contains a transvection t. Then H is dense if
and only if 〈t〉H is absolutely irreducible.

Proof. Put N = 〈t〉H . If H is dense, then it is absolutely irreducible and primitive;
so N is absolutely irreducible by Corollary 3.6.

Suppose that N is absolutely irreducible. Since there exists an odd prime p such
that ϕp(N) is absolutely irreducible, and ϕp(N) contains the transvection ϕp(t),
Theorem 3.1 and Corollary 3.3 imply that H is dense. �

Lemma 3.8. H is dense if and only if there are a prime p > 3 and a transvection
t ∈ ϕp(H) such that 〈t〉ϕp(H) is irreducible.

Proof. IfH is dense, then ϕp(H) = SL(n, p) or Sp(n, p) for a prime p > 3. Therefore

ϕp(H) contains a transvection t, and 〈t〉ϕp(H) = ϕp(H) is irreducible. The converse
follows from Theorem 3.1 and Corollary 3.3. �

Lemma 3.9. Suppose that n > 2 is prime and H is an absolutely irreducible
subgroup of SL(n,Z) containing a transvection. Then H is dense.

Proof. Let t ∈ H be a transvection. If 〈t〉H is not absolutely irreducible, then it is
monomial. But t is certainly not monomial. Proposition 3.7 gives the result. �

3.2. Algorithms to test density and compute Π. Assume that n is odd if
Γn = SL(n,Z), and we know a transvection t inH ≤ Γn. By Proposition 3.7, testing
density of H is the same as testing absolute irreducibility of N = 〈t〉H . The latter
may be carried out using the procedure BasisAlgebraClosure in [14, p. 401]. This
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returns a basis of the enveloping algebra 〈N〉Q, as words over an input generating
set S for H. So we have the following density testing algorithm.

IsDense(S, t)

Input: a finite subset S of Γn and a transvection t ∈ H = 〈S〉.
Output: true if H is dense; false otherwise.

A = BasisAlgebraClosure(t, S).
Return true if |A| = n2; else return false.

Remark 3.10. (i) When n is prime, it suffices to test whether H itself is absolutely
irreducible (Lemma 3.9).

(ii) By Corollary 3.5, if 〈t〉H is not absolutely irreducible, then H is not dense.
If 〈t〉H is absolutely irreducible and n is even, then ϕp(H) could be conjugate to
Sp(n, p), so we must proceed by other means to decide whether H is dense.

We now discuss computing Π for dense H = 〈S〉 ≤ Γn, given a transvection t ∈
H. Let A = {A1, . . . , An2} ⊆ H be a basis of 〈〈t〉H〉Q. Form the matrix [tr(AiAj)]ij
and denote its determinant by d. Let Π1 be the set consisting of π(d) together with
the prime divisors of all non-zero non-diagonal entries of t. Then Π ⊆ Π1. To
obtain Π, we check whether ϕp(H) = ϕp(Γn) for p running over Π1. Call this
process PrimesForDense(S, t).

If we have an upper bound on the primes in Π(H), then we can find Π(H).
Such a bound may be derived from [7, pp. 10–11] (a quantitative version of strong
approximation). Alternatively, we could use a Hadamard-type inequality for the
matrix determinant associated to a basis A as above. However, the bounds resulting
from either approach are too large to be practical.

Our algorithms in this subsection need an input transvection. As noted, a
dense group may not contain unipotent elements. Moreover, unipotent elements
are ‘rare’ [29]. We make some brief remarks about density testing (in any degree
n > 2) without this constraint.

A dense group is absolutely irreducible and not solvable-by-finite. Both of these
properties can be readily tested [14], which serves as a preliminary check. Note that
if H is absolutely irreducible and contains a non-trivial unipotent element (e.g., a
transvection), then H is not solvable-by-finite.

Monte Carlo and deterministic algorithms for density testing are given in [34].
In section 5, we compare our implementations of these algorithms and IsDense.
Further afield, see [10] for an algorithm to compute Zariski closures, which could
be applied to test density.

