
This article appeared in a journal published by Elsevier. The attached
copy is furnished to the author for internal non-commercial research
and education use, including for instruction at the authors institution

and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party

websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright

http://www.elsevier.com/copyright

Author's personal copy

Journal of Symbolic Computation 44 (2009) 1037–1043

Contents lists available at ScienceDirect

Journal of Symbolic Computation

journal homepage: www.elsevier.com/locate/jsc

On deciding finiteness of matrix groupsI

A.S. Detinko, D.L. Flannery 1
School of Mathematics, Statistics and Applied Mathematics, National University of Ireland, Galway, Ireland

a r t i c l e i n f o

Article history:
Received 29 June 2008
Accepted 16 February 2009
Available online 27 February 2009

Keywords:
Matrix group
Function field
Finiteness problem
Algorithm

a b s t r a c t

We provide a new, practical algorithm for deciding finiteness
of matrix groups over function fields of zero characteristic. The
algorithm has been implemented inGAP. Experimental results and
extensions of the algorithm to any field of zero characteristic are
discussed.

© 2009 Elsevier Ltd. All rights reserved.

1. Introduction

In any class of potentially infinite groups, deciding finiteness is a fundamental computational
problem. For arbitrary classes of groups, finitenessmay not even be decidable (see Lyndon and Schupp
(2001, p. 192)). However, for matrix groups, the outlook is more optimistic. Several authors (Babai,
1992; Babai et al., 1993) have developed algorithms (both deterministic and randomized) for deciding
finiteness of matrix groups over the rational field Q. Algorithms from Babai et al. (1993) have been
implemented, and finiteness testing of groups over Q is available in the computer algebra systems
GAP (TheGAP group) andMagma (Bosma et al., 1997). A standard reduction achieved by representing
algebraic numbers as matrices over Q then enables finiteness testing over number fields.
Deciding finiteness of groups over function fields is considered in Detinko (2001), Ivanyos (2001),

Rockmore et al. (1999). Although polynomial-time algorithms in both zero and positive characteristic
were proposed, they involve a lot of computing over function fields, and so may be practicable
only for small input. In particular, the ideas presented in Rockmore et al. (1999, Section 2) for
zero characteristic rely on computing an enveloping algebra basis over the ground field as a first
step, and then constructing a representation of the input group in possibly squared dimension. No

I Supported in part by Science Foundation Ireland, grant 08/RFP/MTH1331.
E-mail addresses: alla.detinko@nuigalway.ie (A.S. Detinko), dane.flannery@nuigalway.ie (D.L. Flannery).

1 Tel.: +353 91 492332; fax: +353 91 494542.

0747-7171/$ – see front matter© 2009 Elsevier Ltd. All rights reserved.
doi:10.1016/j.jsc.2009.02.001

Author's personal copy

1038 A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043

implementations of the algorithms from Detinko (2001), Ivanyos (2001), Rockmore et al. (1999) are
publicly available.
An essentially different technique for deciding finiteness is described in Detinko and Flannery

(2008). That technique, which is based on changing the ground domain via congruence homomor-
phism, can be applied uniformly over any domain. It was used in Detinko and Flannery (2008)
for deciding finiteness of nilpotent matrix groups. Algorithms from Detinko and Flannery (2008)
have been implemented as part of the GAP package ‘Nilmat’ (Detinko et al., 2007). Experimen-
tal evidence points to the efficiency of the Nilmat functions IsFiniteNilpotentMatGroup and
SizeOfNilpotentMatGroup, which test finiteness and compute orders of nilpotent groups over Q
in very large degrees, where other available functions for these purposes fail. In smaller degreeswhere
theGAP function IsFinite terminates successfully, IsFiniteNilpotentMatGroup ismuch faster.
This paper employs the technique of Detinko and Flannery (2008) to develop a new and practical

algorithm for deciding finiteness of matrix groups over function fields of zero characteristic. As a
consequence of the main algorithm, we are able to solve another basic computational problem;
namely, computing the order of a finite input group (cf. O’Brien (2006, Section 2). We mention
incidentally that one of our approaches to the order problem is by means of finding a faithful
representation of the input group over a finite field.) Furthermore, we outline how this paper, together
with Babai et al. (1993), yield a practical solution to the finiteness and order problems for matrix
groups defined over any field of zero characteristic.
We have implemented our main algorithm in GAP. Section 4 contains experimental results

obtained from the implementation.
Although attention is restricted in this paper to zero characteristic, our ideas also carry over to

function fields of positive characteristic. However, extra difficulties arise in the latter case. Some
remarks on this case are given in Section 5.

