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Abstract

We develop methods for computing with matrix groups defined over a range of infinite domains, and
apply those methods to the design of algorithms for nilpotent groups. In particular, we provide a practical
nilpotency testing algorithm for matrix groups over an infinite field. We also provide algorithms to answer
a number of structural questions for a nilpotent matrix group.The main algorithms have been implemented
in GAP, for groups over the rational number field.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In this paper we develop a technique for computing with matrix groups defined over infinite
domains, based on changing the ground domain via congruence homomorphism. This technique
has proved to be an efficient tool in linear group theory (see e.g. Dixon (1971, Chapter 3)). It
1s particularly useful for handling finitely generated linear groups (see Wehrfritz (1973, Chapter
4)), and affords a general approach to many computational problems for infinite matrix groups.
We apply the technique here to algorithms for nilpotent matrix groups.

Let F be a field and let G < GL(n, [F) be given by a finite generating set. We obtain algorithms
for carrying out the following tasks:

(1) testing nilpotency of G;
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and, if G is nilpotent,

(i1) constructing a polycyclic presentation of G;

(111) testing whether G is completely reducible, and finding a completely reducible series of
G-modules;

(iv) deciding finiteness of G, and calculating |G| if G is finite;

(v) finding the p-primary decomposition of G, and finding all Sylow p-subgroups if G is finite.

These algorithms address standard problems in computational group theory (i, ii, iv) and
computing with matrix groups (iii), and facilitate structural investigation of nilpotent linear
groups (V).

Our guiding objective has been to design algorithms that cover the broadest possible range
of infinite domains. However, for convenience or reasons of practicality we sometimes place
restrictions on [F. For example, a preliminary reduction in nilpotency testing assumes that [ is
perfect; and constructing polycyclic presentations requires [F to be finite or an algebraic number
field. Two important types of field that we treat throughout the paper are algebraic number fields
and certain functional fields. Implementation and practicality of our algorithms depend on the
machinery (such as polynomial factorization) that is available for computing with the various
fields.

A finitely generated subgroup of GL(n, F) is contained in GL(n, R) for some finitely
generated integral domain R C [F. In turn, each completely reducible solvable subgroup of
GL(n, R) is finitely generated (by Dixon (1971, Theorem 6.4, p. 111) and Wehrfritz (1973, 4.10,
p. 57)). Our algorithms therefore return information not only about finitely generated nilpotent
subgroups of GL(n, I), but also about nilpotent subgroups of GL(n, R) for any finitely generated
integral domain R. Furthermore, these algorithms may be regarded as a platform for computing
in abstract finitely generated nilpotent groups, because such a group is isomorphic to a subgroup
of GL(n, Z). A method for constructing a representation of a finitely presented polycyclic group
in GL(n, Z) can be found in Lo and Ostheimer (1999).

Nilpotency is an important group-theoretic property, and testing nilpotency is consequently
one of the basic functions of any computational group theory system. This paper provides the first
uniform and effective solution to the problem of computing with infinite nilpotent matrix groups.
Our algorithms for nilpotency testing (over finite fields, and Q) have been implemented as part of
the GAP package ‘Nilmat’ (Detinko et al., 2007) (this is joint work with Bettina Eick). Standard
algorithms for nilpotency testing in GAP and MAGMA sometimes fail to decide nilpotency even
for small finite matrix groups, and fail for almost all infinite matrix groups. In the paper’s final
subsection we give some experimental results, and other details of the ‘Nilmat’ package.

2. Related results

Computing in matrix groups over infinite domains is a relatively new area of computational
group theory. Most of the algorithms in this area are concerned with classes of solvable-by-finite
groups (see Assmann and Eick (2005, 2007), Beals (1999) and Ostheimer (1999)). Solvable-by-
finite groups constitute the more optimistic class of the Tits alternative. The other class consists
of groups containing a non-abelian free subgroup. For those groups, some basic computational
problems, such as membership testing and construction of presentations, are undecidable (see
Beals (1999), Dixon (1985) and Eick (2005)).

Changing the ground domain is a standard technique in linear group theory. In certain
specialized situations it has been used by several authors for computing with matrix groups;
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see e.g. Luks (1992). In Beals (1999), a generalization of the technique as in Luks (1992)
leads to a Monte Carlo solvability testing algorithm for potentially infinite subgroups G of
GL(n, Q). The algorithm accepts as input a finite set S of generators of G, and tests solvability of
V¥ »(G) < GL(n, p), where v, is reduction modulo a prime p not dividing the denominators of
the entries of the elements in SUS™!. It is shown in Beals (1999) that there are only finitely many
primes p such that yr,(G) is solvable while G is not; so a non-solvable group will be identified
as solvable by the algorithm of Beals (1999) with small probability.

The ideas of Beals (1999) can be applied to nilpotency testing. However, in contrast to
solvability testing, nilpotency testing by these means is not as reliable: the upper bound on
nilpotency class for nilpotent subgroups of GL(n, g) can be much larger than the bound for
nilpotent subgroups of GL(n, Q) (see Bialostocki (1986) and Wehrfritz (2001)). Hence the
solvability testing arguments of Beals (1999) may not be efficient when applied to nilpotency
testing, if one simply replaces bounds depending on derived length by bounds depending on
nilpotency class.

To obtain a deterministic algorithm for testing solvability of a finitely generated matrix group
G over Q, it is necessary to test solvability both of the kernel G, and of the image ¥, (G)
of a reduction mod p homomorphism ;. Theoretical background for doing this is laid out in
Dixon (1985), where G, is described for solvable-by-finite G < GL(n, Q). Using those results,
a deterministic algorithm for solvability testing was proposed in Ostheimer (1999). There were
two main obstacles to a full implementation of the algorithm in Ostheimer (1999): solvability
testing of matrix groups over a finite field; and efficient construction of G . Practical solutions
of both of these problems were obtained in Assmann and Eick (2005) and Assmann (2003).
Specifically, Assmann and Eick (2005) contains a method to construct a polycyclic presentation
of ¥,(G), and thereby to test solvability of v,(G). The relators of this presentation may be
used to calculate generators of a subgroup of G whose normal closure is G . Although the
algorithm has bottlenecks (see Assmann and Eick (2005, p. 1281)), it has been successfully
implemented for solvability testing over finite and algebraic number fields (see the ‘Polenta’
package (Assmann and Eick, 2007) in GAP (The GAP group, 2006)).

The main aims of Assmann and Eick (2005) are to test whether a finitely generated subgroup
G of GL(n, Q) is polycyclic, and, if so, to construct a polycyclic presentation for G. Complete
solutions of those problems are given in a subsequent publication (Assmann and Eick, 2007).
This provides an avenue for testing nilpotency of G: if G is not polycyclic then it is not nilpotent;
otherwise, nilpotency of G can be tested using a polycyclic presentation of G (for which see e.g.
Lo (1998, Section 4)).