3.3. Computing the minimal arithmetic overgroup. Let n > 2 and H =
〈S〉 < Γn be dense. As Martin Kassabov has pointed out, there are only finitely
many arithmetic subgroups of Γn containing H [23]. Their intersection is the min-
imal arithmetic overgroup of H. We generalize Theorems 2.18 and 2.22, thereby
proving that LevelMaxPCS terminates for input H, returning the level of its minimal
arithmetic overgroup.

Lemma 3.11. If l is the level of the minimal arithmetic overgroup of H, then
π(l) = Π̃(H) as defined in (2.3).
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Proof. Let C be the overgroup. For any m we have Γn,mH = Γn,mC, because
C = Γn,lH is contained in the arithmetic group Γn,mH. Thus Π(C) = Π(H), and
δH(m) = δH(m′) if and only if δC(m) = δC(m

′). The assertion is now evident from
Theorem 2.18. �
Theorem 3.12. LevelMaxPCS with input S and Π̃(H) terminates, returning the
level of the minimal arithmetic overgroup C of H.

Proof. Since δH(m) ≤ |Γn : C| for all m, LevelMaxPCS terminates. Say the output
is M . By Lemma 3.11, π(M) = π(l) and M divides l. Then δC(M) = δC(l) by
Lemma 2.19, so l divides M . �

4. Experimental results

We implemented the algorithms of sections 2 and 3 in GAP, relying on the
packages ‘matgrp’ [20] and ‘recog’ [33]. In this section we describe how we used our
implementation to solve problems for important classes of groups that have been
the focus of much activity. Times quoted for all experiments are in seconds, on a
3.7 GHz Quad-Core late 2013 Mac Pro with 32 GB memory.

4.1. Small subgroups of SL(3,Z). Lubotzky [28] asked whether every arithmetic
subgroup of Γn = SL(n,Z) for n > 2 has a 2-generator subgroup of finite index. To
support an affirmative answer to this question, the following groups were studied
in [26, p. 414]. Let G = 〈x, y, z | zxz−1 = xy, zyz−1 = yxy〉 and F = 〈x, y〉 ≤ G.
For T ∈ Z define the homomorphism βT : G → SL(3,Z) by

x �→ XT =

⎛
⎝ −1 + T 3 −T T 2

0 −1 2T
−T 0 1

⎞
⎠, y �→ YT =

⎛
⎝ −1 0 0

−T 2 1 −T
T 0 −1

⎞
⎠,

z �→ ZT =

⎛
⎝ 0 0 1

1 0 T 2

0 1 0

⎞
⎠.

Lemma 4.1 (Cf. [26, Theorem 2.6]). If T �= 0, then βT (F ) is dense.

Proof. The element b1 = X−1
T Y 3

TXTY
2
TXTY

−1
T XT is a transvection [26, p. 418]. As

βT (F ) is absolutely irreducible, the result follows from Lemma 3.9. �
Theorem 4.2 ([26, Theorem 3.1]). If T �= 0, then βT (F ) is arithmetic.

Earlier attempts to compute |Γ3 : βT (F )| failed [26, pp. 419, 423]. We compute
these indices by first determining π(M) from PrimesForDense({XT , YT }, b1) via
Theorem 2.18. Then M = LevelMaxPCS({XT , YT }, π(M)). Table 1 displays sample
results.

Remark 4.3. Lubotzky’s question has been answered affirmatively [32].

