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Summary
The propagation of finite-amplitude linearly-polarized inhomogeneous transverse plane waves
is considered for a Mooney–Rivlin material maintained in a state of finite static homogeneous
deformation. It is shown that such waves are possible provided that the directions of the
normal to the planes of constant phase and of the normal to the planes of constant amplitude
are orthogonal and conjugate with respect to the B-ellipsoid, where B is the left Cauchy–
Green strain tensor corresponding to the initial deformation. For these waves, it is found
that even though the system is nonlinear, results on energy flux are nevertheless identical with
corresponding results in the classical linearized elasticity theory. Byproducts of the results are
new exact static solutions for the Mooney–Rivlin material.

1. Introduction

An isotropic homogeneous elastic material maintained in a state of arbitrary finite static
homogeneous deformation exhibits three privileged orthogonal directions, namely those of the
principal axes of strain. For a general material held in such a state, Green (1) showed that transverse
finite-amplitude homogeneous plane waves can travel in a principal direction and Carroll (2) showed
that homogeneous transverse plane waves of finite amplitude, linearly-polarized in a principal
direction, may propagate in a principal plane.

John (3) considered the possibility of having finite-amplitude plane waves propagating in any
direction in a prestressed material; he showed that the so-called Hadamard material was the most
general compressible one in which it may happen. Then Currie and Hayes (4) extended his result to
incompressible bodies and the corresponding material was found to be of the Mooney–Rivlin type,
a model used to describe the mechanical behaviour of rubber (5). Later, Boulanger and Hayes (6, 7)
gave a detailed study of finite-amplitude waves propagating in a deformed Mooney–Rivlin material.
For these waves, the displacement is of the form g(n · x − vt)a, where g is a function of arbitrary
magnitude, n is a unit vector in the direction of propagation (which may be any direction), v is the
speed at which the wave travels and a is a unit vector in the direction of polarization.

In contrast to this type of wave, inhomogeneous plane waves have distinct planes of constant
amplitude and of constant phase. The purpose of this paper is to consider the superposition of
an inhomogeneous motion upon an arbitrary static homogeneous deformation in a Mooney–Rivlin
material. We show that waves with displacement of the form f (b · x)g(n · x − vt)a, where f and
g are certain functions of finite magnitude and the vectors n and b satisfy a geometric relationship,
may propagate in the deformed Mooney–Rivlin material, for any orientation of the plane of b and
n.

The plan of the paper is as follows. In section 2, we recall the basic equations describing the
Mooney–Rivlin incompressible material. In section 3, we assume that this material is subjected
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to a finite homogeneous static deformation, upon which a finite-amplitude linearly-polarized
inhomogeneous plane wave is superposed.

The equations of motion are derived in section 4 and solved for the functions f and g, the speed v

and the pressure. Two types of solutions arise. When the directions of a, b, and n are along principal
axes of the initial strain ellipsoid, the solutions are called ‘special principal motions’ (section 5);
when the orientation of the plane containing b and n is arbitrary, we show that these directions must
be conjugate with respect to the elliptical section of the strain ellipsoid corresponding to the initial
static deformation by the plane orthogonal to the direction of polarization (section 6).

In section 7, we study a class of solutions which are of interest in some physical contexts
(gravity waves, surface waves, waves in layered media, interfacial waves, etc.). For these solutions,
the amplitude decays exponentionally in one direction while it varies sinusoidally with time in
another. We show how the possible directions of polarization, propagation and attenuation may be
constructed geometrically, and give bounds for the values of the phase speed. For these waves, the
propagation of energy is also considered. Although the theory is nonlinear, well-known aspects
of the linearized theory of wave propagation in conservative media are recovered. In particular,
it is shown that the direction of the mean energy flux vector is parallel to the planes of constant
amplitude, and that the component of this vector in the direction of propagation is equal to the
phase speed times the total energy density.

Finally, in section 8, we investigate the case where the time dependency of the superposed
deformation is removed. The corresponding solutions provide examples of inhomogeneous finite
static deformations possible in a Mooney–Rivlin material, in the absence of body forces.

2. Basic equations

Here we recall the basic equations governing the deformation of Mooney–Rivlin rubberlike
materials.

The constitutive equation for a Mooney–Rivlin material is

T = −p1 + (C + DI)B − DB2 = −(p − DII)1 + CB − DB−1. (2.1)

Here T is the Cauchy stress, C and D are constants, B is the left Cauchy-Green strain tensor defined
by B = FFT, where F = ∂x/∂X is the deformation gradient, and the deformation is x = x(X, t).
Also, I and II are invariants of B, given by I = tr B and II = tr B−1.

In the constitutive equation (2.1), p(x, t) corresponds to an arbitrary pressure. Because the
material is incompressible, we must have

det F = 1. (2.2)

For this material, the strain energy density 	, measured per unit volume in the current state of
deformation, has the form (5)

2	 = C(I − 3) + D(II − 3). (2.3)

It is assumed that

C � 0, D > 0, or C > 0, D � 0, (2.4)

in order that the strong ellipticity condition be satisfied (see (7) for a short proof). If D = 0, the
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material is said to be neo-Hookean which case is being examined elsewhere. Here we exclude this
possibility, that is we assume that (2.4)1 holds.