2. Deciding finiteness via congruence homomorphisms

This section sets up some theoretical preliminaries and notation used throughout the paper.
Let∆ be an integral domain and% be an ideal of∆. Denote the natural ring epimorphism∆→ ∆/%

by ϕ% . Recall that∆/% is an integral domain (respectively field) if and only if % is prime (respectively
maximal). Also, if ∆ is finitely generated and % is maximal, then ∆/% is a finite field (see Wehrfritz
(1973, 4.1, p. 50)). We get a ring homomorphismMat(n,∆)→ Mat(n,∆/%) by entrywise extension,
and then a group homomorphism GL(n,∆) → GL(n,∆/%) by restriction. With a slight abuse of
notation, we denote each of these homomorphisms by ϕ% as well. The map ϕ% on GL(n,∆) is a
congruence homomorphism (with respect to %). The kernel G% of ϕ% on GL(n,∆) is called a (principal)
congruence subgroup. We write the congruence subgroup G ∩ G% of G ≤ GL(n,∆) as G% . The reader
is referred to Suprunenko (1976, Chapter III, Section 11) for background on the use of congruence
homomorphisms in linear group theory.
LetF be a field,S be a subset {S1, . . . , Sr} of GL(n, F), andG = 〈S〉. ThenG ≤ GL(n, R)where R is the

integral domain generated by the entries of the matrices in S ∪ S−1. We are concerned in this paper
with the case that F = P(X1, . . . , Xm), where the Xi are algebraically independent indeterminates,
m > 0, and P is a number field. Let µ be the least common multiple of the denominators of the
generators of R. Then R ⊆ ∆ = µ−1P[X1, . . . , Xm], the ring of fractions with denominators in the
monoid generated by µ. Note that∆ is a UFD (unique factorization domain).
If G is finite then by a result of Mal’cev (Wehrfritz, 1973, 4.2, p. 51), there exists an ideal % of

R such that ϕ% is an isomorphism G → ϕ%(G). To use this result in practice, we need a way of
selecting a suitable ideal % i.e. such that G% is trivial. The first lemma lists criteria for a suitable
ideal. Generalizations of this lemma to positive characteristic, and to Dedekind domains, are given
in Detinko and Flannery (2008, Section 3).

Lemma 1 (Suprunenko, 1976, Theorem 3, p. 68). Let∆ be a UFD of characteristic zero. Suppose that % =
λ∆, where λ is an irreducible element of∆ such that λ does not divide 2, and λ2 does not divide p for any
prime p ∈ Z. Then G% is torsion-free.

Author's personal copy

A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043 1039

We denote the ideal of∆ generated by elements η1, . . . , ηt as 〈η1, . . . , ηt〉.
Corollary 2. Let∆ be a UFD of characteristic zero. Suppose that there exist elements λ0 = 0, λ1, . . . , λm
of∆ such that, for %j := 〈λ0, λ1, . . . , λj〉 and all i, 1 ≤ i ≤ m,
(i) ∆/%i−1 is a UFD of characteristic zero;
(ii) λi + %i−1 is an irreducible element of ∆/%i−1 such that λi + %i−1 does not divide 2 + %i−1, and

(λi + %i−1)
2 does not divide p+ %i−1 for any prime p ∈ Z.

Then G%m is torsion-free.
Proof. Lemma 1 and the hypotheses imply that G%i/%i−1 is torsion-free for all i ≤ m. Since the
composite of group homomorphisms, each of which has torsion-free kernel, also has torsion-free
kernel, the result follows. �

Now we explain how to construct an ideal % = %m as per Corollary 2 in our situation ∆ =
µ−1P[X1, . . . , Xm]. We say that α = (α1, . . . , αm) ∈ Pm is admissible if µ(α) 6= 0. Since P is infinite,
there exist infinitely many admissible α. Let α = (α1, . . . , αm) be admissible, and define λi = Xi−αi,
% = %(α) = 〈λ1, . . . , λm〉 ⊆ ∆. By Corollary 2, G% is torsion-free. Generators for the image ϕ%(G) are
found simply by substituting αi for Xi in entries of the Sj, 1 ≤ i ≤ m, 1 ≤ j ≤ r . Thus ϕ%(G) ≤ GL(n, P).
If G is infinite then ϕ%(α)(G)may be finite. We consider this possibility in the next lemma.