Another representation ρk : G → Γ3 is defined in [26, p. 414] by

ρk(x) =

⎛
⎝ 1 −2 3

0 k −1− 2k
0 1 −2

⎞
⎠, ρk(y) =

⎛
⎝ −2− k −1 1

−2− k −2 3
−1 −1 2

⎞
⎠ ,

ρk(z) =

⎛
⎝ 0 0 1

1 0 −k
0 1 −1− k

⎞
⎠.
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Table 1

T M Index Time
−1 11 7·19 6.1
−2 26 2197 6.7
1 5 31 5.6
2 25 2177 6
3 3373 2331113·1801 29.2
4 2723 2317279 16
5 53367 243251013·31·3463 143.8
6 28335 2293107·13·31 26.5
7 731021 25345·71019·347821 570.7
8 210191 2467213231 98.6
9 362179 233277·13·226201 1652.1
10 255311·17 2263·5107219·31·307 50.7
11 5·113797 24527·111019·31·157·4051 1344.6
12 2733647 2353107·13·211·1987 721.4
13 13329·227 24327·131161·67·73·709 246
14 2673257 2283371119·61·1087 195.5
15 335367·151 293145107313·3121093 272.5
16 2135·307 263337·31·43·733 259.3
18 25361093 2233277·132398581 844
19 19367·307 24395·72191031·43·127·733 466.6
20 27532999 2363·5107·13·31·613·1129 13309.4
50 255623·1019 2243·5257331·79·148483 2584.7
100 275629·67·193 242355257413·31267·1783 892.6

Table 2

k Level |Γ3 : ρk(G)| |Γ3 : ρk(F )| Time
0 11 7·19 2·5·7·19 6
2 225·7 212325·7219·31 212335·7219·31 15.4
3 13 223·13261 233213261 7
4 337 243117213·19 263137213·19 11.3
5 2219·31 210335·312127·331 211355·312127·331 49.1

If k ∈ {0, 2, 3, 4, 5}, then ρk(F ) is arithmetic. Since a transvection in each group
is known [26, p. 419], as before we can use PrimesForDense to find Π, then
LevelMaxPCS with Theorem 2.18 to compute levels. The ρk(F ) and ρk(G) relate
to open conjectures in [26, Section 5]. Table 2 solves the main problem, namely
finding indices in Γ3. The last column states the time to compute |Γ3 : ρk(G)|.

4.2. Monodromy groups. Let f(x) =
∏n

j=1(x − aj) = xn + An−1x
n−1 + · · · +

A0 and g(x) =
∏n

j=1(x − bj) = xn + Bn−1x
n−1 + · · · + B0, where aj = e2πiαj and

bj = e2πiβj for αj , βj ∈ C, 1 ≤ j ≤ n. The group H generated by the companion
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matrices

A =

⎛
⎜⎜⎜⎝

0 · · · 0 −A0

1 · · · 0 −A1

...
. . .

...
...

0 · · · 1 −An−1

⎞
⎟⎟⎟⎠, B =

⎛
⎜⎜⎜⎝

0 · · · 0 −B0

1 · · · 0 −B1

...
. . .

...
...

0 · · · 1 −Bn−1

⎞
⎟⎟⎟⎠

of f(x) and g(x) is the hypergeometric group corresponding to f(x) and g(x). It
is the monodromy group of a hypergeometric ordinary differential equation (see
[4, pp. 331–332], [5, p. 334], [38, p. 592]).

Suppose that f(x), g(x) ∈ Z[x] are reciprocal (f(x) = xnf(1/x) and g(x) =
xng(1/x)) with no common roots in C. Further suppose that they constitute a
primitive pair (there do not exist f1(x), g1(x) ∈ Z[x] and k ≥ 2 such that f(x) =
f1(x

k) and g(x) = g1(x
k)). Then H ≤ Sp(Ω,Z) for some non-degenerate integral

symplectic form Ω on Zn [38, p. 592].
There are 14 pairs (f(x), g(x)) with g(x) ∈ Z[x] coprime to f(x) = (x− 1)4 such

that the roots of g(x) are roots of unity [38, pp. 595, 615]. The group H = 〈A,B〉
in these cases is a monodromy group associated with Calabi-Yau threefolds. Seven
such H are arithmetic, and the rest are thin [5, 37, 38]. In [9, p. 175], H is shown
to be GL(4,Q)-conjugate to G(d, k) := 〈U, T 〉 ≤ Sp(4,Z), where

U =

⎛
⎜⎜⎝

1 1 0 0
0 1 0 0
d d 1 0
0 −k −1 1

⎞
⎟⎟⎠, T =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 1
0 0 1 0
0 0 0 1

⎞
⎟⎟⎠.