The equations of motion in the absence of body forces are

div T = ρ
∂2x
∂t2

,
∂Ti j

∂x j
= ρ

∂2xi

∂t2
, (2.5)

where ρ is the mass density of the material, measured per unit volume in any configuration (because
of the incompressibility constraint).

The energy flux vector R is defined by

R = −T · ẋ, Ri = −Ti j ẋ j , (2.6)

where ẋ is the particle velocity. We write Rα for the rate at which the mechanical energy crosses, at
time t , a material element which is normal to the xα-axis at time t , in the final state of deformation,
measured per unit area of surface in this configuration.

Also, the kinetic energy density K measured per unit volume is given by

K = 1
2ρ(ẋ · ẋ). (2.7)

3. Motion superposed on static homogeneous deformation

Here we consider the propagation of a linearly-polarized inhomogeneous plane wave of finite
amplitude in the material, when it is held in a state of finite static homogeneous deformation. We
determine the corresponding stresses and energy flux for the motion.

We assume that the material is held in the state of finite static homogeneous deformation given
by

xα = λα Xα, α = 1, 2, 3, (3.1)

in which the particle initially at position X is displaced to x. The constants λ1, λ2, λ3 are such that
λ1 > λ2 > λ3 > 0 and satisfy λ1λ2λ3 = 1, due to (2.2).

In this case, the principal stresses tα , necessary to support the deformation are given by

tα = −p0 + (C + DI)λ2
α − Dλ4

α, α = 1, 2, 3, (3.2)

where now I = λ2
1 + λ2

2 + λ2
3 and p0 is a constant.

Let a linearly-polarized inhomogeneous plane wave of finite amplitude propagate in the deformed
body, so that the final position of the particle, which is initially at X, and at x in the state of finite
static homogeneous deformation, is at x where

x = x + f (b · x)g(n · x − vt)a. (3.3)

Here, (n, a, b) form an orthonormal triad. The planes defined by n · x = const. are the planes of
constant phase and those defined by b · x = const. are the planes of constant amplitude. Also, v is
the real speed of propagation and ( f, g) are two real functions to be determined.

We use bars, for example W , to denote quantities in the final state of deformation. The
deformation gradient F associated with the deformation (3.3) is given by

F = ∂x
∂X

= [1 + f ′g a ⊗ b + f g′ a ⊗ n]F, (3.4)
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where a prime denotes the derivative of a function with respect to its argument.

The corresponding left Cauchy–Green tensor B = F F
T

and its inverse B
−1 = F

−1T
F

−1
are

B = [1 + f ′g a ⊗ b + f g′ a ⊗ n]B[1 + f ′g b ⊗ a + f g′ n ⊗ a],
B

−1 = [1 − f ′g b ⊗ a − f g′ n ⊗ a]B−1[1 − f ′g a ⊗ b − f g′ a ⊗ n].
(3.5)

Also, the invariants of B are given by

I = tr B = I + 2[ f ′g(a · Bb) + f g′(a · Bn)]
+ ( f ′g)2(b · Bb) + 2 f f ′gg′(n · Bb) + ( f g′)2(n · Bn),

II = tr B
−1 = II − 2[ f ′g(a · B−1b) + f g′(a · B−1n)] + [( f ′g)2 + ( f g′)2](a · B−1a).

(3.6)

We introduce the coordinates (η, ξ, ζ ), given by

η = n · x, ξ = a · x, ζ = b · x, (3.7)

and the coordinates (η, ξ, ζ ), given by

η = n · x = η, ξ = a · x = ξ + f (ζ )g(η − vt), ζ = b · x = ζ. (3.8)

Now we write the Cauchy stress tensor T in (n, a, b). For a Mooney–Rivlin material, the stress–
strain relation is given by equation (2.1) or, in the present context, by

T = −(p − DII)1 + CB − DB
−1

, (3.9)

where the arbitrary pressure p may be decomposed into the pressure p0 corresponding to the
primary homogeneous deformation and an incremental pressure p∗ (say) corresponding to the
superposed dynamic deformation: p = p0 + p∗. We assume p∗ to be of a form similar to the
superposed motion (3.3); that is, p∗ = p∗(n · x, b · x, t) = p∗(η, ζ, t).

Using (3.5), (3.6), (3.9), and the notation: Tηη = n · Tn, Tηξ = n · Ta, etc., the components of
T are found to be

Tηη = Tηη − p∗ − 2D f ′g(a · B−1b) + D( f ′g)2(a · B−1a),

Tηξ = Tηξ + C[ f g′(n · Bn) + f ′g(n · Bb)] + D( f g′)2(a · B−1a),

Tηζ = Tηζ + D[ f ′g(a · B−1n) + f g′(a · B−1b)] − D f f ′gg′(a · B−1a),

Tξξ = Tξξ − p∗ + 2C[ f ′g(a · Bb) + f g′(a · Bn)] (3.10)

+ C[( f ′g)2(b · Bb) + 2 f f ′gg′(n · Bb) + ( f g′)2(n · Bn)],
Tξζ =Tξζ + C[ f ′g(b · Bb) + f g′(n · Bb)] + D f ′g(a · B−1a),

Tζ ζ =Tζ ζ − p∗ − 2D f g′(a · B−1n) + D( f g′)2(a · B−1a).