Lemma 3. Let G ≤ GL(n,∆) be infinite. Then there are infinitely many admissible α such that ϕ%(α)(G)
is infinite. If m = 1, then ϕ%(α)(G) is finite only for finitely many admissible α.
Proof. The orders of finite subgroups of GL(n, P) are bounded above (see the first paragraph of
Rockmore et al. (1999, Section 3.2)). So there is a positive integer ν such that every torsion element
of GL(n, P) has order dividing ν. Since a periodic linear group is locally finite (Suprunenko, 1976,
Theorem 5, p. 181), G must have an element g of infinite order. Hence, either there exist i, j, i 6= j,
such that the (i, j)th entry g(ν)ij of g

ν is non-zero, or there exists k such that g(ν)kk 6= 1. Now there are
infinitely many α ∈ Pm such that g(ν)ij (α) 6= 0 (and infinitely many α such that g

(ν)
kk (α) 6= 1). Hence

for any such α, ϕ%(α)(g) has infinite order. If m = 1, then α may be chosen subject to a finite set of
exclusions (i.e. excluding α such that g(ν)ij (α) = 0 or g

(ν)
kk (α) = 1). �

3. An algorithm for deciding finiteness over function fields in zero characteristic

The results of the previous section suggest the following strategy for deciding finiteness of a given
subgroup G of GL(n,∆). First, we select an admissible α and construct ϕ%(G) ≤ GL(n, P), where
% = %(α). (Admissibility of α just means that ϕ%(S) is defined for all S ∈ S ∪ S−1.) Then we test
whether ϕ%(G) is finite; if so, we test whether G% is trivial. In this section we provide a method
for solving the latter problem. One advantage of our method is that it avoids computation of the
congruence subgroup G% (in contrast to Detinko and Flannery (2008, Section 4.3)), which can be a
difficult task.

3.1. Deciding finiteness via computing with enveloping algebras over the coefficient field

Let G = 〈S〉, where S = {S1, . . . , Sr} ⊆ GL(n, F), F = P(X1, . . . , Xm). We denote the P-enveloping
algebra and P-linear span of a subset U of Mat(n, F) by 〈U〉P and spanP(U), respectively. If 〈G〉P
has finite dimension then a basis of 〈G〉P can be found by the following well-known procedure (cf.
Detinko (2001, p. 70)), which we will refer to as BasisEnvAlgebra(S). Define subsets Sk of GL(n, F)
by S1 = S and Sk = ∪ Sj∈S(S

k−1Sj) for k > 1. That is, Sk is the set of all length k products
of elements drawn from S. Let A1 = In, and suppose that we have a P-linearly independent set
A = {A1, . . . , Ae} ⊆ GL(n, F) such that for each i, 1 < i ≤ e, Ai ∈ Sk for some k < e. If there are
Ai ∈ A and Sj ∈ S such that AiSj 6∈ spanP(A), then we updateA by adding AiSj. We repeat this basic
step until eventually we get a P-linearly independent setA = {A1, . . . , Ad} such that AiSj ∈ spanP(A)
for all Ai ∈ A and Sj ∈ S. The setA at this point is the output of BasisEnvAlgebra(S): it is a basis
of 〈S〉P consisting of elements of G. If G is finite then this will be a basis of 〈G〉P; otherwise, we obtain
a basis of 〈G〉P merely by replacing S in the procedure by S ∪ S−1.

Author's personal copy

1040 A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043

Under the assumptions∆ = µ−1P[X1, . . . , Xm] and % = %(α) for admissible α ∈ Pm, we have that
ϕ% acts identically on the elements of P. Hence ϕ% induces a surjective homomorphism of P-algebras
〈G〉P → 〈ϕ%(G)〉P.
The next two results are vital.

Lemma 4. Let A1, . . . , A` be elements of Mat(n,∆) such that ϕ%(A1), . . . , ϕ%(A`) are linearly
independent over ϕ%(∆) = P. Then the following hold.

(i) A1, . . . , A` are linearly independent over P.
(ii) If A ∈ Mat(n,∆), ϕ%(A) =

∑`
i=1 βiϕ%(Ai), βi ∈ P, and A ∈ spanP(A1, . . . , A`), then A =

∑`
i=1 βiAi.

Proof. Obvious, since ϕ% |P is the identity map. �

Theorem 5. Suppose that ϕ%(G) is finite. Then the following are equivalent.