In this paper we propose an essentially different approach to nilpotency testing, applicable
over a broad range of infinite domains. In contrast to Assmann and Eick (2007), our algorithms
do not require a priori testing of polycyclicity and computation of polycyclic presentations, and
are designed directly for nilpotency testing.

We rely on methods and results of linear group theory, especially structural results for
nilpotent linear groups (Suprunenko (1976, Chapter VII), Detinko and Flannery (2005, 2006b)).
Accordingly, a feature of our algorithms is that they return detailed structural information about
input nilpotent groups. A full solution of the problem of testing nilpotency over finite fields
appears in Detinko and Flannery (2006a) (as we will see, much of Detinko and Flannery (2006a)
remains valid over any field). To transfer nilpotency testing to the case of groups over a finite
field, we use a congruence homomorphism with torsion-free kernel; see Section 3. Other methods
that transfer nilpotency testing to the case of finite groups are given in Section 4.5.
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3. Changing the ground domain via congruence homomorphism

In this section we present some results from linear group theory that form the theoretical
background for our algorithms.

First we set up some notation. Let A be an integral domain. For any ideal ¢ of A, the natural
surjection ¥, : A — A/p extends entrywise to a matrix ring homomorphism Mat(n, A) —
Mat(n, A/p), and then restricts to a group homomorphism GL(n, A) — GL(n, A/0), which we
also denote ,. The map v, on GL(n, A) is called a Minkowski or congruence homomorphism
(Suprunenko (1976, p. 65)), and its kernel is called a (principal) congruence subgroup of
GL(n, A). We denote the congruence subgroup corresponding to ¢ by G,, or G(n, A, ¢) in more
detail. If G < GL(n, A) then Go = G N G,. For an integer m we write m € ¢ to mean that
m-1p €o.

We are interested in domains A and ideals o € A such that G(n, A, o) is torsion-free if
char A = 0, or each torsion element of G(n, A, o) is unipotent if char A > 0. Such domains
in characteristic zero are discussed in Suprunenko (1976, Chapter III, Section 11). A slight
modification of the proofs in Suprunenko (1976) takes care of the positive characteristic case.
To keep the account here reasonably self-contained, we give full proofs of both cases.

Lemma 3.1. Let A be a unique factorization domain, g € A be irreducible, and o be the
principal ideal g A of A. Suppose that G(n, A, o) has non-trivial torsion elements. Then

(1) there is a unique prime p € Z such that p € o;
(ii) for some b € Mat(n, A), pb = —Y""_, (?)qi_lbi; and
(iii) every torsion element of G(n, A, 0) has p-power order.

Proof (Cf. Suprunenko (1976), Proof of Theorem 3, pp. 68—69). Let h € G, be of prime order
p. We have h = 1,, 4+ gb for some b € Mat(n, A). Then

p

l

where the binomial coefficients are read modulo char A. Hence

pb=— (.)q’_ b' (1)
and it follows that either g divides p, or ¢ divides every entry of b.

Suppose that g does not divide p. Then for some integer « > 1, ¢“ divides every entry of b,
but g*+! does not. Then (1) implies that g2**! divides pb, a contradiction. Thus ¢ divides p.

If G, contains a non-trivial element of p’-order then it contains an element of prime order
r # p. By the preceding one, then, g divides both p and r and hence divides 1 = px + ry
for some x, y € Z guaranteed by Bézout’s lemma. But ¢ is not a unit by definition. Thus every
torsion element of G, is a p-element. [J

Proposition 3.2. Let A, g, and o be as in Lemma 3.1.

(1) Ifchar A =t > 0 then every torsion element of G(n, A, o) is a t-element.

(ii) Suppose that char A = 0, g does not divide 2, and q* does not divide p for any prime
p € Z. Then G(n, A, 0) is torsion-free.
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Proof (Cf. Suprunenko (1976), pp. 68—69). (i) Follows from parts (i) and (iii) of Lemma 3.1.
(ii) Supposing that G, has non-trivial torsion, then p = gr for some odd prime p andr € A
not divisible by ¢. By Lemma 3.1(ii), for some b, ¢ € Mat(n, A) we have grb = qzbzc. Hence
g“ divides every entry of b for some o > 1 such that ¢g**! does not divide every entry of b. As
g does not divide r, rb = gb*c yields the contradiction that ¢?**! divides every entry of b. [

The next result mimics Lemma 3.1.

Lemma 3.3. Let A be a Dedekind domain, and let o be a proper prime ideal (that is, maximal
ideal) of A. Suppose that G(n, A, 0) has non-trivial torsion elements. Then

(1) there is a unique prime p € 7 such that p € g;
(i1) fqr some b € Mat(n, 0), pbjx = — Zfzz (f)by}c,
b': and
(iii) every torsion element of G(n, A, 0) has p-power order.

where byi denotes the (j, k)th entry of

Proof (Cf. Suprunenko (1976), Proof of Theorem 4, p. 70). If h € G, is a torsion element of
prime order p then

pb+---+(l,)>b"+---+b1’=0n
l

for some b € Mat(n, o), reading the binomial coefficients modulo char A. Now (ii) is clear.

Let [ > 1 be the integer such that b; ; € o! for all j, k, but brs & o't for some r, s. (Note
that such an integer / definitely exists, because the ideal I of A generated by the entries of b is
contained in o, I = oJ where J is the ideal 0~'7, and J has a maximal power of g in its primary
decomposition.) Then (i1) and b;’?{ € o'! imply that pb jk € 0%. Suppose that p ¢ o. Since o is
a maximal ideal of A, we have that A is generated by p and o. Let x € A, y € o be such that
px +y = 1.Then b, = pbjix +bjry € 0% + olo € o', a contradiction. Thus p € o.
Moreover, p is the unique prime integer such that p € o (otherwise 1 € o by Bézout), so that
every torsion element of QQ is a p-element. [

Proposition 3.4. Let A and o be as in Lemma 3.3.

(1) If char A =t > O then every torsion element of G(n, A, o) is a t-element.
(i) Ifchar A =0, 2 & o and p & 0 for all primes p € Z, then G(n, A, o) is torsion-free.

Proof (Cf. Suprunenko (1976), p. 70). (i) This follows at once from Lemma 3.3(i) and (iii).

(i) If G, has non-trivial torsion then G, has elements of p-power order, where p € o for
an odd prime p. By Lemma 3.3(ii), there exist an element b of A and an integer / such that
b e o'\ o' (so that o' is the largest power of o appearing in the primary decomposition of the
ideal bA) and pb € p%*!. Certainly then pb € o'*2.