In passing, we introduce some quantities associated with the energy carried by the distur-
bance (3.3). First, from (2.7) and (3.3), the kinetic energy density K per unit volume is given
by

K = 1
2ρv2( f g′)2. (3.11)
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Next, the stored-energy density W per unit volume associated with the wave is defined, in the
absence of body forces, by

W = 	 − 	 = 1
2 C(I − I) + 1

2 D(II − II), (3.12)

where I and II are given by (3.6) in our context.
Finally, we introduce the energy flux vector R associated with the motion (3.3). From (2.6) it is

given here by R = −T · ẋ. It is related to the energy flux vector R measured in the intermediate
static state of deformation through (8)

R =
(

∂x
∂x

)−1

R = −
(

∂x
∂x

)−1

T · ẋ. (3.13)

Using (3.3) we have ∂x/∂x = 1 + f ′ga ⊗ b + f g′a ⊗ n, so that

R = v( f g′)[1 − f ′ga ⊗ b − f g′a ⊗ n]T · a. (3.14)

4. Equations of motion

The equations of motion (2.5) are written as

div T = ρ
∂2x
∂t2

,
∂Ti j

∂x j
= ρ

∂2xi

∂t2
. (4.1)

Here div represents the divergence operator with respect to position x, that is, with respect to the
coordinates (η, ξ, ζ ) = (η, ξ, ζ ). However, by inspection of equations (3.10), we see that T depends
on η, ζ and t only, so that div T computed with respect to x is equal to div T computed with respect
to x. Hence the equations of motion reduce to

Tηη,η + Tηζ,ζ = 0,

Tξη,η + Tξζ,ζ = ρv2 f g′′, (4.2)

Tζη,η + Tζ ζ,ζ = 0,

or

− p∗
,η + D[ f ′′g(a · B−1n) − f ′g′(a · B−1b)] + D( f ′2 − f f ′′)gg′(a · B−1a) = 0,

C[ f ′′g(b · Bb) + 2 f ′g′(n · Bb) + f g′′(n · Bn)]
+ D( f ′′g + f g′′)(a · B−1a) = ρv2 f g′′,

− p∗
,ζ + D[ f g′′(a · B−1b) − f ′g′(a · B−1n)] + D(g′2 − gg′′) f f ′(a · B−1a) = 0,

(4.3)

where commas denote differentiation with respect to the coordinates (η, ξ, ζ ); thus, for example,
Tζ ξ,ξ = ∂Tζ ξ /∂ξ .

Now, equation (4.3)2 is equivalent to

[C(b · Bb) + D(a · B−1a)] f ′′g + 2C(n · Bb) f ′g′ + [C(n · Bn) + D(a · B−1a) − ρv2] f g′′ = 0.

(4.4)
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Also, the second derivatives of p∗ must be compatible, that is p∗
,ηζ = p∗

,ζη, or, from (4.3)1,3,

f ′′′g(a · B−1n) − f ′′g′(a · B−1b) + ( f ′ f ′′ − f f ′′′)gg′(a · B−1a)

= f g′′′(a · B−1b) − f ′g′′(a · B−1n) + (g′g′′ − gg′′′) f f ′(a · B−1a). (4.5)

Equations (4.4) and (4.5) are the two equations to be solved for f and g in order that the
inhomogeneous motion (3.3) may propagate in the deformed Mooney–Rivlin material. The
solutions are established in Appendix A, and a distinction needs be made, according as to whether
or not the orthogonal vectors n, a and b are along the principal axes of the B-ellipsoid.

5. Special principal motions

Here we present solutions valid when n, a, and b are in the principal directions of the initial strain
ellipsoid.

For small-amplitude homogeneous plane waves propagating in a homogeneously deformed body,
the term ‘principal wave’ (9) is used to describe a wave travelling along a principal axis of the strain
ellipsoid corresponding to the initial static deformation. This terminology can readily be extended
to the case of inhomogeneous motions for which the planes of constant phase are orthogonal to such
an axis.

We introduce the term ‘special principal motion’ to describe an inhomogeneous motion for which
the normal to the planes of constant phase, the normal to the planes of constant amplitude, and the
linear polarization are in the directions of the principal axes of strain. With our notation, a special
principal motion is of the form f (b · x)g(n · x − vt)a where n, a, and b are the vectors i, j, and k.

The most general functions f and g, solutions to the equations of motion (4.4) and (4.5), where,
without loss of generality, n = i, a = j, and b = k, are such that one is of exponential type while
the other is of sinusoidal type (see proof in Appendix A). For these motions, the quantity v may be
arbitrarily prescribed (within an interval).

Explicitly, the possible inhomogeneous special principal motions of the Mooney–Rivlin material
are written as

x = λ1 X, y = λ2Y + f (λ3 Z)g(λ1 X − vt), z = λ3 Z , (5.1)

where either

f (λ3 Z) = f (z) = a1ekσ z + a2e−kσ z,

g(λ1 X − vt) = g(x − vt) = d1 cos k(x − vt) + d2 sin k(x − vt),

}
(5.2)

or

f (λ3 Z) = f (z) = a1 cos kσ z + a2 sin kσ z,

g(λ1 X − vt) = g(x − vt) = d1ek(x−vt) + d2e−k(x−vt).

