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Let G be a finitely generated solvable-by-finite linear group. We
present an algorithm to compute the torsion-free rank of G and a
bound on the Prüfer rank of G . This yields in turn an algorithm
to decide whether a finitely generated subgroup of G has finite
index. The algorithms are implemented in Magma for groups over
algebraic number fields.

© 2013 Elsevier Inc. All rights reserved.

In [7,8] we developed practical methods for computing with linear groups over an infinite field F.
Those methods were used to test whether a finitely generated subgroup of GL(n,F) is solvable-by-
finite (SF). We now proceed to the design of further algorithms for finitely generated SF linear groups.
Such a group may not be finitely presentable (see [21, 4.22, p. 66]), so obviously cannot be studied
using approaches that require a presentation; in contrast to, say, polycyclic-by-finite (PF) groups. Extra
restrictions are necessary to make computing feasible. Groups of finite rank are suitable candidates
from this point of view, because they are well-behaved algorithmically [13, Section 9.3]. They also
have convenient structural features (see [13, Section 5.2] and Section 1).

In this paper we develop initial results to enable computing with finitely generated linear groups
of finite rank. Since such groups are Q-linear (Proposition 1.4), our primary focus is the case that F
is an algebraic number field. We first test whether G � GL(n,F) has finite rank. If so, we compute
its torsion-free rank and an upper bound on its Prüfer rank. This furnishes an algorithm to decide
whether a finitely generated subgroup of G has finite index. We determine various asymptotic bounds
of interest in their own right. Algorithms for the structural investigation of G are provided as well:
these construct a completely reducible part, and a finitely generated subgroup with the same rank
as the unipotent radical. Our algorithms have been implemented in Magma [5]. We emphasize that
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computations are performed with a given group in its original representation, avoiding enlargement
of matrices to get an isomorphic copy over Q.

Naturally, it is possible to take advantage of additional properties of G when they are known. If
G is polycyclic then one could obtain its torsion-free rank from a consistent polycyclic presentation
of G , the latter found as in [2]. An even more tractable class is nilpotent-by-finite groups (cf. [10,
Section 7]).

We summarize the layout of the paper. Section 1 gives background on linear groups of finite rank,
including a reduction to SF groups over a number field. Section 2 is an extended treatment of such
groups. In Section 3 we discuss ranks of finite index subgroups; we are indebted to D.J.S. Robinson
for a vital theorem here. Section 3 also shows how to find the rank of a unipotent normal subgroup.
In Section 4 we present our algorithms and some experimental results.

Unless stated otherwise, F is an (infinite) field. The rational field is denoted as usual by Q, and P
is a number field with ring of integers OP .

1. Preliminaries

A general reference for this section is [13, Chapter 5].

1.1. Prüfer rank and torsion-free rank

Recall that a group G has finite Prüfer rank rk(G) if each finitely generated subgroup of G can be
generated by rk(G) elements, and rk(G) is the least such integer.

Theorem 1.1. Let G � GL(n,F) have finite Prüfer rank. Then G is SF, and if char F > 0 then G is abelian-by-
finite (AF).

Proof. See [21, 10.9, p. 141]. �
Corollary 1.2. Let G be a finitely generated subgroup of GL(n,F). If G is AF then it has finite Prüfer rank; if G
is completely reducible and has finite Prüfer rank then it is AF.

Proof. If G is AF then it has a normal finitely generated abelian subgroup A of finite index. Since A
and G/A have finite rank, so too does G . On the other hand, if G is completely reducible and has
finite rank, then it is AF by Theorem 1.1 and [21, 3.5(ii), p. 44]. �
Remark 1.3. The converse of Theorem 1.1 is not true even when G is finitely generated. However, see
Proposition 2.3.

Proposition 1.4. If G is a finitely generated subgroup of GL(n,F) of finite Prüfer rank then G is Q-linear, i.e.,
isomorphic to a subgroup of GL(d,Q) for some d.

Proof. Suppose that char F = 0. By [21, 4.8, p. 56], G is (torsion-free)-by-finite, and by Theorem 1.1,
G is SF. Thus G contains a torsion-free solvable normal subgroup of finite index and finite rank. The
result now follows from [11, Theorem 2].