Note that conjugation preserves arithmeticity [21, p. 87]. For d2 | d1, let Ĝ(d1, d2)
be the subgroup of Sp(4,Z) consisting of all h satisfying

h ≡

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 ∗ ∗ ∗
0 0 1 0
0 ∗ ∗ ∗

⎞
⎟⎟⎠ mod d1 and h ≡

⎛
⎜⎜⎝

1 ∗ ∗ ∗
0 1 ∗ ∗
0 0 1 0
0 0 ∗ 1

⎞
⎟⎟⎠ mod d2.

If d1 = d and d2 = gcd(d, k), then Ĝ(d1, d2) is an arithmetic subgroup of Sp(4,Z)
containing G(d, k). By [9, Appendix],

(4.1) |Sp(4,Z) : Ĝ(d1, d2)| = d41 ·
∏

p|d1
(1− p−4) · d22 ·

∏
p|d2

(1− p−2).

The overgroup Ĝ(d1, d2) could be used to investigate properties of G(d, k), such
as bounds on |Sp(4,Z) : G(d, k)|; cf. [18, p. 6]. Our implementation enables us to
complete such tasks quickly, including those not completed in [18, p. 6]. Also, for
the first time we can determine the minimal arithmetic overgroup of G(d, k).

We compute Π(G(d, k)) via PrimesForDense with input transvection T , then
the level and index of G(d, k) via LevelMaxPCS; see Table 3.

The arithmetic G(d, k) appear in rows 1–7. For G(d, k) in any other row, we
report the level and index of its minimal arithmetic overgroup. The first column
defines (α1, α2, α3, α4) for A, as α3 = 1 − α2 and α4 = 1 − α1. ‘Time’ is time to
compute the level M , ‘Index G’ is index of the minimal arithmetic overgroup in
Sp(4,Z), and ‘Index Ĝ’ is |Sp(4,Z) : Ĝ(d1, d2)| from (4.1).
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Table 3

(α1, α2) (d, k) M Index G Time Index Ĝ

( 1
10 ,

3
10 ) (1, 3) 2 6 5.8 1

( 16 ,
1
6 ) (1, 2) 2 10 5.4 1

( 16 ,
1
4 ) (2, 3) 23 263·5 7.1 3 · 5

( 16 ,
1
3 ) (3, 4) 2232 293552 12.6 245

( 14 ,
1
4 ) (4, 4) 26 220325 10.1 26325

( 14 ,
1
3 ) (6, 5) 2332 2103652 15.6 243·52

( 13 ,
1
3 ) (9, 6) 2·35 2831452 19.2 27345

( 15 ,
2
5 ) (5, 5) 2·53 28335813 11.9 273213

( 18 ,
3
8 ) (2, 4) 24 211325 7.3 325

( 1
12 ,

5
12 ) (1, 4) 22 255 5.8 1

( 12 ,
1
2 ) (16, 8) 210 240325 20.1 216325

( 13 ,
1
2 ) (12, 7) 2532 2173652 25 283·52

( 14 ,
1
2 ) (8, 6) 27 224325 12.3 28325

( 16 ,
1
2 ) (4, 5) 25 2133·5 9.9 243 · 5

Remark 4.4. Table 3 shows that Ĝ(d1, d2) need not be the minimal arithmetic
overgroup of G(d, k). For instance, if G(d, k) is arithmetic, then it could differ from

Ĝ(d1, d2). Also note that arithmeticity of groups of small index could in principle be
determined by a coset enumeration once generators have been expressed as words
in generators of Sp(4,Z).

5. Comparison of density testing algorithms

We now compare our implementations of the density testing algorithms suggested
in [34] and subsection 3.2.