We now establish a contradiction. First, pb € o'T2 implies that pA - bA C pbA C o'*2, s0
0'*? appears in the primary decomposition of pA - bA. But since p € o \ 0%, we know that o' *!
is the largest power of o appearing in this decomposition. Hence pb ¢ o/*2. We conclude that
QQ is torsion-free in this case. [

To round out this section, we look briefly at how congruence homomorphisms may be applied
in practice to finitely generated matrix groups. The image of the homomorphism should be a
matrix group for which solutions to the specific problems are known (for example, the image is
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over a finite field), and the kernel of the homomorphism should be either torsion-free or consist
of unipotent elements.

Let F be the field of fractions of the integral domain A, and let R be a finitely generated
subring of F. In particular, if G = (g1, ..., &) < GL(n, F) then R = R(G) denotes the ring
generated by the entries of the elements of {g;, g, ! | 1 <i <r}.Obviously G < GL(n, R(G)).

Fix a finite generating set of R, and let 7 C A be the set of denominators of the generators.
Denote by A, the ring of fractions with denominators in the submonoid of A* generated by
(Cohn, 1989, p. 311). Of course, R C A,. If Ais a UFD or Dedekind domain then A, is a UFD
or Dedekind domain, respectively (Cohn (1989, Theorem 3.7, p. 315 and Corollary 5.2, p. 322)).
Since the quotient of a finitely generated commutative ring by a maximal ideal is a finite field
(Wehrfritz (1973, 4.1, p. 50)), if A is finitely generated and ¢ is a maximal ideal of A, then
Ay /o is a finite field. Thus, if G < GL(n, F) then ¥, : GL(n, A;) — GL(n, Ay /o) maps G
into some GL(n, g).

Now we look at two examples that are of specific interest from a computational point of view.

Example 3.5. Let F be an algebraic number field, and let A be the ring of integers of . Since A
is finitely generated, A, is a finitely generated Dedekind domain. Let ¢ be a maximal (i.e. proper
prime) ideal of A, not containing 2, such that p & o for all primes p € Z; then G(n, Ay, o) is
torsion-free by Proposition 3.4, and A, /o is a finite field. In particular, if F = Q then A = Z,
and if we choose an odd prime p € Z which does not divide any element of 7z then o = p Ay is
as required. In this case A, /0 = GF(p).

For number fields I in general, to find ¢ we can reduce to Q after selecting a (Q-basis of [F;
this however has the disadvantage of blowing up the size of matrices. An alternative method is
as follows. Suppose that ' = (Q(«v) contains all generators of R, where « is an algebraic integer.
Let m be the degree of the minimal polynomial of «. Expressing each generator of R uniquely as
a (Q-linear combination of {1, c, . . ., a1 }, and thereafter obtaining each generator in the form
B/z where f is an algebraic integer and z € Z, we can easily find 7 C Z. If p € Z is an odd
prime element of A not dividing any element of 77 then o = p A, is a maximal ideal of A, such
that A, /o = GF(p') for some [ < m, and G(n, A, o) is torsion-free. Note that R < Zx[«]. So
the reduction mod p congruence homomorphism on a finitely generated subgroup G of GL(n, [F)
with R = R(G) is easy to describe. That is, to evaluate v,, we reduce elements of Z, mod p,
and if f(X) € Z[X] is the minimal polynomial of « then ¥, (@) is a root of the mod p-reduction
f(X) of f(X).If f(X) is irreducible over GF(p) then [ = m; otherwise [ < m.

Example 3.6. Let F be a function field P(X), and let A be the polynomial ring P[X], where P
is a UFD. Then A is a UFD (Cohn (1989, p. 316)), and therefore so toois A,.Letg = X — «,
where « is not a root of any element of 7. (If P is infinite then of course o always exists in P;else
we can replace the finite field P by a finite extension containing «.) Then o = g A, is a prime
ideal of A,. By Proposition 3.2, either G(n, A, o) is torsion-free, or every torsion element
of G(n, Ay, 0) is unipotent. The effect of 1, is just substitution of « for the indeterminate
X in elements of A;. Hence y,(Ay) can be regarded as a subring of P. If P is finite then
VYo (Ay) is also a finite field. When P has characteristic zero we can apply a suitable congruence
homomorphism over the finitely generated integral domain ¥,(A;) < P, in line with the
following simple observation: if 7, : A — A/ and Yy, /0, : A/01 — A/0> are (natural)
homomorphisms of integral domains such that G(n, A, 01) and G(n, A/o1, 02/01) are both
torsion-free, then G(n, A, @2) is torsion-free. As an example, take P = Q. Here ¥, (Ay) C Zy,
for some finite subset 1 of Z \ {0}, and we are back to the situation of Example 3.5.
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4. Computing with nilpotent matrix groups

In this section we proceed to the design of algorithms for computing with matrix groups over
a field IF, as set out in the introduction. We are guided to a large extent by the algorithms and
results in Detinko and Flannery (2006a). Although only finite fields F were treated in Detinko
and Flannery (2006a), most of that paper’s fundamental results are valid over any field F.

4.1. Splitting nilpotent linear groups

In linear group theory it is common practice first to reduce problems to the completely
reducible case. This reduction is more straightforward for nilpotent linear groups than it is for
arbitrary linear groups (see e.g. Detinko and Flannery (2005, Subsection 2.1)). In this subsection
we consider a computational approach to the reduction.

Our starting point is the Jordan decomposition. Recall that 7 € GL(n, ) is said to be
diagonalizable if / is conjugate to a diagonal matrix over some extension field of IF, and % is
semisimple if (h) < GL(n, IF) is completely reducible. A semisimple element of GL(n, [F) need
not be diagonalizable, unless [F is perfect: then the two concepts coincide. Denote the algebraic
closure of [F by F. For each g € GL(n, ), there is a unique unipotent matrix g, € GL(n, F) and
a unique diagonalizable matrix g; € GL(n, F) such that g = g,g, = g.gs (see Wehrfritz (1973,
7.2, p. 91)). Note that this Jordan decomposition of g depends only on g i.e. it is the same over
each and every extension of . If [ is perfect then by Segal (1983, Proposition 1, p. 134), g, and
gs are both in GL(n, [F).

An algorithm to compute the Jordan decomposition can be found in Babai et al. (1996,
Appendix A). Systems such as GAP also contain standard functions for computing the
decomposition.

Let G be a finitely generated subgroup of GL(n, ), say G = (g1, ..., g-). Define

Gu=(gus---»(g)u) and Gy = ((g1)s, .-, (&r)s)-

Since gi = (gi)u(gi)s € (Gy, Gy), clearly G < G* := (G, Gy). In general, neither G, nor G
is necessarily a subgroup of G.

Lemma 4.1. (i) G is nilpotent if and only if G,, G are nilpotent and |G, Gs] = 1.
(ii) If G is nilpotent then G < G* = G, x Gy.