Suppose that char F > 0. By Theorem 1.1, G is PF. It is well-known that a PF group is Z-linear; see
[13, 3.3.1, p. 57]. �

Theorem 1.1 and Proposition 1.4 essentially reduce the investigation of finitely generated linear
groups of finite rank to the case of SF groups over Q. In Section 2.2 we show conversely that finitely
generated SF subgroups of GL(n,P) always have finite rank. Hence we restrict attention mainly to
groups over number fields.

Now recall that a group G has finite torsion-free rank if it has a subnormal series of finite length
whose factors are either periodic or infinite cyclic. The number h(G) of infinite cyclic factors is the
Hirsch number, or torsion-free rank, of G .
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Lemma 1.5. An SF group with finite Prüfer rank has finite torsion-free rank.

Proof. See [13, p. 85]. �
Lemma 1.6. Let G be a group with normal subgroup N.

(i) If G has finite Prüfer rank then rk(G) � rk(N) + rk(G/N).
(ii) If G has finite torsion-free rank then h(G) = h(N) + h(G/N).

1.2. Polyrational groups

Let U (G) be the unipotent radical of G � GL(n,F); namely, the largest unipotent normal subgroup
of G . Note that G/U (G) is isomorphic to a completely reducible subgroup of GL(n,F). If we exhibit G
in block triangular form with completely reducible blocks, then U (G) is the kernel of the projection
of G onto its main diagonal. Denote the largest periodic normal subgroup of G by τ (G).

Lemma 1.7. Let G be a finitely generated subgroup of GL(n,F) of finite Prüfer rank. Then τ (G) is finite.

Proof. Theorem 1.1 and Proposition 1.4 imply that G is SF and we may assume that char F = 0. Then
τ (G) is isomorphic to a subgroup of τ (G/U (G)), and G/U (G) is finitely generated AF by Corollary 1.2.
So we may further assume that G has a normal abelian subgroup A of finite index. Since A is finitely
generated, τ (G) ∩ A � τ (A) is finite. Thus |τ (G)| = |τ (G)A : A| · |τ (G) ∩ A| is finite. �

A group is polyrational if it has a series of finite length with each factor isomorphic to a subgroup
of the additive group Q+ . So a polyrational group has finite torsion-free and Prüfer ranks.

Proposition 1.8. If G is polyrational then rk(G) = h(G).

Proof. See [13, 5.2.7, p. 93]. �
Theorem 1.9. A finitely generated subgroup G of GL(n,F) has finite Prüfer rank if and only if it is polyrational-
by-finite. In this case, h(G) � rk(G).

Proof. The first statement follows from Theorem 1.1, Lemmas 1.5 and 1.7, and [13, 5.2.5, p. 92]. For
the second, let N be a normal polyrational finite index subgroup of G; then h(G) = h(N) = rk(N) �
rk(G). �

Henceforth, the term ‘rank’ without a qualifier means Prüfer or torsion-free rank.

2. Solvable-by-finite groups over a number field

We now focus on finitely generated SF subgroups of GL(n,P). Set |P : Q| = m. In this section we
obtain more detailed information about these groups that will be used in our algorithms.

A finitely generated subgroup G of GL(n,F) is contained in GL(n, R) where R ⊆ F is a finitely
generated integral domain. The quotient ring R/ρ is a finite field for any maximal ideal ρ of R . We
explain in [7, Section 2] how to construct a congruence homomorphism ϕρ : GL(n, R) → GL(n, R/ρ)

for a maximal ideal ρ such that

• the kernel Gρ of ϕρ on G is unipotent-by-abelian (UA) if G is SF;
• Gρ is torsion-free if char F = 0.
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To be more explicit, let F = P = Q(α) where α has minimal polynomial f (X), and let G = 〈S〉. Then
ϕρ on R ∩ Q is reduction modulo an odd prime p ∈ Z not dividing the discriminant of f (X) nor the
denominators of entries in elements of S ∪ S−1. Hence ϕρ maps R into the finite field Zp(β), where
β is a root of the mod p reduction of f (X). We adhere to this notation from [7].