(i) G is finite.
(ii) ϕ% : 〈G〉P → 〈ϕ%(G)〉P is an isomorphism.
(iii) dimP〈ϕ%(G)〉P = dimP〈G〉P.

Proof. (i)⇐⇒ (ii): Suppose that G is finite. Since G is completely reducible, 〈G〉P is conjugate to a
subalgebra of Mat(n,K) for some number field K, by Dixon (1971, Theorem 3.4B, p. 54). Hence for
each h ∈ 〈G〉P, the characteristic polynomial f (t) of h has all coefficients in K ∩ ∆ = P. Since its
coefficients are ϕ%-invariant, f (t) is the characteristic polynomial of ϕ%(h). So if ϕ%(h) = 0n then
f (t) = tn, and then hn = 0n. This shows that the kernel of ϕ% on 〈G〉P is contained in the radical J
of 〈G〉P. However J = {0} because G is completely reducible; thus ϕ% is an isomorphism. The other
direction is trivial.
(ii)⇐⇒ (iii): A P-algebra isomorphism is a P-vector space isomorphism, so (ii)⇒ (iii) is clear. If

(iii) holds then ϕ% maps a basis of 〈G〉P to a basis of 〈ϕ%(G)〉P, so is injective. �

Before proceeding to the statement of our algorithm, we make some observations relating to the
last step in the algorithm: testing finiteness of G if ϕ%(G) is finite. Suppose that ϕ% is one-to-one on
S∪S−1 = {S1, . . . , Sr}, and set ϕ%(Si) = S̄i. Then given any element Ā = S̄k1 · · · S̄kt of 〈ϕ%(G)〉P, we are
able to define a canonical pre-image A = Sk1 · · · Skt in 〈G〉P. Thus, if we have a basis Ā = {Ā1, . . . , Ād}
of 〈ϕ%(G)〉P computed via BasisEnvAlgebra, then we readily gain A = {A1, . . . , Ad} ⊆ 〈G〉P. By
Lemma 4 (i),A is linearly independent. Theorem 5 shows that to test whether G is finite, it suffices to
compare the dimensions of 〈ϕ%(G)〉P and 〈G〉P. By Lemma 4 and Theorem 5, we should not compute a
basis of 〈G〉P (moreover, 〈G〉Pmay be infinite-dimensional), but only checkwhether ĀiS̄j =

∑d
k=1 βkĀk,

βk ∈ P, implies that AiSj =
∑d
k=1 βkAk.

We summarize all of the above in the following algorithm.

IsFiniteMatGroupFuncNF(S)
Input: a finite subset S of GL(n, F), where F = P(X1, . . . , Xm), P a number field.
Output: a message ‘true’ meaning that G = 〈S〉 is finite, or a message ‘false’ otherwise.

(I) Let S := S ∪ S−1.
Find α ∈ Pm admissible for S, and compute S̄ := {S̄i := ϕ%(Si) | Si ∈ S}, % := %(α).

(II) If S̄i = S̄j for some i 6= j then return ‘false’.
(III) If ϕ%(G) = 〈S̄〉 ≤ GL(n, P) is infinite then return ‘false’.
(IV) Construct Ā := BasisEnvAlgebra(S̄) := {Ā1, . . . , Ād}, and findA := {A1, . . . , Ad}.

For Āi ∈ Ā, S̄j ∈ S̄, find βk ∈ P such that ĀiS̄j =
∑d
k=1 βkĀk.

If for some i, jwe have AiSj 6=
∑d
k=1 βkAk, then return ‘false’; else return ‘true’.

We now comment on the practicality of IsFiniteMatGroupFuncNF. For further discussion along
these lines, see Section 4.

Author's personal copy

A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043 1041

A significant computational advantage of the algorithm is thatmost of its operations are performed
overP rather thanP(X1, . . . , Xm). Over the latter field, onlymatrixmultiplication and calculating a few
P-linear combinations may be required.
Step III requires deciding finiteness over P. To do this we may use any of the available

implementations (in e.g. GAP orMagma) of the algorithms in Babai et al. (1993); then the efficiency
of IsFiniteMatGroupFuncNFwould depend on the efficiency of the chosen implementation (here
we refer to Babai et al. (1993, Section 8) for relevant complexity estimates). For nilpotent groups we
could even use the Nilmat function IsFiniteNilpotentMatGroup.
Apart from the above, the most time-consuming part of IsFiniteMatGroupFuncNF (if it