}
(5.3)

Here, a1, a2, d1, d2 are constants, σ is defined by

σ =
√

(Cλ2
1 + Dλ−2

2 − v2)/(Cλ2
3 + Dλ−2

2 ), (5.4)

and k and v are arbitrary (0 � v2 < Cλ2
1 + Dλ−2

2 ).
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6. General solutions

Here, we seek the most general solutions f and g of equation (4.4) satisfying (4.5) such that
f (b · x)g(n · x − vt)a is an inhomogeneous motion in the deformed Mooney–Rivlin material,
(a, n, b) form an orthonormal triad, and the plane of n and b is arbitrary. It is shown in Appendix A
that f and g are the functions defined by either

f (ζ ) = a1ekζ + a2e−kζ ,

g(η − vt) = d1 cos k(η − vt) + d2 sin k(η − vt),

}
(6.1)

or

f (ζ ) = a1 cos kζ + a2 sin kζ,

g(η − vt) = d1ek(η−vt) + d2e−k(η−vt).

}
(6.2)

Here a1, a2, d1, d2 and k are arbitrary constants, v is such that

ρv2 = C[(n · Bn) − (b · Bb)], (6.3)

and the condition

b · Bn = 0, (6.4)

must be satisfied.
The condition (6.4) means that the unit vectors n and b are conjugate with respect to the B-

ellipsoid, defined by x · Bx = 1. Because they are orthogonal, they must lie along the principal axes
of the elliptical section of the B-ellipsoid by the plane orthogonal to a. We note that the speed v

given by (6.3) is real when m̂ and n̂ are in the directions of the minor and major axes of the elliptical
section, respectively.

Also note that

ρv2 = n · Tn − b · Tb − b · Tn

b · B−1n
(n · B−1n − b · B−1b), (6.5)

so that the speed may be written in terms of the basic strain B and the corresponding basic stress T.
Finally, using the compatibility equations, the incremental pressure p∗ is determined. To within

an arbitrary constant, it is found to be either

p∗ = −D[ f g′(a · B−1n) + f ′g(a · B−1b)] + 1
2 Dk2[(d2

1 + d2
2 ) f 2 − 4a1a2g2](a · B−1a), (6.6)

when f and g are given by (6.1), or

p∗ = −D[ f g′(a · B−1n) + f ′g(a · B−1b)] + 1
2 Dk2[4d2

1 d2
2 f 2 − (a2

1 + a2
2)g2](a · B−1a), (6.7)

when f and g are given by (6.2). Thus, a finite displacement of the form f (b · x)g(n · x − vt)a,
where (a, b, n) is an orthonormal basis, f and g are given by (6.1) or (6.2), v is given by (6.3),
and b, n satisfy (6.4), is an exact solution to the equations of motion in a homogeneously deformed
Mooney–Rivlin material, for any orientation of the plane of b and n.
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7. Sinusoidal evanescent waves

In this section, we restrict our attention to the propagation of a linearly-polarized finite-amplitude
inhomogeneous plane wave in a homogeneously deformed Mooney–Rivlin material. The phase
of the wave fluctuates sinusoidally in the direction of a unit vector n, its amplitude decreases
exponentionally in the direction of b, orthogonal to n, and its polarization is in the direction of
a, orthogonal to both n and b. These waves are a subclass of the general solutions to the equations
of motion found in the previous section, and arise in a variety of contexts such as Rayleigh waves,
Love waves, Stoneley waves, etc.

We give a geometrical construction for the triads (n, a, b) such that the wave may propagate, and
present expressions for the phase speed and the pressure. Then we examine the propagation of the
energy carried by the wave.

7.1 Construction

Henceforth, we consider the motion

x = x + αe−kb·xa cos k(n · x − vt), (7.1)

where α and k are real arbitrary constants, and v is assumed to be real. Recall that in (7.1),
x corresponds to the static homogeneous predeformation x = diag(λ1, λ2, λ3)X. As proved in
section 6, this motion is possible as long as n and b are along the minor and major axes of the
elliptical section of the B-ellipsoid by the plane orthogonal to a, respectively.

Boulanger and Hayes (6) considered the propagation of finite-amplitude homogeneous plane
waves in a deformed Mooney–Rivlin material and found that it was possible in any direction of
propagation along n. Here, we deal with finite amplitude inhomogeneous plane waves and it is the
plane of n and b (propagation and attenuation directions) that may be arbitrarily prescribed.

Thus we construct a sinusoidal evanescent inhomogeneous plane wave as follows. First, consider
any plane passing through the origin. Let n and b be unit vectors along the respective major and
minor axes of the elliptical section of the B-ellipsoid by the chosen plane. Then the motion (7.1)
is possible in the deformed Mooney–Rivlin material, with a linear polarization in the direction of
a = b ∧ n, an amplitude exponentially attenuated by factor k in the direction of b, and a velocity
vn, where ρv2 = C[(n · Bn) − (b · Bb)].