2.1. Unipotent groups

Denote the group UT(n, K ) of upper unitriangular matrices over a commutative unital ring K by T .
Define Ti to be the subgroup of T consisting of all matrices with their first i − 1 superdiagonals
equal to zero. Then T = T1 > T2 > · · · > Tn = 1 is the lower (and upper) central series of T . The
homomorphism on Ti that maps each element to its ith superdiagonal has kernel Ti+1 and image the
(n − i)-fold direct sum K + ⊕ · · · ⊕ K + .

Lemma 2.1. If G � UT(n,Q) then

(i) G is polyrational,
(ii) rk(G) = h(G) � n(n − 1)/2.

Proof. Let K = Q in the notation introduced just before the lemma. Since (G ∩ Ti)/(G ∩ Ti+1) is
isomorphic to a subgroup of Ti/Ti+1, (i) is clear. Then rk(G) = h(G) by Proposition 1.8. Also, by
Lemma 1.6(ii),

h(T ) = h(T1/T2) + h(T2/T3) + · · · + h(Tn−1/Tn) =
n−1∑
i=1

i = n(n − 1)/2. �

Corollary 2.2. If G � UT(n,P) then G is polyrational and rk(G) = h(G) � nm(nm − 1)/2.

2.2. Ranks of solvable-by-finite groups over number fields

In this section G is a finitely generated subgroup of GL(n,P). We prove that if G is SF then it has
finite rank. Although rk(G) can be arbitrarily large, the ranks of finitely generated SF subgroups of
GL(n,OP) are bounded by functions of n and m, which we give below.

Proposition 2.3. Suppose that G is SF. Then G is polyrational-by-finite, hence of finite Prüfer rank.

Proof. Select an ideal ρ such that Gρ is UA and G/Gρ is finite. Let U be the unipotent radical of Gρ ;
then Gρ/U is finitely generated abelian. Write Gρ/U = H/U × τ (Gρ/U ). Since H/U is a finitely gen-
erated free abelian group and U is conjugate to a subgroup of UT(n,P), H is polyrational. Thus Gρ

has a polyrational normal subgroup of finite index. Consequently the same is true for G . �
Remark 2.4. Retaining the notation in the proof of Proposition 2.3, h(G) = h(Gρ) and rk(G) � rk(Gρ)+
rk(ϕρ(G)) by Lemma 1.6. Furthermore rk(Gρ) � h(H) + rk(τ (Gρ/U )). If we know x ∈ GL(n,P) that
conjugates G to block upper triangular form with completely reducible diagonal blocks, then we can
choose ρ so that the torsion-free group Gρ is polyrational, and thus rk(Gρ) = h(Gρ). In particular,
Gρ is polyrational for any ρ when G is completely reducible.

Remark 2.4 underpins our algorithm to calculate ranks.

Corollary 2.5. A finitely generated subgroup of GL(n,F) has finite Prüfer rank if and only if it is SF and Q-linear.
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Proposition 2.6. The following are equivalent.

(i) G is SF.
(ii) G has finite Prüfer rank.

(iii) G has finite torsion-free rank.

Proof. Theorem 1.1 and Proposition 2.3 give (i) ⇔ (ii). Then (i) ⇔ (iii) by Lemma 1.5 and the Tits
alternative. �
Remark 2.7. Thus, we can test whether G has finite rank using the algorithm of [7, Section 3.2], which
decides the Tits alternative for G . This algorithm accepts a finitely generated linear group over any F;
if it returns false, then the input does not have finite rank.

In fact, Proposition 2.3 holds for a wider class of groups: what is most important here is that
unipotent subgroups of GL(n,P) have finite rank.

Lemma 2.8. If R is a finitely generated subring of P then an SF subgroup H of GL(n, R) has finite Prüfer rank.

Proof. It suffices to confirm that H/U (H) has finite rank. Indeed, H/U (H) is finitely generated AF by
[21, 4.10, p. 57]. �
Proposition 2.9. Suppose that G � GL(n,OP) is SF. Then h(G) � nm(nm+1)/2 and rk(G) � nm(2nm+3)/2.

Proof. Since GL(n,OP) embeds into GL(nm,Z), we may assume without loss of generality that G �
GL(n,Z).