Proof. If G is nilpotent then the assignments g — g, and g — g, define homomorphisms
G — G, and G — Gy; furthermore G* = G, x Gy (see Segal (1983, Proposition 3, p. 136)).
On the other hand, if G,, G are nilpotent and [G,, G;] = 1, then G* and thus G < G* are
nilpotent. [

Remark 4.2. Let G be nilpotent. Then G, = {g, | g € G} and Gy, = {g; | g € G}. Also,
sometimes G = G, x Gy. For example, this is true if [ is finite. As another example, if G is an
algebraic group (over algebraically closed IF) then g, gs € G forall g € G, so that G = G*.

Lemma 4.3. G, is nilpotent if and only if it is unipotent, that is, conjugate to a subgroup of the
group UT(n, F) of all upper unitriangular matrices over FF.

Proof. A unipotent group is unitriagularizable (see Wehrfritz (1973, 1.21, p. 14)). If G, is
nilpotent then G, = {g, | g € G} is unipotent. As is well-known, UT(n, ) is nilpotent (of
classn —1). O
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In Detinko and Flannery (2006a, Subsection 2.1), a recursive procedure is given for deciding
whether a group generated by unipotent matrices (over any field ) is unipotent. We label that
procedure IsUnipotent here.

IsUnipotent(H)

Input: H = (hy, ..., h;), hj € GL(n, F) unipotent, [ any field.
Output: a UT(n, F)-representation of H, or a message ‘false’ meaning that H is not unipotent.

Lemmas 4.1 and 4.3, and IsUnipotent, equate nilpotency testing of G < GL(n, ) to testing
nilpotency of G and testing whether (G, G;] = 1.

If G, is unipotent then IsUnipotent finds a UT(n, F)-representation of G, by constructing
a series

V=Vy>Vi>--->V_ 1>V =0 (2)

of G,-submodules of the underlying space V for GL(n, [F), such that G, acts trivially on each
factor V;_1/V;. In fact, V;_;/V; is the fixed point space Fixg,(V/V;). We get more when G 1is
nilpotent, by the next two lemmas.

Lemma 4.4. Each unipotent element of a completely reducible nilpotent subgroup of GL(n, IF)
is trivial.

Proof. This follows from Suprunenko (1976, Corollary 1, p. 239). U
Lemma 4.5. Let G < GL(n, ) be nilpotent, ' a perfect field. Then

(1) Gy is completely reducible over F;
(i1) G is completely reducible over F if and only if G,, = 1.

Proof. A solvable matrix group of diagonalizable matrices (over any field) is completely
reducible by Suprunenko (1976, Theorem 5, p. 172). Since Gy < GL(n, F) consists entirely
of diagonalizable matrices, if G, = 1 then G = Gy is completely reducible. The converse is
Lemma4.4. [

If G is nilpotent and F is perfect then Lemmas 4.1 and 4.5 imply that each factor V;_;/V; of
the series (2) is a completely reducible G*-module. Now a subgroup of a nilpotent completely
reducible subgroup of GL(n, [F) is completely reducible by Suprunenko (1976, Theorem 35,
p- 239), so we see that if G is nilpotent then IsUnipotent constructs completely reducible
modules not just for G* but also for G.

We now give a procedure for reducing nilpotency testing of G < GL(n,F) to testing
nilpotency of a matrix group generated by diagonalizable matrices.

Reduction(G)

Input: G = (g1, ..., &) < GL(n, ), F any field.
Output: Gy, a UT(n, F)-representation of G, and a message that [G,, G;] = 1; or a message
‘false’ meaning that G is not nilpotent.

fori e [1..r]do

find (gi)u’ (gi)s;
Gy =(g)u:1<i=<r),Gy:=((gi)s:1<i=<r);
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if IsUnipotent(G,) = ‘false’
then return ‘false’;

else N :=[G,, Ggl;

if N #1
then return ‘false’;

else return G.

There are other reductions to the completely reducible case. For example, we may proceed by
first computing the radical R of the enveloping algebra (G ), and then the radical series

VORVORVDO---DR"V =0

(for methods to compute R, see e.g. Rényai (1993)). Each term R’V in this series is a G-module,
and each factor R'V/R'*1V is a completely reducible G-module. We can use the radical series
to write G in block upper triangular form, thereby obtaining a homomorphism 6 of G onto a
completely reducible subgroup of GL(n, F). If G is nilpotent then ker 6 is the unipotent radical
of G (the unique maximal unipotent normal subgroup of G), and ker& commutes with every
diagonalizable element of G (see Wehrfritz (1973, 7.11, p. 97)).

4.2. Nilpotency testing of matrix groups via change of the ground domain: First steps

We now prepare the way for applying Section 3 to nilpotency testing over an arbitrary field F.
Denote by Z;(G) the ith term of the upper central series of G. That is, Zo(G) = 1, and
2i(G)/Zi—1(G) = LG/ Zi-1(G)).

Lemma 4.6. If G is a completely reducible nilpotent subgroup of GL(n, ) then |G : Z(G)| is
finite.

Proof. See Dixon (1971, Corollary 6.5, p. 114), or Suprunenko (1976, Theorem 1, p. 208). Also
cf. Zassenhaus’ result (Wehrfritz, 1973, 3.4, p. 44). [

Remark 4.7. Suprunenko (1976, Theorem 1, p. 208) is stated for irreducible groups only. The
result for completely reducible nilpotent subgroups G of GL(n, ) follows from this, because
G/Z(G) is isomorphic to a subgroup of the direct product of central quotients of irreducible
nilpotent linear groups (each of degree no more than n).

Lemma 4.8. Let G be a completely reducible nilpotent subgroup of GL(n, F). If N is a torsion-
free normal subgroup of G then N < Z(G).

Proof. Suppose that N & Z(G). Then NZ(G)/Z(G) is a non-trivial normal subgroup of the
nilpotent group G/Z(G), so it has non-trivial intersection with Z>(G)/Z(G). Letx € NNZy(G),
x € Z(G). By Lemma 4.6, x € Z(G) for some m. Select g € G such that x8 = x¢ for some
e € Z(G), ¢ # 1. Then x™ = (x™)8 = (x&)™ = x"&™ implies that ¢ is a non-trivial torsion
element of G. But ¢ = x " 'x8 € N.Hence N must indeed be contained in Z(G). O

Now let G be a finitely generated subgroup of GL(n, IF). Suppose that A is a finitely generated
subring of F such that G < GL(n, A), and let o be an ideal of A. We continue with the notation
G(n, A, 0) and G, adopted in Section 3 for congruence subgroups. Without loss of generality,
we may assume that [ is the field of fractions of A.
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Lemma 4.9. Suppose that G(n, A, o) is torsion-free if char A = 0, and all torsion elements
of G(n, A, o) are unipotent if char A > 0. Let G be completely reducible as a subgroup of
GL(n, ). If G is nilpotent then G, is a torsion-free central subgroup of G.