In order to write explicit expressions for the directions of n and b, and for the value of ρv2,
we use a method developed by Boulanger and Hayes (10, section 5.7). First we prescribe a plane
cutting the B-ellipsoid in a central elliptical section. We denote by a the unit vector normal to this
plane. Then we write the Hamiltonian cyclic decomposition of the tensor B as (10, section 3.4)

B = λ2
1 i ⊗ i + λ2

2 j ⊗ j + λ2
3 k ⊗ k (7.2)

= λ2
2 1 + 1

2 (λ2
1 − λ2

3)(m
+ ⊗ m− + m− ⊗ m+),

where the unit vectors m± are in the directions of the ‘optic axes’ of the B-ellipsoid and are defined
by √

λ2
1 − λ2

3 m± =
√

λ2
1 − λ2

2 i ±
√

λ2
2 − λ2

3 k. (7.3)

We now seek n and b, unit vectors in the directions of the principal axes of the elliptical section of
the B-ellipsoid by the plane a · x = 0. Hence, n and b are eigenvectors of the tensor �B� where
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�, the orthogonal projection upon the plane a · x = 0, is defined by � = 1 − a ⊗ a. With the aid
of (7.2), and because �2 = �, we have

�B� = λ2
2 � + 1

2 (λ2
1 − λ2

3)(�m+ ⊗ �m− + �m− ⊗ �m+). (7.4)

Calling ψ± the angles between the polarization direction a and the optic axes m± (0 � ψ± � π ),
and noting that the vectors �m±/ sin ψ± are of unit length, we find from (7.4) that �m+/ sin ψ+ ±
�m−/ sin ψ− are eigenvectors of �B� with eigenvalues γ ± given by (10, section 5.7)

γ ± = λ2
2 + 1

2 (λ2
1 − λ2

3)(�m+ · �m− ± sin ψ+ sin ψ−). (7.5)

Recall that the phase speed v, which is given by equation (6.3),

ρv2 = C(n · Bn − b · Bb) = C(n · �B�n − b · �B�b), (7.6)

was assumed to be real. Therefore, n is the eigenvector of �B� with the greater eigenvalue, which
is γ + according to (7.5), and b is the eigenvector of �B� with the lesser eigenvalue γ −. Hence,
we obtain the propagation and attenuation directions as

n = �m+/ sin ψ+ + �m−/ sin ψ−, n · Bn = γ +,

b = �m+/ sin ψ+ − �m−/ sin ψ−, b · Bb = γ −.
(7.7)

7.2 Phase speed and pressure

We now write the phase speed in terms of the initial stretches and the angles ψ±. Upon using (7.5)
and (7.7), we have

ρv2 = C(λ2
1 − λ2

3) sin ψ+ sin ψ−. (7.8)

In this connection, it may be noted that for finite-amplitude homogeneous plane waves propagating
in a homogeneously deformed Mooney–Rivlin material, two linearly-polarized waves exist for
each direction of propagation, and the difference between the two corresponding squared speeds is
proportional to (λ2

1 − λ2
3) sin φ+ sin φ−, where φ± are the angles between the propagation direction

and the optic axes of the B−1-ellipsoid (also called the ‘acoustic axes’) (6).
From (7.8), it follows that the minimum value of v is vmin given by

v2
min = 0, (7.9)

and is attained only when a = m±. In this case, n · Bn = b · Bb = λ2
2, and the plane orthogonal to

a is a plane of central circular section of the B-ellipsoid. In other words, when the plane of n and b
is prescribed to be orthogonal to an optic axis of the B-ellipsoid, the superposed deformation must
be static. We treat this case in section 8.

The maximum value for the phase speed is vmax given by

ρv2
max = C(λ2

1 − λ2
3), (7.10)

which is attained when a = j. In that case, n = i and b = k. In other words, the fastest wave occurs
for propagation in the direction of the greatest initial stretch. A similar result was established by
Ericksen (11) for acceleration waves in a homogeneously deformed neo-Hookean material and also
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by Boulanger and Hayes (7) for finite-amplitude homogeneous waves in a homogeneously deformed
Mooney–Rivlin material.

We may also write the phase speed in terms of the polarization direction a alone. Because
n · Bb = 0 and det B = 1, we have

a · B−1a = (n ∧ b) · B−1(n ∧ b) = (n ∧ b) · (Bn ∧ Bb) (7.11)

= (n · Bn)(b · Bb).

Writing the trace of B in the (a, n, b) basis yields

tr B = a · Ba + n · Bn + b · Bb. (7.12)

Combining (7.11) and (7.12), we see that n · Bn and b · Bb are the two roots of the following
quadratic in r (say),

r2 + [tr B − a · Ba]r + a · B−1a = 0, (7.13)

so that, using (6.3), v is alternatively given by

ρv2 = C
√

[tr B − (a · Ba)]2 − 4(a · B−1a). (7.14)

Finally, the pressure p∗ is given by

p∗ = αk De−b·x[(a · B−1n) sin k(n · x − vt) + (a · B−1b) cos k(n · x − vt)]
+ 1

2α2k2 De−2kb·x(a · B−1a). (7.15)

7.3 Energy propagation

Here we consider the energy carried by the wave (7.1). First we compute the total energy density,
which is the sum of the kinetic and stored-energy densities, and then the energy flux vector. Our
aim is to find a relationship between these two quantities, or more relevantly (as the frequencies of
the sinusoidal vibrations may be very high), between the temporal mean values of these quantities.
To this effect, we introduce the following notation to designate temporal mean values: if D(x, t) is
a periodic field quantity with frequency ω, then its mean value is Ď, defined by

Ď = ω

2π

∫ ω/(2π)

0
D(x, t) dt. (7.16)

We begin with the kinetic energy density per unit volume K given by equation (3.11). Using (7.1),

its mean value Ǩ is found to be

Ǩ = 1
4α2k2e−2kb·xρv2 = 1

4α2k2e−2kb·xC[(n · Bn) − (b · Bb)]. (7.17)

The stored-energy density W per unit volume associated with the wave is given by (3.12), where
I and II are given, for the motion (7.1), by

I = I − 2αke−kξ [cos k(n · x − vt)(a · Bb) + sin k(n · x − vt)(a · Bn)]
+ α2k2e−2kξ [cos2 k(n · x − vt)(b · Bb) + sin2 k(n · x − vt)(n · Bn)],

II = II + 2αke−kξ [cos k(n · x − vt)(a · B−1b)

+ sin k(n · x − vt)(a · B−1n)] + α2k2e−2kξ (a · B−1a).