(i) Suppose that G is abelian and Q-irreducible. Then the enveloping algebra 〈G〉Q is a number
field of degree n over Q. Moreover, G is contained in the unit group of the ring of integers of 〈G〉Q .
Hence rk(G) � n by Dirichlet’s Units Theorem [19, Theorem 12.6, p. 227].

(ii) If G is abelian and completely reducible over Q, then [20, Lemma 4, p. 173] implies that G
is conjugate to a group of block diagonal matrices {diag(μ1(g), . . . ,μk(g)) | g ∈ G} where μi(G) �
GL(ni,Z) is Q-irreducible. Therefore, by (i),

rk(G) �
k∑

i=1

rk
(
μi(G)

) =
k∑

i=1

ni = n.

(iii) If G is UA then rk(G) � n(n−1)
2 + n = n(n + 1)/2 by (ii) and Lemma 2.1.

(iv) By Remark 2.4, there is an odd prime p such that h(G) = rk(Gρ) and rk(G) � rk(Gρ) +
rk(ϕρ(G)) for ρ = pR . Thus h(G) � n(n + 1)/2. By [12], a finite completely reducible linear group
of degree n can be generated by �3n/2 elements. Since rk(UT(n, p)) � n(n − 1)/2, we deduce that
rk(ϕρ(G)) � n(n + 2)/2. The stated bound on rk(G) follows. �
Remark 2.10. (i) If n � 4 then the bound on rk(G) in Proposition 2.9 can be improved using
rk(GL(n, p)) � n2

4 + 1; see [15, p. 199].

(ii) rk(GL(n, p)) � �n2/4 because UT(n, p) has an elementary abelian subgroup of order p�n2/4 .

3. Subgroups of finite index

In this section we first derive a rank-based criterion to recognize when a subgroup of a finitely
generated linear group of finite rank has finite index. Subsequently we prove a result about the unipo-
tent radical that forms a key piece of our main algorithm.
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3.1. Ranks and isolators

We recall some definitions from [13, pp. 83–86]. The p-rank (p prime) of an abelian group is the
cardinality of a maximal Zp-linearly independent subset of elements of order p. A solvable group G
has finite abelian ranks (G is a solvable FAR group) if there is a series of finite length in G with each
factor abelian, and of finite torsion-free rank and finite p-rank for every prime p. A minimax group is
a group that has a series of finite length whose factors satisfy either the maximal condition or the
minimal condition on subgroups. The minimality m(G) of a solvable minimax group G is the number
of infinite factors in a series of G with each factor finite, cyclic, or quasicyclic. For finitely generated
solvable groups, the notions of FAR, minimax, and finite Prüfer rank all coincide [13, pp. 175–176].

The following theorem and its proof were communicated to us by D.J.S. Robinson.

Theorem 3.1 (D.J.S. Robinson). Let H be a subgroup of a finitely generated solvable FAR group G. Then |G : H |
is finite if and only if h(H) = h(G).

Proof. The ‘only if’ direction being clear, assume that h(H) = h(G). For N � G ,

h(H N/N) = h(H) − h(H ∩ N) � h(G) − h(N) = h(G/N).

Thus h(H N/N) = h(G/N). We prove that |G : H | is finite by induction on m(G). If m(G) = 0 then G is
finite, so let m(G) > 0.

Denote the finite residual of G by D; this is a divisible periodic abelian group [13, 5.3.1, p. 96].
Suppose that D �= 1. Then m(G/D) < m(G), and by the inductive hypothesis |G : H D| is finite. Hence
H D is finitely generated, so H D = H D0 where D0 � D is finitely generated, i.e., finite. This implies
that |H D : H | is finite, as is |G : H |.

Suppose now that D = 1. Then G has a non-trivial torsion-free abelian normal subgroup A
(for example, the penultimate term in the derived series of a non-trivial torsion-free normal sub-
group of G). Since m(G/A) < m(G), by induction |G : H A| is finite. Next, H ∩ A �= 1; otherwise
h(H) = h(H A/A) = h(G/A) < h(G). So the result holds for H A/(H ∩ A) and its subgroup H/(H ∩ A)

by induction. Therefore |H A : H | is finite, as is |G : H |. �
Remark 3.2. Finitely generated linear groups are residually finite [21, 4.2, p. 51], so for our algorithms
we only need that part of the proof of Theorem 3.1 in which D = 1.