Proof. By Lemma 4.4 and the hypotheses, G, is torsion-free. Then the result follows from
Lemma4.8. [J

In the discussion at the end of Section 3, we gave examples of selecting ¢ as in Lemma 4.9
for various I and A. Also, Section 4.1 shows how to split off a completely reducible subgroup
of GL(n, IF) from an arbitrary finitely generated nilpotent subgroup of GL(n, [F).

Theorem 4.10. Suppose that G(n, A, o) is as in Lemma 4.9, and that G is completely reducible.
Then G is nilpotent if and only if ¥, (G) is nilpotent and G, < Z(G).

Proof. One direction is elementary, and the other is Lemma 4.9. [J

Theorem 4.10 transforms nilpotency testing of a finitely generated completely reducible
subgroup G of GL(n, IF) into an equivalent pair of problems: testing whether G, < Z(G), and
testing whether v/, (G) is nilpotent. If ¢ is a maximal ideal of A then A/ is a finite field, and we
can test nilpotency of 1/, (G) as in Detinko and Flannery (2006a). To test whether G, < Z(G)
we need a generating set for G,. This may be achieved if in addition to the input generating set
{g1, ..., g} for G, we know either (i) a transversal for the cosets of G, in G, or (ii) a presentation
for G/G, = ¥,(G). In case (i), as long as the index |G : G| = [¥,(G)] is not too large then
the Schreier method (Holt et al., 2005, Section 2.5, pp. 41-45) is a realistic option for finding
a generating set of G,. In case (ii), suppose that each relator w; in the known presentation of
Yo (G) is written as a word in the v¥,(g;). Then by replacing each occurrence of V,(g;) in w;
by gi, 1 < i < r, we get a generating set for a subgroup of G whose normal closure in G is
G,. (This is the ‘normal subgroup generators’ method; cf. Holt et al. (2005, pp. 299-300).) As a
consequence, the following lemma solves the problem of testing whether G, is central in G.

Lemma 4.11. Let G = (g1, ..., &) < GL(, F) and
Vo(G) = (Vo(81), -+ Yo(gr) | wi(Wo(gi)), ..., ws(Yp(gi))).

Then G is the normal closure in G of the subgroup

évg = (w1(gi), ..., ws(gi)).
Hence G, < Z(G) ifand only if w;(g;) € Z(G) forall j, 1 < j < s, in which case G, = (’?\;}.

Later subsections address the issue of finding a presentation of ¥, (G).

4.3. Deciding finiteness

After nilpotency testing of G < GL(n,F), we can move on to tackling other basic
computational problems for G, such as testing whether G is finite.

Deciding finiteness of matrix groups over algebraic number fields and functional fields was
considered by various authors, and a practical implementation was obtained by Beals in GAP for
groups over (Q (see Babai et al. (1993)). The method for deciding finiteness that we introduce in
this subsection is a general approach to the problem that is uniform with respect to the ground
field. We apply it here only for nilpotent groups, while the general case is part of a separate
research.



18 A.S. Detinko, D.L. Flannery / Journal of Symbolic Computation 43 (2008) 8-26

Let char[F = 0, and let ¢ be an ideal of the subring A of [F such that A/p is finite. Suppose
that G(n, A, o) is torsion-free. Then, obviously, G < GL(n, Q) is finite if and only if G, is
trivial. This suggests a very simple and general finiteness test for G. However, efficiency of this
test depends on knowing an efficient method to decide whether G, is trivial. If G is nilpotent
then we have such a method by Lemma 4.11.

IsNilpotentFinite(G)

Input: A nilpotent subgroup G = (g1, ..., g&-) of GL(n, F), charF = 0.
Output: a message ‘true’ meaning that G is finite; and ‘false’ otherwise.

ifG, #1

then return ‘false’;
elseif G, # 1

then return ‘false’;
else return ‘true’.

Once G is confirmed to be finite, then we know that |G| = [¥,(G)|. Computing the order
of G 1is thus reduced to the order problem for matrix groups over a finite field. Testing whether
G, # lin IsNilpotentFinite(G) is viable by Lemma 4.11, because it is possible to compute
efficiently a presentation for the nilpotent group ¥, (G) over a finite field.

Now we consider [ of positive characteristic.

Lemma 4.12. Let G = (g1, ..., &) be a nilpotent subgroup of GL(n, ), charF > 0. Then G,
is finite.

Proof. Schur’s First Theorem (Suprunenko, 1976, p. 181) asserts that a periodic subgroup of
GL(n, IF) is locally finite. As G is nilpotent, G, is unipotent and so periodic. Then the result
follows, because G, = ((g1)u, - - - > (gr)u) 1s finitely generated. [J]

By Lemmas 4.1 and 4.12, if G 1is nilpotent then G is finite precisely when Gy is finite. Let IF
be perfect, and suppose that all torsion elements of G(n, A, ) are unipotent. Then as G/(Gy),
is finite, G is finite if and only if (Gy), is trivial, by Lemma 4.9. If I is not perfect then we
can still find a normal unipotent subgroup U of G such that G/ U is isomorphic to a completely
reducible subgroup of GL(n, [F) (see the discussion at the end of Section 4.1), and the above
reasoning goes through again.

For another method to decide finiteness of G, that can be incorporated with nilpotency testing
of G, see Section 4.5.

4.4. Polycyclic presentations

A finitely generated nilpotent group is polycyclic, and therefore has a (consistent) polycyclic
presentation. One major benefit of possessing a polycyclic presentation for a nilpotent subgroup
G of GL(n, ) is that we gain access to the numerous existing algorithms for abstract polycyclic
groups (see Sims (1994, Chapter 9), Holt et al. (2005, Chapter 8), and the package ‘Polycyclic’
in GAP (The GAP group, 2006)), which may be used to further investigate the structure of G.

The papers Assmann and Eick (2005, 2007) deal with the problem of constructing a polycyclic
presentation for a finitely generated subgroup G of GL(n, Q). Specifically, the algorithm
PolycyclicPresentation(G) in Assmann and Eick (2005) attempts to compute polycyclic
presentations for V,(G), G,/U,, and Uy, where ¢ = pZy for a finite set 7 of primes not
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containing the odd prime p, ¥, : GL(n,Z;) — GL(n, p) is the associated congruence
homomorphism, and U, is a unipotent radical of G,. If G is polycyclic then the algorithm
returns a polycyclic presentation of G. The algorithm fails to terminate if G is solvable but
not polycyclic (i.e. U, is not finitely generated). In this subsection we propose a modification of
PolycyclicPresentation which either returns a polycyclic presentation of G, or detects that
G is not nilpotent.

The paper Assmann and Eick (2007) contains another algorithm, IsPolycyclic(G), for
polycyclicity testing of a subgroup G of GL(n, Q). IsPolycyclic(G) always terminates,
returning either a polycyclic presentation for G, or a message that G is not polycyclic. A
nilpotency testing algorithm based on IsPolycyclic(G) is also given in Assmann and Eick
(2007). That algorithm has the following stages: (i) testing whether G is polycyclic, (ii) testing
whether G/ U is nilpotent, where U is a unipotent radical of G, and (ii1) testing whether G acts
nilpotently on U. Our approach in this subsection avoids the possibly time-consuming step (i),
and replaces step (ii1) with a simpler test.