(7.18)
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Note that because the material is incompressible, the stored-energy density W is the same whether
it is measured in the reference configuration, in the state of static homogeneous deformation, or in

the current configuration. The mean value of this quantity is W̌ , given by

W̌ = 1
4α2k2e−2kb·x[C(n · Bn + b · Bb) + 2D(a · B−1a)]. (7.19)

We can now compute the total energy density E , which is by definition the sum of the kinetic and

stored-energy densities: E = K + W . Using (7.17) and (7.19), we write directly the mean value Ě
of the total energy density E as

Ě = 1
2α2k2e−2kb·x[C(n · Bn) + D(a · B−1a)]. (7.20)

Now we turn our attention to the energy flux vector, defined in equation (3.14), and find that here,
R is given by

R = − αvke−kb·x sin k(n · x − vt){Ta − 1
2α2k2 De−2kb·x(a · B−1a)a

− αk[CBb + D(a · B−1a)n]e−kb·x cos k(n · x − vt)

− αk[CBn + D(a · B−1a)n]e−kb·x sin k(n · x − vt)}. (7.21)

The mean value of R is Ř, given by

Ř = 1
2α2k2ve−2kb·x[CBn + D(a · B−1a)n]. (7.22)

Hence, using equation (6.4), we see that

Ř · b = 0, (7.23)

which means that the direction of the mean energy flux vector is parallel to the planes of constant
amplitude. We also have, using (7.20),

Ř · (v−1n) = Ě, (7.24)

which means that the component of the mean energy flux vector in the direction of propagation is
equal to the phase speed times the total energy density.

These results may be compared with results established previously. First, Schouten (12,
section VII.7) introduced the notion of an energy flux vector for the propagation of elastic waves
in anisotropic elastic media. For small homogeneous displacements (that is for displacements of
the form a cos(kx − vt), where the real vector a is of infinitesimal magnitude), he proved that the
temporal mean values of the energy flux vector and energy densities are related through the same
equation as (7.24).

Then Synge (13) looked for solutions to the equations of motion in an anisotropic medium in the
form {Aeiω(S·x−t) + c.c.} where A = A+ + iA− and S = S+ + iS− are complex vectors, ω is the
real frequency and c.c. denotes the complex conjugate. He proved that Ř · S− = 0 and Ř · S+ � 0,
where Ř is the time-averaged energy flux vector.

Then Hayes (14) showed for any linear conservative system, using the same notation as above,
that Ř · S− = 0 and Ř · S+ = Ě , where Ě is the mean energy density carried by the wave. In
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that paper, no assumption is made as to whether or not the medium is anisotropic or subject to an
internal constraint such as incompressibility or inextensibility.

Later, Chadwick et al. (15) and Borejko (16) described the dynamics of small amplitude
plane waves superposed upon a large homogeneous deformation of a constrained material, be
they homogeneous (15) or inhomogeneous (16). In order to remain consistent with results of
linear elastodynamics, these authors (following Lighthill (17)) separated energy quantities into
‘interaction’ and ‘incremental’ parts. The former terms refer to the interconnection between
the primary static stretch and the superposed waves, whereas the latter refer to the waves only,
and would not disappear in the absence of prestress. This distinction made, they proved that
Řincr · S− = 0 and Řincr · S+ = Ě incr, where the superscript ‘incr’ is short for ‘incremental’.

These results are all similar to those given by (7.23) and (7.24) because, in our context, the
displacement x − x may also be written in the form {Aeiω(S·x−t) + c.c.}, with A = αa/2, ω = vk
and S = v−1(n + ib). With this notation, (7.23) and (7.24) are rewritten as Ř · S− = 0 and

Ř · S+ = Ě respectively.
However, the above mentioned studies are situated within the framework of linearized theory and

it is remarkable that results such as (7.23) and (7.24) may be found in the nonlinear case of a finite-
amplitude wave propagating in a finitely deformed Mooney–Rivlin material. Note that in the same
context, Boulanger and Hayes (7) found (7.24) for finite-amplitude homogeneous plane waves.

8. Superposed static deformation
An interesting feature of inhomogeneous plane motions is that for certain orientations of the planes
of constant phase and constant amplitude, the speed v may be equal to zero (10, section 6.3). In this
situation, no perturbation propagates, but the static deformation f (b · x)g(n · x)a may nevertheless
be superposed upon the primary homogeneous one. This possibility provides new exact solutions
to the equations of equilibrium in a Mooney–Rivlin material.

Here, we consider in turn the case of special and non-special principal inhomogeneous
deformations.