Corollary 3.3. Let H � G � GL(n,F) where G is finitely generated and of finite Prüfer rank. Then |G : H | is
finite if and only if h(H) = h(G).

The isolator in G of a subgroup H is

IG(H) = {
x ∈ G

∣∣ xk ∈ H for some positive integer k
}
.

Theorem 3.4. Let G be a finitely generated SF group, and let H � G. Then |G : H | is finite if and only if
IG(H) = G.

Proof. See [13, 2.3.14, p. 45]. �
Lemma 3.5. Suppose that G is a solvable FAR group with a finitely generated subgroup H such that h(H) =
h(G). Then IG(H) = G.

Proof. Since h(〈g, H〉) = h(H) for every g ∈ G , the lemma follows from Theorem 3.1. �
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Lemma 3.6. Suppose that G is a group of finite torsion-free rank, and H is a subgroup of G such that
IG(H) = G. Then h(G) = h(H).

We consider an illustrative example. Let G � UT(n,C) be an algebraic group defined over Q, and
set G S := G ∩ GL(n, S) for a subring S of C. Recall that L � GQ is an arithmetic subgroup of G if L is
commensurable with GZ; i.e., L ∩ GZ has finite index in both L and GZ .

Lemma 3.7. A finitely generated subgroup L of GQ is an arithmetic subgroup of G if and only if rk(L) = rk(GQ).

Proof. By [17, Lemma 6, p. 138], H := L ∩ GZ has finite index in L. Since L is polyrational and nilpo-
tent, rk(H) = rk(L) by Theorem 3.1. Similarly (as GZ is finitely generated) |GZ : H | < ∞ if and only
if rk(GZ) = rk(H). Also, it is not difficult to verify that GQ = IGQ (GZ). Hence rk(GQ) = rk(GZ) by
Lemma 3.6. �
Remark 3.8. By Lemma 3.7 and [6, Corollary 7.2], if L is arithmetic in G then h(L) is the dimension
of G as an algebraic group.

3.2. Prüfer rank of a unipotent normal subgroup

Let G be a finitely generated SF subgroup of GL(n,P). We show how to construct a finitely gener-
ated subgroup of U (G) with the same Prüfer rank as U (G).

Suppose that G = 〈x1, . . . , xr〉, and let Y be a finite subset of U (G). The normal closure N = 〈Y 〉G

is in U (G). Define subgroups H1 � H2 � · · · of N as follows: let H1 = 〈Y 〉, and for i � 1, if Hi =
〈yi1, . . . , yisi 〉 then

Hi+1 = 〈
yij, yxk

i j , y
x−1

k
i j : 1 � j � si, 1 � k � r

〉
.

Since rk(Hi) � rk(Hi+1) � rk(N), there exists t such that rk(Ht) = rk(Ht+1).

Lemma 3.9. rk(Ht) = rk(N).

Proof. By Lemma 3.5, I Ht+1 (Ht) = Ht+1. So for 1 � i � r and 1 � j � st , there are positive integers

mij,m̄i j such that (yxi
t j )

mij , (y
x−1

i
t j )m̄i j ∈ Ht . We claim that yx

t j ∈ IG (Ht) for all j and x ∈ G . First,

(
yxv x±1

u
t j

)mv j = ((
yxv

t j

)mv j
)x±1

u ∈ Ht+1

since H
x±1

k
i � Hi+1. Similarly (yx−1

v x±1
u

t j )m̄v j ∈ Ht+1. Induction on the word length of x then establishes

that yx
t j ∈ IG (Ht) as claimed. Hence N = H G

1 � H G
t ⊆ IG(Ht); i.e., N = IN (Ht). By Lemma 3.6, the proof

is complete. �
4. Computing ranks of solvable-by-finite linear groups

Let S be a finite subset of GL(n,P) where |P : Q| = m, and let G = 〈S〉. In this section we present
algorithms to compute h(G) and a bound on rk(G). These lead directly to an algorithm that tests
whether a finitely generated subgroup of G has finite index.