IsDenseIR1 is [34, Algorithm 1]. It accepts a finite subset S of Γn = SL(n,Z) or
Sp(n,Z), n > 2, and tests whether H = 〈S〉 is dense. This is a Monte Carlo algo-
rithm based on random choice of elements in H that have characteristic polynomial
with large Galois group. Such elements are ubiquitous, in contrast to unipotent el-
ements. IsDenseIR1 returns true if it detects non-commuting g, h ∈ H such that
h has infinite order, and the Galois group of the characteristic polynomial of g is
Sym(n) if Γn = SL(n,Z) or C2 � Sym(n/2) if Γn = Sp(n,Z). An output message
true means that H is dense, whereas false means that suitable g, h were not
found (in that event, H may still be dense). We use an intrinsic GAP function
to compute Galois groups. Attempts at selecting random elements by the default
method for finite groups, product replacement [8], failed due to entry explosion in
a precomputation step. So we took random words in the generators of length up to
50. These elements might be of poor quality. Indeed, sometimes the algorithm as
implemented did not establish density. For G1 below this happened about 40% of
the time. The error rate could be reduced by a better choice of random elements,
or by an iteration over more random elements, but at the cost of runtime.
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The algorithm of [34, p. 23], which we call IsDenseIR2, is deterministic. It
accepts a finitely generated subgroup H of a semisimple algebraic group G(F),
char F = 0, and tests whether H is finite and whether the adjoint representation of
H in GL(m,F) is absolutely irreducible, wherem is the dimension of the Lie algebra
of G(F). By incorporating methods from [13], this algorithm can be implemented
over any field F of characteristic 0.

In Table 4, N is number of generators, and IR1, IR2, DFH are runtimes for our
GAP implementations of IsDenseIR1, IsDenseIR2, IsDense, respectively.

Table 4

Group n N Output IR1 IR2 DFH

G1 5 4 true 0.01 11600 0.2
G2 3 3 true 0.02 0.2 0.04
G3 7 48 true 0.05 − 5
G4 3 3 true 0.01 4.2 0.2
G5 3 3 true 0.01 7.2 0.3
G6 3 3 true 0.01 8.4 0.2
G7 5 15 false 0.01 16200 0.5
G8 5 10 false 0.01 24.4 0.7
G9 11 13 false 0.01 − 1.2

The test groups Gi were selected to vary n, N , and group structure. We know
a transvection in each group (often as one of the generators).

G1, G2, G3 are arithmetic. G1 is SL(5,Z), but not on the canonical generating
set of elementary matrices. The congruence image of G2 ≤ SL(3,Z) is a {7, 79}-
Hall subgroup of SL(3,Z23232). It has level 23232 and index 224321122311. G3 ≤
SL(7,Z) is generated by E7,34572 and the block diagonal matrices diag(h1, h2, 1),
where h1 ∈ β2(G) and h2 ∈ ρ4(G) for G, βT , ρk as in subsection 4.1. It is arithmetic
of level 385274.

G4, G5, G6 are the groups generated by the transvections

T1 =

⎛
⎝ 1 x2 + 1 x

0 1 0
0 0 1

⎞
⎠, T2 =

⎛
⎝ 1 0 0

x 1 x+ 1
0 0 1

⎞
⎠,

T3 =

⎛
⎝ 1 0 0

0 1 0
−x+ 1 x2 1

⎞
⎠

for x = 11, 99, 998, respectively. By [22], these groups are free and surject onto
SL(3, p) modulo p for all primes p (PrimesForDense tells us that Π(Gi) = ∅ too);
i.e., they are thin. As these Gi also surject modulo 4, they are congruent to
SL(3,Zm) modulo m for m ≥ 2.

The last three groups are not dense. G7 is generated by diag(h1, h2) ∈ SL(5,Z),
where h1, h2 are generators of β5(G), SL(2,Z), respectively, together with the
upper triangular elementary matrices. G8 is the group of 5× 5 upper unitriangular
matrices. G9 is generated by diag(h1, h2) ∈ SL(11,Z), where h1, h2 range over
generating sets for SL(6,Z) and SL(5,Z), respectively, together with five randomly
chosen upper unitriangular matrices.
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Explicit matrix generators are available at http://www.math.colostate.edu/

~hulpke/examples/densityex.g.
We write ‘−’ in Table 4 if IsDenseIR2 did not terminate within 12 hours. This

occurred for input of degree greater than 5 (the adjoint representation leads to
calculation in an (n2 − 1)2-dimensional lattice). Finally, remember that IsDense
facilitates the computation of Π(H) for dense input H, unlike IsDenseIR1 and
IsDenseIR2.
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