is reached) is Step IV, i.e. computing a basis of 〈ϕ%(G)〉P. The transitive closure algorithm
BasisEnvAlgebra is a frequently used tool in computing with matrix groups. Complexity estimates
for such algorithms are given in Babai et al. (1993, Section 8) and Rockmore et al. (1999, Section 3.4.1).
We stress that BasisEnvAlgebra is invoked only over the coefficient field, not over the original
function field of definition. If G is finite then Step IV is unavoidable. If G is infinite then by Lemma 3we
expect Step IV would not be reached, especially whenm = 1; that is, infiniteness of the input would
be detected at an earlier stage of the algorithm. Therefore we expect IsFiniteMatGroupFuncNF to
be a simpler process for an infinite rather than finite input group.

3.2. Related algorithms

3.2.1. Computing orders
In addition to deciding finiteness, IsFiniteMatGroupFuncNF leads to a solution of one more

important computational problem: determining the order of a finite subgroup of GL(n, F). Suppose
that G is finite (as recognized by IsFiniteMatGroupFuncNF); then |G| = |ϕ%(G)|. Since ϕ%(G) ≤
GL(n, P), and orders over Q may be computed using standard procedures (e.g. the GAP function
Order), this settles the problem. Here is another approach.We have ϕ%(G) ≤ GL(n,∆/%)where∆/%
is a finitely generated Dedekind domain. So, as in Lemma 1, wemay choose a maximal ideal σ of∆/%
such that ϕ%(G) has trivial congruence subgroup with respect to ϕσ (see Detinko and Flannery (2008,
Section 3)). Thus we find |G| by calculating the order of an isomorphic copy of G in some GL(n, q).
In particular, if g ∈ GL(n, F) has finite order, then |g| may be calculated by the preceding and the
algorithm of Celler and Leedham-Green (O’Brien, 2006, Section 2).

3.2.2. Deciding finiteness in zero characteristic
We now describe how solution of the finiteness decision problem may be generalized to any

field of zero characteristic. The key idea is to represent input data in a form that allows us to apply
IsFiniteMatGroupFuncNF and the algorithm of Babai et al. (1993). First note that if we have an
algorithm for deciding finiteness over a field K, and L is a finite degree extension of K, then we
can test finiteness of G ≤ GL(n,L) after expressing entries from L as matrices over K (according
to the multiplication action of elements of L on a K-basis of L). Suppose that charL = 0. Then
since G ≤ GL(n, R) where R ⊆ L is finitely generated and contains a copy of Z, by elementary
structure theory of finitely generated field extensions we can replace L by a suitable finite extension
of K = Q(X1, . . . , Xm). The above reduction gives H ≤ GL(s,K) for some H ∼= G and s divisible by
n, and then IsFiniteMatGroupFuncNF can be applied to H to decide finiteness of G. In this way it
is possible to test (for example) finiteness of finitely generated subgroups of GL(n,R) and GL(n,C).
Matrix entries are handled symbolically, dispensing with the need for floating point representation
of numbers.

4. Implementation and experimental results

We have implemented IsFiniteMatGroupFuncNF in GAP (The GAP group). In this section
we present computational results that characterize the practicality of IsFiniteMatGroupFuncNF,
depending on the main input parameters.
As noted previously, when the image Ḡ of G under a congruence homomorphism is finite, the

algorithm will proceed to the most computationally intensive stage. In turn, the time for completion

Author's personal copy

1042 A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043

Table 1
Experimental results for IsFiniteMatGroupFuncNF.

G n No. of generators |Ḡ| Runtime (Ḡ) Runtime (G)

G11 10 3 21010! 00 : 02.438 00 : 05.547
G12 10 3 21010! " 01 : 31.781
G21 20 3 22020! 00 : 03.063 17 : 40.703
G22 20 3 22020! " 19 : 06.547
G31 36 12 648 00 : 03.172 02 : 02.469
G32 36 12 648 " 16 : 59.078

of that stage will depend on whether or not the input group G is finite. To address these issues, we
performed experiments for groups with extremal properties. Specifically, we tested groups G such
that (a) both G and Ḡ are absolutely irreducible, so give the largest dimension n2 of 〈Ḡ〉P; and (b) Ḡ
has order 2nn!, which is an upper bound on the order of finite subgroups of GL(n,Q) for n ≥ 10
(see Rockmore et al. (1999, Section 3.2)). Some results, for F = Q(X), are displayed in Table 1. The
experiments were carried out on a Pentium 4 running at 1.73 GHz underWindows. CPU time is in the
format minutes : seconds.milliseconds.
The groups Gi1 are infinite, whereas the Gi2 are finite, 1 ≤ i ≤ 3. For each i, the image groups