Proposition 2.6 enables us first to test whether G has finite Prüfer (and thereby torsion-free) rank:
IsFiniteRank(G) returns true precisely when the procedure IsSolvableByFinite(G) as in
[7, p. 402] returns true. From now on, G has finite rank.



Author's personal copy

194 A.S. Detinko et al. / Journal of Algebra 393 (2013) 187–196

4.1. Auxiliary procedures

4.1.1. Suppose that G is abelian and irreducible. Methods to construct a presentation of G are
reasonably standard; see [1, Chapter 4] for details. We can find the homogeneous components of G
(e.g., by [16]), so the methods extend to completely reducible abelian G . For such input we have
procedures (i) PresentationA, which returns a presentation of G; and (ii) RankA, which returns
the torsion-free rank of G . Then rk(G) = RankA(G) + ε where ε = 0 if G is torsion-free and ε = 1
otherwise.

4.1.2. If G � UT(n,P) then G is isomorphic to a subgroup of UT(nm,Z) [17, Lemma 2, p. 111].
Since UT(nm,Z) is polycyclic, a constructive polycyclic sequence for G may be calculated as in [18,
Chapter 9] or [1, Chapter 5]. From this one immediately reads off RankU(G) := h(G) = rk(G).

4.2. Completely reducible groups

If G is completely reducible then Gρ is completely reducible abelian and h(G) = h(Gρ). Thus
RankCR(G) := h(G) = RankA(Gρ) as per Section 4.1.1.

Now let F be arbitrary and G � GL(n,F) be finitely generated SF. In [7, Section 4] we show how
to test whether G is completely reducible. Here we describe a more general procedure.

We refer to [7, Section 3.2]. The computations carried out in a run of IsSolvableByFinite(G)

yield a change of basis matrix x such that Gx is block upper triangular and all diagonal blocks of
Gx

ρ are abelian. Treating each diagonal block of Gx separately, assume that Gρ is abelian. Let M =
{h1, . . . ,ht} = NormalGenerators(Gρ); i.e., Gρ = 〈M〉G . With a subscript ‘u’ denoting unipotent
part from a Jordan decomposition, H = 〈(h1)u, . . . , (ht)u〉 = 〈M〉u � (Gρ)u . Set U = Fix((Gρ)u) and
W = Fix(H). Since G normalizes (Gρ)u , we see that U is a G-module. We find U as follows.

(1) W̄ := W .
(2) While ∃gi ∈ S such that gi W̄ �= W̄

W̄ := gi W̄ ∩ W̄ .
(3) Return W̄ .

Clearly U ⊆ W̄ . Let v ∈ W̄ and g ∈ G; then (hi)
g
u v = g−1(hi)u .gv = g−1 gv(because gv ∈ W̄ ⊆ W ) = v .

This shows that W̄ = U . By [20, Theorem 5, p. 172], U is completely reducible as a Gρ -module.
Therefore, if char F does not divide |G : Gρ |, then U is a completely reducible G-module by [20,
Theorem 1, p. 122]. Repeat the previous computation after replacing the current underlying space V
for G by V /U . Continuing in this fashion, we eventually produce a flag V = V 1 ⊃ V 2 ⊃ · · · ⊃ Vl ⊃ {0}
of G-modules with each quotient V i/V i+1 completely reducible.

We adopt the following notation in our pseudocode. For a matrix group H in block upper trian-
gular form, μ denotes the projection of H onto its block diagonal, and μi is the projection onto its
ith diagonal block. When all diagonal blocks are completely reducible, kerμ = U (H) and μ(H) is a
‘completely reducible part’ of H .

CompletelyReduciblePart(G)

Input: a finite subset S of GL(n,F) such that char F does not divide |G : Gρ | and G = 〈S〉 is SF.
Output: a generating set for a completely reducible part of G .

(1) Replace G by Gx in block upper triangular form with k diagonal blocks, where μ(Gx
ρ) is abelian.

(2) M := NormalGenerators(Gρ).
(3) For i = 1 to k, determine xi such that μi(G)xi is block upper triangular with completely reducible

diagonal blocks, by the recursive calculation of fixed point spaces for 〈μi(M)〉u .
(4) Return μ(S y) where y = x · diag(x1, . . . , xk).
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Remark 4.1. If G is nilpotent-by-finite then we can take k = 1, μ1 = id, and omit step (1).

