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Abstract. It is proved that elliptically polarized finite-amplitude inhomogeneous plane waves may
not propagate in an elastic material subject to the constraint of incompressibility. The waves consid-
ered are harmonic in time and exponentially attenuated in a direction distinct from the direction of
propagation. The result holds whether the material is stress-free or homogeneously deformed.
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1. Introduction

The problem of wave propagation in a medium is addressed mathematically by
seeking solutions for the displacement of a particle to a ‘wave equation’ character-
istic of the medium. Among possible solutions, harmonic forms for the displace-
ment are of great interest because any linear combination of harmonic waves is
also a solution of the wave equation. Harmonic waves vary sinusoidally with time
and distance, as they travel with constant speed and unchanged profile in a fixed
direction. They are called ‘homogeneous plane waves’ because the displacement
field is homogeneous in the planes orthogonal to the direction of propagation.

However, in certain physical contexts, such as gravity waves, surface waves,
or reflection and refraction of waves, an attenuation of the amplitude occurs in a
direction distinct from the direction of propagation. Thus arises the need to find
‘inhomogeneous plane wave’ solutions to the wave equation. A simple form for
the displacement is that of a vector fieldu(x, t) which varies sinusoidally with
frequencyω in the direction of a vectorS+ and is attenuated exponentially in the
direction of another vectorS−, so thatu(x, t) is the real part of the complex quantity
e−ωS−·x{Aeiω(S+·x−t )}, whereA is the amplitude of the wave. The complex vector
(or ‘bivector’ [1]) S = S+ + iS− is called the ‘slowness bivector’ and its real
and imaginary parts describe the ‘planes of constant phase’ (S+·x = constant)
and the ‘planes of constant amplitude’ (S−·x = constant). WhenS+ andS− are
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parallel, the wave is homogeneous; otherwise, it is inhomogeneous. Similarly,A is
a bivector, whose real and imaginary parts either are parallel (linear polarization)
or have distinct directions (elliptical polarization).

In this note, we place ourselves in the context of finite elasticity. Specifically, we
are interested in the propagation of plane waves of exponential type in incompress-
ible elastic materials. It has been shown that finite-amplitude homogeneous plane
waves (with linear or elliptical polarization) may propagate in deformed incom-
pressible materials (Green [2], Currie and Hayes [3], Boulanger and Hayes [4]).
Also, small-amplitude elliptically polarized inhomogeneous plane waves propa-
gating in a deformed incompressible material have received much attention (e.g.,
Hayes and Rivlin [5], Flavin [6], Belward [7], Belward and Wright [8], Borejko [9],
Boulanger and Hayes [10]).

Here we show thatelliptically polarizedinhomogeneousplane waves offinite
amplitude maynotpropagate in any incompressible material, whether deformed or
not.

2. Proof

For a deformation bringing a material point from positionX in the reference con-
figuration to positionx in the current configuration, the deformation gradientF is
defined by

F = ∂x
∂X
. (1)

Because of the incompressibility constraint, any deformation of the material
must be isochoric, so that, at all times, we have

detF = 1. (2)

Consider the propagation of an elliptically polarized inhomogeneous plane wave
of finite amplitude, which we choose to be of an exponential form. Thus, ifA is
the amplitude bivector of the wave andS= S+ + iS− is the slowness bivector with
associated frequencyω, then the wave is given by

x = X + 1

2

{
Aeiω(S·X−t ) + Ae−iω(S·X−t )}, (3)

where the modulus ofA is finite and the bar denotes the complex conjugate.
The deformation gradientF associated with this deformation is given by

F = ∂x
∂X
= 1+ ω

2

{
iA ⊗ Seiω(S·X−t ) − iA ⊗ Se−iω(S·X−t )}. (4)

ThenJ = detF is given by

J = 1+ ω
2

{
i(A · S)eiω(S·X−t ) − i

(
A · S)e−iω(S·X−t )}

− ω
2

4

{(
A · S)(A · S)− (A · S)(A · S)}eiω(S−S)·X. (5)
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However, becauseJ = 1 at all times by equation (2), we must haveA · S =
0, A · S= 0, (A · S)(A · S)− (A · S)(A · S) = 0, which imply{

A · S= A · S= 0,
A · S= A · S= 0.

(6)

When the wave iselliptically polarized, the amplitude bivectorA is such that
A×A 6= 0 [11]. Then from (6)1,2, S is orthogonal to bothA andA, and so parallel
to their cross productA×A. Similarly, from (6)3,4, S is also parallel toA×A, and
so S× S = 0. This is only possible whenS has real direction [1], which means
thatS= kn, wherek is some complex scalar andn is a real vector in the common
direction ofSandS. In this case, the plane wave described by (3) ishomogeneous.

On the other hand, when the wave isinhomogeneous, the slowness bivectorS
is such thatS× S 6= 0. Using a similar argument to the above involving (6)1,3, we
find thatA is parallel toS× S, and from (6)2,4, that alsoA is parallel toS× S,
leading toA × A = 0. ThenA = αa, whereα is a complex scalar anda is a real
vector in the direction of polarization. In this case, the wave islinearly polarized.

Hence, if the wave iselliptically polarized (A × A 6= 0) then it must beho-
mogeneous; if the wave isinhomogeneous(S× S 6= 0) then it must belinearly
polarized.

We conclude that, in an unstrained incompressible material, single trains of
elliptically polarizedfinite-amplitudeinhomogeneousplane waves of exponential
type may not propagate.

REMARK 1. Deformed material. Here, we assume the incompressible material
to have been first subjected to a finite homogeneous static triaxial stretch, with
stretch ratiosλ1, λ2 and λ3 (with λ1λ2λ3 = 1 to satisfy the incompressibility
constraint). Upon this deformation, the inhomogeneous wave was then superposed.
Thus, a particle atX in the reference configuration has moved first tox̃ given by
x̃i = λiXi (i = 1,2,3), and then tox given by

x = x̃+ 1

2

{
Aeiω(S·̃x−t ) + Ae−iω(S·̃x−t )}. (7)

We see that (7) and (3) are the same, except thatx̃ replacesX. Therefore, the
deformation gradient corresponding to the motion (7) is given by

∂x
∂X
= ∂x
∂ x̃

∂ x̃
∂X
= F̃Diag(λ1, λ2, λ3), (8)

where the tensor̃F is the same asF, with x̃ instead ofX.
Computation of the determinant̃J (say) of the deformation tensor given by (8),

yields

J̃ = det
(

F̃
)
(λ1λ2λ3) = det

(
F̃
)
. (9)

Thus,J̃ is the same asJ given by (5), with̃x instead ofX. Again, because of the
constraint of incompressibility, we must havẽJ = 1 at all times and equations (6)
are recovered.
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REMARK 2. Small deformations superposed on large. Note that in the context of
small-amplitude waves, terms of second order in the magnitude of the wave’s am-
plitude are negligible when compared to terms of first order. The incompressibility
constraint then yieldsA · S= 0 (see equation (5)), and does not prevent the wave
from beingbothelliptically polarized and inhomogeneous.
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