Ḡi1 and Ḡi2 are conjugate subgroups of GL(n,Q). For i = 1, 2, Ḡi1 and Ḡi2 are conjugate to full
monomial subgroups of GL(n,Q). The groups Ḡ3i are finite nilpotent, and were constructed using
the function MonomialNilpotentMatGroup of Detinko et al. (2007). The runtime of Step III of
IsFiniteMatGroupFuncNF (deciding finiteness of Ḡij ≤ GL(n,Q)) is shown in column 5 of Table 1.
This may be compared with the total runtime, in the last column. We observed similar runtimes for
one indeterminate as for other reasonably small numbers of indeterminates.
To monitor how size of input matrix entries affects the speed of IsFiniteMatGroupFuncNF, we

took the entries of generators of G12 to be integral polynomials of degree up to 30, with coefficients
up to 2,000,000. Other groups in Table 1 havematrix entries of muchmoremoderate size, so for those
groups this parameter did not affect runtimes.

5. Remarks on the positive characteristic case

The methods of this paper may also be used to decide finiteness of matrix groups in positive
characteristic i.e. groups over function fields F = Fq(X1, . . . , Xm), Fq the finite field of size q. However,
this case is much more complicated. Some sources of difficulty are that the order of a finite subgroup
G of GL(n, F) can be arbitrarily large, and G need not be completely reducible. Furthermore, Fq may
not contain αi such that α = (α1, . . . , αm) is admissible and ϕ%(α) acts on G as an isomorphism,
for %(α) defined as in Section 2. So in general it is necessary to work over extensions of Fq. As the
finiteness problem in positive characteristic has an essentially different nature to the problem in zero
characteristic, it is the subject of separate investigation.

Acknowledgment

The authors are grateful to Professor Eamonn O’Brien, who recently implemented IsFiniteMat-
GroupFuncNF inMagma, and obtained much improved runtimes over those reported in Table 1.

References

Babai, L., 1992. Deciding finiteness of matrix groups in Las Vegas polynomial time. In: Proceedings of the Third Annual
ACM–SIAM Symposium on Discrete Algorithms (Orlando, FL, 1992). ACM, New York, pp. 33–40.

Babai, L., Beals, R., Rockmore, D.N., 1993. Deciding finiteness of matrix groups in deterministic polynomial time. In: Proc. of
International Symposium on Symbolic and Algebraic Computation. ISSAC’93. ACM Press, pp. 117–126.

Bosma, W., Cannon, J., Playoust, C., 1997. The Magma algebra system. I. The user language. J. Symbolic Comput. 24 (3-4),
235–265.

Detinko, A.S., 2001. On deciding finiteness formatrix groups over fields of positive characteristic. LMS J. Comput.Math. 4, 64–72.
(electronic).

Author's personal copy

A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 44 (2009) 1037–1043 1043

Detinko, A.S., Eick, B., Flannery, D.L., 2007. Nilmat—Computing with nilpotent matrix groups. A refereed GAP 4 package; see
http://www.gap-system.org/Packages/nilmat.html.

Detinko, A.S., Flannery, D.L., 2008. Algorithms for computing with nilpotent matrix groups over infinite domains. J. Symbolic
Comput. 43, 8–26.

Dixon, J.D., 1971. The Structure of Linear Groups. Van Nostrand Reinhold, London.
The GAP group. GAP - Groups, Algorithms, and Programming, Version 4.4.10 http://www.gap-system.org.
Ivanyos, G., 2001. Deciding finiteness for matrix semigroups over function fields over finite fields. Israel J. Math. 124, 185–188.
Lyndon, R.C., Schupp, P.E., 2001. Combinatorial Group Theory. Springer.
O’Brien, E.A., 2006. Towards effective algorithms for linear groups. In: Finite Geometries, Groups, and Computation. Walter de
Gruyter, Berlin, pp. 163–190.

Rockmore, D.N., Tan, K.-S., Beals, R., 1999. Deciding finiteness for matrix groups over function fields. Israel J. Math. 109, 93–116.
Suprunenko, D.A., 1976. Matrix Groups. In: Transl. Math. Monogr., vol. 45. American Mathematical Society, Providence, RI.
Wehrfritz, B.A.F., 1973. Infinite Linear Groups. Springer-Verlag.