We need one other procedure for completely reducible G � GL(n,P): PresentationCR(G) re-
turns a presentation of G . This combines a presentation of ϕρ(G), computed using the machinery
of [3], with PresentationA(Gρ).

4.3. The unipotent radical

Our next procedure is based on Lemma 3.9 and its proof.

RankOfUnipotentRadical(G)

Input: a finite subset S = {g1, . . . , gr} of GL(n,P) such that G = 〈S〉 is SF.
Output: h(U (G)) = rk(U (G)).

(1) G̃ := 〈CompletelyReduciblePart(G)〉.
(2) Find X := NormalGenerators(U (G)) from PresentationCR(G̃).

(3) While RankU(〈x, xgi , xg−1
i : x ∈ X, 1 � i � r〉) > RankU(〈X〉) do

X := {
x, xgi , xg−1

i : x ∈ X, 1 � i � r
}

.
(4) Return RankU(〈X〉).

Remark 4.2. The finitely generated subgroup H = 〈X〉 of U (G) such that rk(H) = rk(U (G)) found at
the end of step (3) could be valuable in further computations with G .

4.4. Algorithms for computing ranks, and an application

Guided by Remark 2.4, we assemble our constituent procedures into the final algorithms.

HirschNumber(G)

Input: a finite subset S of GL(n,P) such that G = 〈S〉 is SF.
Output: h(G).

Return RankCR(〈CompletelyReduciblePart(G)〉) + RankUnipotentRadical(G).

Then RankBound(G) := HirschNumber(G) + rk(GL(nm,3)) is an upper bound on the Prüfer
rank of G (see Remark 2.10).

Corollary 3.3 gives us the following.

IsOfFiniteIndex(G, H)

Input: finite subsets S1, S2 of GL(n,P) such that G = 〈S1〉 is SF and H = 〈S2〉 � G .
Output: true if |G : H | is finite; false otherwise.

Return true if HirschNumber(G) = HirschNumber(H); else return false.

4.5. The implementation

We have implemented our algorithms as part of the Magma package Infinite [9]. An algorithm of
Biasse and Fieker [4] is used to work with irreducible abelian groups over number fields.

We report on several examples below (these will be available in a future release of Infinite).
Our experiments were performed on a 2 GHz machine using Magma V2.19-6. The test groups are
conjugated to ensure that generators are not sparse and matrix entries are large. Each time has been
averaged over three runs. As observed in [7,8], the single most expensive task is evaluating relators
to obtain normal generators for the congruence subgroup.
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(1) G1 is an irreducible non-abelian subgroup of GL(2,Q(i)), i = √−1, and G2 � GL(5,Q) is a solv-
able group from the database of maximal finite rational matrix groups [14]. Then G3 = G1 ⊗ G2 is
a 5-generator AF completely reducible subgroup of GL(10,Q(i)). We compute h(G3) = 3 in 10s.

(2) G4 � G3 ⊗ UT(3,Z) is a 15-generator, nilpotent-by-finite (NF), reducible but not completely re-
ducible subgroup of GL(30,Q(i)). We compute h(G4) = 6 in 87s.

(3) G5 � H ⊗ T where T is an upper triangular subgroup of GL(6,Q) and H = diag(H1, H2); H1,
H2 are maximal finite rational matrix groups of degrees 4, 2 respectively. The 8-generator group
G5 is SF and not NF. We compute h(G5) = 7 in 1104s, and establish that a random 4-generator
subgroup has infinite index in 163s.

(4) Let a ∈ GL(6,Q) be of the form diag(1,2, . . .) and let b =
(

x y
0 u

)
where x =

(
1 1
0 1

)
, y is a non-zero

2×4 matrix over Q, and u ∈ UT(4,Z). Then G6 � GL(6,Q(
√

5 )) is conjugate to a group generated
by a, b, another diagonal matrix and two other unipotent matrices in GL(6,Q). Note that G6 is
SF but not PF. We compute h(G6) = 12 in 18s.

(5) For each of G3, G4, G6 we select random finitely generated non-cyclic subgroups Ĝ j . To establish
that Ĝ j has finite index in G j takes 4s, 53s, and 17s respectively.
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