8.1 Superposed displacements along principal axes of the B-ellipsoid

For special principal motions, we saw in section 5 that the quantity v can be prescribed within the
interval 0 � v2 < (Cλ2

1 + Dλ−2
2 )/ρ. When we choose v to be zero, we obtain from (5.1) a possible

static deformation of a Mooney–Rivlin material. It is written as

x = λ1 X, y = λ2Y + f (λ3 Z)g(λ1 X), z = λ3 Z , (8.1)

where either

f (λ3 Z) = a1 exp k

√√√√Cλ2
1 + Dλ−2

2

Cλ2
3 + Dλ−2

2

λ3 Z + a2 exp −k

√√√√Cλ2
1 + Dλ−2

2

Cλ2
3 + Dλ−2

2

λ3 Z ,

g(λ1 X) = d1 cos k(λ1 X) + d2 sin k(λ1 X),

 (8.2)

or

f (λ3 Z) = a1 cos k

√√√√Cλ2
1 + Dλ−2

2

Cλ2
3 + Dλ−2

2

λ3 Z + a2 sin k

√√√√Cλ2
1 + Dλ−2

2

Cλ2
3 + Dλ−2

2

λ3 Z ,

g(λ1 X) = d1 exp k(λ1 X) + d2 exp −k(λ1 X).

 (8.3)
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Here, a1, a2, d1, d2 and k are arbitrary constants.
The components of the Cauchy stress corresponding to these deformations are as follows:

T11 = −p + Cλ2
1 − D[λ−2

1 + λ−2
2 ( f g′)2],

T12 = (Cλ2
1 + Dλ−2

2 ) f g′,
T13 = −Dλ−2

2 f f ′gg′,
T22 = −p + C[λ2

1( f g′)2 + λ2
2 + λ2

3( f ′g)2] − Dλ−2
2 , (8.4)

T23 = (Cλ2
3 + Dλ−2

2 ) f ′g,

T33 = −p + Cλ2
3 − D[λ−2

3 + λ−2
2 ( f ′g)2],

where the pressure p is given either by

p = 1
2 Dk2λ−2

2

[
(d2

1 + d2
2 ) f 2 − 4

(
Cλ2

1 + Dλ−2
2

Cλ2
3 + Dλ−2

2

)
a1a2g2

]
, (8.5)

when f and g are given by (8.2), or by

p = − 1
2 Dk2λ−2

2

[
4d2

1 d2
2 f 2 −

(
Cλ2

1 + Dλ−2
2

Cλ2
3 + Dλ−2

2

)
(a2

1 + a2
2)g2

]
, (8.6)

when f and g are given by (8.3).

8.2 Superposed displacements in the planes of central circular section of the B-ellipsoid

From section 6, we see that for certain choices of the orthogonal unit vectors n and b, the quantity v

is equal to zero. This is the case when the plane of the conjugate vectors n and b is a plane of central
circular section of the B-ellipsoid because then, n · Bn = b · Bb = λ2

2 (see (10, section 5.7.1) for
instance) and then, from equation (6.3), v = 0. The vector a is one of the unit vectors m±, which
are in the directions of the optic axes of the B-ellipsoid and are defined by (7.3). Also, (n, b) is any
pair of orthogonal unit vectors in a plane of central circular section a · x = m± · x = 0.

To provide an illustrative example, we choose n = m± ∧ j, b = j, and f (b · x)g(n · x) =
αe−kb·x cos kn · x, where α is a constant. Hence, two possible finite static deformations of a
Mooney–Rivlin material are

x = λ1 X + α

√
λ2

1 − λ2
2

λ2
1 − λ2

3

e−kλ2Y cos k

(
λ1

√
λ2

2 − λ2
3

λ2
1 − λ2

3

X ∓ λ3

√
λ2

1 − λ2
2

λ2
1 − λ2

3

Z

)
,

y = λ2Y,

z = λ3 Z ± α

√
λ2

2 − λ2
3

λ2
1 − λ2

3

e−kλ2Y cos k

(
λ1

√
λ2

2 − λ2
3

λ2
1 − λ2

3

X ∓ λ3

√
λ2

1 − λ2
2

λ2
1 − λ2

3

Z

)
.


(8.7)

The stress tensor T components for these deformations can be written in the basis (n, a, b) =
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(m± ∧ j, m±, j) as

n · Tn = n · Tn − p∗ + α2k2 Dλ4
2e−2kζ cos2 kη,

n · Ta = n · Ta − αk(C + Dλ2
2)λ

2
2e−kζ sin kη,

n · Tb = ∓αk Dλ2
2

√
(λ2

1 − λ2
2)(λ

2
2 − λ2

3)e
−kζ cos kη − α2k2 Dλ4

2e−2kζ sin kη cos kη,

a · Ta = a · Ta − p∗ ± 2αkC
√

(λ2
1 − λ2

2)(λ
2
2 − λ2

3)e
−kζ sin kη + α2k2Cλ2

2e−2kζ ,

a · Tb = −αk(C + Dλ2
2)λ

2
2e−kζ cos kη,

b · Tb = b · Tb − p∗ ± 2αk Dλ2
2

√
(λ2

1 − λ2
2)(λ

2
2 − λ2

3)e
−kζ sin kη + α2k2 Dλ4

2e−2kζ sin2 kη,

(8.8)

where T is the constant Cauchy stress tensor defined by (2.1) and the pressure p∗ is given by

p∗ = ±αk Dλ2
2

√
(λ2

1 − λ2
2)(λ

2
2 − λ2

3)e
−kζ sin kη + 1

2α2k2 Dλ4
2e−2kζ . (8.9)

9. Concluding remarks

New solutions to the equations of motion and equilibrium in a deformed Mooney–Rivlin material
have been obtained. In the case of a finite exponential sinusoidal wave, the propagation of energy
was examined and results formerly established within the framework of linearized elasticity were
recovered, although the case of a finite motion is nonlinear.