The strategy of our algorithm is as follows. Let G be a finitely generated subgroup of
GL(n, F), where for convenience F is assumed to be perfect. After applying Reduction(G), we
will know either that G is not nilpotent, or that G < (G, Gy), G, is unipotent, and [G,, Gs] =
1. In the latter event, the problem splits into two: finding polycyclic presentations for G, and Gj.
Note that if we have to proceed further after Reduction(G), then the finitely generated nilpotent
group G, < UT(n, IF) is definitely polycyclic. Next, we apply a congruence homomorphism v/,
to Gy, thereby again splitting the problem for G; into two: finding presentations for the image
Y (Gy) and the kernel (Gy), of ¥, on G. Of course, g is chosen so that a solution of the former
problem is known; for example, ¥/, (Gy) is over a finite field. We recall that if G is nilpotent then
(Gs)o < Z(Gy) (see Lemma 4.9); i.e. (Gy), is abelian.

PresentationNilpotent(G)

Input: G = (g1, ..., &) < GL(n, ), I perfect.
Output: a polycyclic presentation of G, or a message ‘false” meaning that G is not nilpotent.

(1) If Reduction(G) = ‘false’ then return ‘false’; else go to step (2).

(2) Determine a polycyclic presentation of G, as a finitely generated subgroup of UT(n, R), R
a finitely generated subring of FF.

(3) Compute a generating set for ¥,(Gy), and use this to attempt to construct a polycyclic
presentation of ¥, (Gy). Return ‘false’ if the attempt fails.

(4) Determine a generating set for (Gy),. If (Gy), is not central in G then return ‘false’. Else
construct a polycyclic presentation of the finitely generated abelian group (Gy)o,.

(5) Combine the presentations of v/, (G,) and (Gy), found in steps (3) and (4) to get a polycyclic
presentation of Gy.

(6) Combine the presentations of G, and G, found in steps (2) and (5) to get a polycyclic
presentation of G* = G, G and thence a polycyclic presentation of G < G*.

Implementation of PresentationNilpotent depends on the availability of algorithms for
computing the polycyclic presentations in steps (2) and (4). Such algorithms are presently
available for finite fields and number fields (see Assmann and Eick (2005, 2007)).
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4.5. Testing nilpotency using an abelian series; the adjoint representation

Methods for testing nilpotency of matrix groups, relying on properties of nilpotent linear
groups, were proposed in Detinko and Flannery (2006a). Although those methods were applied
only to groups over finite fields, they are valid over other fields as well. In this subsection we
justify this statement.

As in Detinko and Flannery (2006a, Subsection 2.2) we define a recursive procedure
SecondCentralElement(G, H) which accepts as input finitely generated subgroups G, H of
GL(n, IF), F any field, where H is a non-abelian normal subgroup of G. If G is nilpotent then the
recursion terminates in a number of rounds no greater than the nilpotency class of G, returning
an element of Z>(H) \ Z(H). We therefore seek an upper bound on nilpotency class of nilpotent
subgroups of GL(n, F). (Such a bound exists only for certain fields . For instance, if [F is
algebraically closed then GL(n, ) contains nilpotent groups of every class; see Suprunenko
(1976, Corollary 1, p. 214).) Application of a suitable congruence homomorphism may provide
a bound as required.

Lemma 4.13. Let G be a nilpotent completely reducible subgroup of GL(n,F) contained in
GL(n, Q), A a finitely generated subring of F. Let o be an ideal of A as in Lemma 4.9. Then the
nilpotency class of G is at most the nilpotency class of ,(G) plus one.

Proof. This is clear by Lemma 4.9. [

Example 4.14. Theorem 2 of Wehrfritz (2001) gives an upper bound of 37 /2 for the nilpotency
class of subgroups of GL(n, Q). This further implies an upper bound of 3mn /2 for subgroups of
GL(n, P), where P is a number field of degree m over Q. Suppose that G is a finitely generated
nilpotent subgroup of GL(n, Q(X)). Since UT(n, IF) has nilpotency class n — 1 (see Suprunenko
(1976, Theorem 13.5, p. 89)), it follows from Lemmas 4.1 and 4.13 that the nilpotency class of
G is at most 37" + 1. Similar remarks apply to groups over Q(X1, ..., X;).

Example 4.15. Let g be a power of a prime p. If G is a finitely generated nilpotent subgroup of
GL(n, F) for F = GF(g)(X) then G has nilpotency class at most /,, ;, + 1, where [,, , is an upper
bound on the class of nilpotent subgroups of GL(n, ¢). A formula for /,, ; may be deduced from
Bialostocki (1986, Theorem C.3):

lng=n-max{(t —1)s + 1|t # p prime, t < n, t*dividing g — 1}. (3)

That is, n((t — 1)s 4 1) is an upper bound on the class of a Sylow ¢-subgroup of GL.(n, ¢), where
t* is the largest power of the prime ¢ dividing ¢ — 1 (slightly better bounds are known for special
cases e.g. t = 2). We restrict to ¢t < n in (3) because a ¢-subgroup of GL(n, ¢q) is abelian if t # p
and ¢t > n (cf. Detinko and Flannery (2006a, Lemma 2.25)).

We assume henceforth that we are able to specify a number kf such that if termination does not
occur in kf rounds or less then SecondCentralElement (G, H) reports that G is not nilpotent;
otherwise, the procedure returns an element a € Z>(H) \ Z(H) such that [G, a] < Z(H).

Other procedures in Detinko and Flannery (2006a) that were originally designed for
finite fields F also carry over to any F. Given a € Z7(G) \ Z(G), let ¢, : G —
Z(G) N [G, G] be the homomorphism defined by ¢ € G +— [g,a]. If G is completely
reducible then NonCentralAbelian(G, a) returns the abelian normal subgroup A = (a)®
(a, 4 (G)) of G, and Centralizer(G, A) returns a generating set for the kernel Cg(A) of ¢,.
NonCentralAbelian(G, a) requires a ‘cutting procedure’ for the enveloping algebra (A), to
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reduce computations to the case of cyclic ¢,(G). Also note that Detinko and Flannery (2006a,
Lemma 2.17 and Corollary 2.18) hold for any field [F; so that, as in the finite field case, we get a
moderate upper bound on the index |G : Cg(A)|.

The cutting procedure described in Ronyai (1993, Section 3) finds the simple components of
a finite-dimensional commutative semisimple algebra over any field [F, input by a set of algebra
generators. When I = QQ another method, based on Dixon (1985, Lemma 5), can be applied (see
Assmann and Eick (2005, Section 5.2)). The main requirement here is an efficient method for
factorizing polynomials over F.

The discussion above shows that the recursive procedure TestSeries of Detinko and
Flannery (2006a, Subsection 2.4) can be defined over any field [F. The basic steps in the recursion
are outlined in Detinko and Flannery (2006a, pp. 113—114). If it does not detect that the input
finitely generated subgroup G of GL(n, ) is not nilpotent, then TestSeries(G, /) returns a
series

(1)) <A1 <A < <A LCI<---<Cr < Cr G 4)

where the A; are abelian, the normal subgroup C; of G is the centralizer of A; in C;_1, and the
factors C;_1/C; are abelian. That is, all factors of consecutive terms in (4) are abelian, except
possibly the middle factor C;/A;. The construction of further terms in (4) can continue, with strict
inclusions everywhere except possibly in the middle of the series, as long as C; is non-abelian.

Lemma 4.16. For some |l < n — 1, the term C; in (4) is abelian.
Proof. Cf. the proof of Detinko and Flannery (2006a, Lemma 2.20). [
N.B. Until further notice in this subsection, G is completely reducible.

Lemma 4.17. Z(G) is contained in every term C; of the series (4). Therefore, if G is nilpotent,
then G/ Cj is finite.

Proof. Certainly Z(G) < C; = Cg(A). Assume that Z(G) < Ci_1; then Z(G) is contained in
the Cj_1-centralizer Cy of Ag. Then the second statement is clear by Lemma 4.6. [

Corollary 4.18. Suppose that G is nilpotent. Then G is finite if and only if C; in (4) is finite.

Corollary 4.18 gives another finiteness test for completely reducible nilpotent subgroups G of
GL(n, [F); cf. Section 4.3. This test requires that we are able to decide finiteness of the finitely
generated completely reducible abelian matrix group C;. To that end, the next result may be
useful.

Lemma 4.19. If G is non-abelian nilpotent then C; has non-trivial torsion.

Proof. Suppose that Cj is torsion-free. Let a € Z2(G) \ Z(G). Since a € Z(G) for some m by
Lemma 4.6, there exists g € G such that [g, a] € Z(G) has finite non-trivial order (dividing m).
This contradicts [g,a]l € Ay < C;. U

Suppose now that G is finite. Then we can apply Detinko and Flannery (2006a, Lemma 2.23)
to G. That is, we refine (4) to a polycyclic series of G, then test nilpotency of G via prime
factorization of the cyclic quotients in the refined series, and checking that factors for different
primes commute. Hence the algorithm IsNilpotent from Detinko and Flannery (2006a,
Section 2) can be employed for nilpotency testing of G. In the more general setting we label
this algorithm IsFiniteNilpotent. This algorithm, which accepts only finite G < GL(n, )
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as input, also yields the Sylow decomposition of nilpotent G. Complexity analysis (in terms
of number of field operations) of IsFiniteNilpotent is undertaken in Detinko and Flannery
(20064, Section 2).

Now we examine the case that G is infinite. First we state a few structural results.

Lemma 4.20. Let 7 be the set of primes less than or equal to n. Suppose that G is nilpotent.
Then every element of (the finite group) G /Z(G) has order divisible only by the primes in .
Moreover, no element of G/Z(G) has order divisible by char IF.

Proof. It suffices to prove the lemma for irreducible G (cf. Remark 4.7). Proofs of the irreducible
case are given in Suprunenko (1976, Chapter 7); see Corollary 1, p. 206, and Theorem 2, p. 216,
of Suprunenko (1976). []

Corollary 4.21 (Cf. Example 4.15). If G is nilpotent then for all primes p > n, a Sylow
p-subgroup of G is central.

Recall that a group H is said to be p-primary, for a prime p, if H/Z(H) is a p-group.
Lemma 4.22. If G is nilpotent then G is a product of p-primary groups for p < n.

Now let G be any subgroup of GL(n, F). Set m to be the F-dimension of the enveloping
algebra (G)y. Define the adjoint representation adj : G — GL(m, F) by adj(g) : x — gxg~!,
x € (G)p. Clearly keradj = Z(G). If G is nilpotent and completely reducible then adj(G) is
a finite completely reducible subgroup of GL(m, [F), by Lemma 4.20 and Maschke’s theorem.
If G = (g1,...,gr) then by Beals (1999, Lemma 4.1) we can construct a basis of (G)F as a
straight-line program of length m over {g1, ..., g-}. Knowing a basis of (G)r we can calculate
adj(G) by solving a system of linear equations. The adjoint representation is another way of
transferring nilpotency testing to the case of finite groups.

The results presented so far in this subsection lead to the following algorithm to test nilpotency
of G using an abelian series and the adjoint representation. The input generators of G are
diagonalizable, but G cannot be assumed in advance to be completely reducible. Also, as
mentioned earlier, this algorithm requires knowledge of an upper bound on nilpotency class of
nilpotent subgroups of GL(n, [F).

IsNilpotentAdjoint(G)

Input: G = (g1, ..., &) < GL#n, F), g; € GL(n, ) diagonalizable.
Output: a message ‘true’ meaning that G is nilpotent, or a message ‘false’ meaning that G is
not nilpotent.

fori e [1..r]
_do g; := adj(g:);
G:=(g1,---, &)
if (g;), # 1 for some i
then return ‘false’;
else invoke TestSeries(G);
if G is infinite
then return ‘false’;
else invoke IsFiniteNilpotent(G).

For testing whether G is infinite after invoking TestSeries(G), see Corollary 4.18.
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Parts of IsNilpotentAdjoint that use polynomial factorization (e.g. the cutting procedure)
have running time dependent on the coefficient field. Also, computation of G = adj(G) entails
squaring the dimension in worst-case; so may be time-consuming and efficient only for small n.

If IsNilpotentAdjoint(G) returns ‘true’ then the algorithm furnishes additional
information about the input group G, such as its decomposition into p-primary subgroups.
Also, knowing a generating set for G we can find a generating set for Z(G) = keradj (by
the Schreier method, or using a presentation of G = G/Z(G) to pull back to ‘normal subgroup
generators’, hence a generating set, of Z(G); see before Lemma 4.11). If we can find a polycyclic
presentation of the finitely generated completely reducible abelian matrix group Z(G), then this
can be combined with a polycyclic presentation of G/Z(G). Thus we gain one more method for
constructing a polycyclic presentation of G.

4.6. Nilpotency testing via change of ground domain and abelian series

Finally, we outline the simplest and most effective combination of our ideas for nilpotency
testing of finitely generated matrix groups, over a perfect field IF. This is the version of nilpotency
testing used in the GAP package ‘Nilmat’ (Detinko et al., 2007).

4.6.1. The algorithm

IsNilpotentMatGroup as set out below tests nilpotency over an infinite field [, via
Reduction(G) (if F is perfect), and applying a congruence homomorphism ¥/, to G, where
o satisfies the hypotheses of Lemma 4.9. Nilpotency of ¥, (Gy) is tested using an abelian series
(4) of ¥,(Gy) in GL(n, g): see Section 4.5. Note that Section 4.5 was written for input groups
over any (perfect) field, and hence is applicable to ¥,(Gy) < GL(n, q). If G is nilpotent then
(Gs)o < Z(Gy), and this containment can be tested via Lemma 4.11.

IsNilpotentMatGroup(G)

Input: G = (g1, ..., &) < GL®#,F).
Output: a message ‘true’ meaning that G is nilpotent, or a message ‘false’ meaning that G is
not nilpotent.

(1) Reduction(G).

(2) Construct ¥,(Gy) < GL(n, g).
(3) Test nilpotency of ¥, (Gy).

(4) Test whether (G;), < Z(Gy).

There are several advantages of the approach embodied in IsNilpotentMatGroup. Firstly,
by reducing the amount of computation over the original field IF, we hope to escape unfortunate
consequences which sometimes occur when computing over infinite fields (e.g. blow-up of size
of matrix entries). Another issue relates to upper bounds on nilpotency class. If G is nilpotent
then procedures used in TestSeries to construct the series (4) that depend on a class bound
for the potentially nilpotent group v, (G), such as SecondCentralElement, are guaranteed
to terminate more quickly than for arbitrary nilpotent subgroups of GL(n, g). For example, if
F = Q then ¥, (G) inherits from G < GL(n, Q) an upper bound 3n/2 on nilpotency class; this
can be compared with the general bound (3) for GL(n, ¢g) stated in Example 4.15.

It is desirable to retain complete reducibility in step (2) of IsNilpotentMatGroup. That
is, the Jordan decomposition over the top field F is unavoidable; we seek not to repeat it in
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Table 1
Sample running times for nilpotency testing algorithms
Group Degree Field No. of generators Runtime

G| 9 56 6 0: 00 : 26.890
Gr 127 27 3 0:18:37.092
Gj 12 56 9 0:12:35.592
Gy 30 114 9 0:17:39.749
Gs 63 26 11 0:18:25.842
G 90 28 54 0:21:28.280
G7 96 54 63 0:35:27.546
Gg 120 14 27 1:07:17.702
Gy 100 Q 12 0:08:39.641
G 200 Q 27 0:09:16.344
G 128 Q 93 0:14:07.398
Gip 150 133 2 0:00:23.688
Gi3 350 Q 4 0:00:55.047
G4 25 Q 13 0:16:25.859

GL(n, g). Let g be a power of the prime p. In order for the input v/,((g;)s) to TestSeries to
be diagonalizable, these elements must all be of order coprime to p. Equivalently o should be
chosen so that f;(X) and flf (X)) are coprime for all i, where f;(X) is the minimal polynomial
of ¥, ((gi)s) (note that f;(X) is the image ¥, (h; (X)) of the minimal polynomial 4;(X) of g;).
Selection of p is a number theory problem if [F is a number field.

Lemma 4.23. If G, is nilpotent and p > n then any preimage of (Y,(Gy)), in Gy is central.

Proof. Let g € Gy. Then ¥,(g), = wg(gl) for some [, and v, (glpk) = 1 for some k. That is,
o e (Gy)o < Z(Gy). Then by Corollary 4.21, g’ € Z(G,). O

Lemma 4.23 indicates that we may reasonably expect ¥, (Gy) to be completely reducible if g is
chosen so that p > n. However, if n is large then of course it is advisable to work with p < n.

4.6.2. Implementation and experimental results

Our implementation of IsNilpotentMatGroup for groups defined over QQ also includes
an algorithm IsNilpotentMatGroupFF for testing nilpotency over finite fields, according to
Section 4.5. To construct congruence subgroups, IsNilpotentMatGroup uses some functions
from the GAP package ‘Polenta’ (Assmann and Eick, 2007).

Table 1 illustrates performance of IsNilpotentMatGroup for various input parameters:
degree; size of the field if finite, or size of generator entries if the field is QQ; and number
of generators. The last column of Table 1 gives CPU time in the format minutes : seconds :
milliseconds. The computations were done on a Pentium 4 with 1.73 GHz under Windows, using
GAP 4. The standard GAP function IsNilpotent failed for all groups in Table 1.

As one might expect, the most challenging input groups are the nilpotent groups, because for
them all stages of the algorithms have been passed through. On the other hand, if the input is not
nilpotent, then this is confirmed very quickly. For example, if the input does not have an abelian
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series — in particular, if it is not solvable — then the algorithm terminates at the TestSeries stage
(see Section 4.5).

Thus, for proper testing of our algorithms, we need an extensive set of examples
of nilpotent matrix groups. Constructing special classes of nilpotent matrix groups
is a problem of interest in its own right. We have implemented an algorithm,
MaximalAbsolutelyIrreducibleNilpotentMatGroup(n, p,[), that constructs absolutely
irreducible maximal nilpotent subgroups of GL(n, p'), for input degree n and field size p'.
If r divides p' — 1 for each prime divisor » of n then such a subgroup of GL(n, p')
is unique up to conjugacy; otherwise, such subgroups of GL(n, p!) do not exist (see
Suprunenko (1976, Chapter 7)). If n = r% and the prime r divides p' — 1 then
MaximalAbsolutelyIrreducibleNilpotentMatGroup(n, p,[) returns the group generated
by a Sylow r-subgroup of GL(n, p'), and all scalars. For other degrees n, this algorithm
returns the group generated by all scalars, and a Kronecker product of Sylow r;-subgroups of
GL(r", ph.n= ]_[;;1 ri.

To check steps which rely on the Jordan decomposition, we implemented another procedure,
ReducibleNilpotentMatGroup. This procedure returns reducible but not completely reducible
nilpotent groups over finite fields and over QQ.

The groups G; in Table 1 for i < 5 are absolutely irreducible nilpotent groups constructed by
MaximalAbsolutelyIrreducibleNilpotentMatGroup. The reducible groups Gg, G7, Gg,
and Go, G19, G11, are constructed by ReducibleNilpotentMatGroup. Finally, G12, G13, and
G 14 are non-nilpotent groups; G2 = GL(150, 133), G13 = GL(350, Z), and G4 is the group
POL_PolExamples2(40) from Polenta, an infinite solvable subgroup of GL(25, Q).

‘Nilmat’ contains a variety of other functions for computing with nilpotent matrix groups.
These include functions for deciding finiteness, computing orders of finite nilpotent groups,
finding the Sylow system of a nilpotent group over a finite field, and testing whether a nilpotent
group is completely reducible. These functions are by-products of nilpotency testing, and in many
cases run much faster than the corresponding GAP functions. Additionally ‘Nilmat’ contains a
library of the nilpotent primitive groups over finite fields (based on Detinko and Flannery (2004)).
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