The waves considered here are linearly-polarized and it ought to be noted that this is the
only possibility of having finite-amplitude inhomogeneous plane waves propagating in a material
(deformed or not) subjected to the constraint of incompressibility. This is shown elsewhere (18).

Also, the planes of constant phase (orthogonal to n) were assumed to be at right angles with the
planes of constant amplitude (orthogonal to b). We show in Appendix B that for finite-amplitude
inhomogeneous plane waves of complex exponential type, this condition must be satisfied.
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APPENDIX A

Solutions for a system of two linear differential equations involving two functions of independent variables

Here, our aim is to find the real functions f (ζ ) and g(η − vt) satisfying (4.4) and (4.5), viz

ρv2
b g f ′′ + 2C(n · Bb) g′ f ′ + ρ(v2

n − v2) g′′ f = 0,

f ′′′g(a · B−1n) − f ′′g′(a · B−1b) + ( f ′ f ′′ − f f ′′′)gg′(a · B−1a)

= f g′′′(a · B−1b) − f ′g′′(a · B−1n) + (g′g′′ − gg′′′) f f ′(a · B−1a),

 (A.1)

where

ρv2
b = C(b · Bb) + D(a · B−1a), ρv2

n = C(n · Bn) + D(a · B−1a), (A.2)

and B is the left Cauchy–Green strain tensor associated with an arbitrary triaxial stretch. Also, f and g are
required to be such that f (b · x)g(n · x − vt)a (where (a, n, b) is an orthonormal triad) is an inhomogeneous
deformation.

A referee very kindly suggested that the use of a technique by Birkhoff (19) would lead to a simplier
derivation of the results. Accordingly, this approach is adopted here.

Assuming n · Bb �= 0, we can, following Birkhoff (19, p. 137), express (A.1)1 in the separated form

3∑
j=1

Fj (ζ )G j (χ) = 0, χ = η − vt, (A.3)

where F1 = f ′′, F2 = f ′, F3 = f , and G1 = ρv2
b g, G2 = 2C(n · Bb) g′, G3 = ρ(v2

n − v2) g′′.
The condition (A.3) is equivalent to the requirement that the vectors F = (F1, F2, F3) and G =

(G1, G2, G3) be confined to orthogonal subspaces. Calling dim F and dim G the respective dimensions of
the subspaces spanned by the F and G, we may have three possible cases:

case (i). dim F = dim G = 1;
case (ii). dim F = 1, dim G = 2;
case (iii). dim F = 2, dim G = 1.
We treat these cases in turn.
Case (i). The dimension of the subspace spanned by the F is 1 when F1, F2, F3, or equivalently f , f ′,

f ′′ are proportional. This is possible only when f (ζ ) = Aeδζ , where A and δ are real constants. Similarly,
dim G = 1 yields g(η − vt) = Beεχ for some real scalars B and ε.
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However, we now have f ga = AB exp[(εn+δb)·x−εvt)]a. Hence, case (i) corresponds to a homogeneous
motion and must be discarded in our context.

Case (ii). The condition dim F = 1 yields

f (ζ ) = Aeδζ , (A.4)

where A and δ are real constants. Then equation (A.1)1 reduces to

ρ(v2
n − v2) g′′ + 2C(n · Bb)δ g′ + ρv2

bδ2 g = 0, (A.5)

This is a linear homogeneous second order differential equation for g, with the following characteristic equation
in r (say),

ρ(v2
n − v2) r2 + 2C(n · Bb)δ r + ρv2

bδ2 = 0. (A.6)

If (A.6) has two distinct roots r1, r2 (say), then g is of the form

g(χ) = Ber1χ + Cer2χ , (A.7)

where B and C are constants ((B, C) �= (0, 0)).
Upon using (A.4) and (A.7), equation (A.1)2 yields a linear combination for the independent functions er1χ ,

er2χ , e2r1χ , e2r2χ , and e(r1+r2)χ . Nullity for the coefficient of e(r1+r2)χ yields r1 = −r2. However, in that
case we have g′′ − r2

1 g = 0, which, together with (A.5), implies that dim G = 1.
If (A.6) has a double root r (say), then g is of the form

g(χ) = (B + Cχ)erχ , (A.8)

where B and C are constants ((B, C) �= (0, 0)).
Substituting (A.4) and (A.8) into (A.1)2 yields a linear combination for the independent functions erχ ,

χerχ , e2rχ , and χe2rχ . Nullity for the coefficient of e2rχ yields C2r = 0, which is not possible in our
context.

Case (iii). This case is similar to case (ii), where f , g, v2
n − v2 and v2

b are replaced by g, f , v2
b and v2

n − v2

respectively.
We conclude that when n · Bb �= 0, no f and g can be found such that f g a is an inhomogeneous

deformation. We must therefore assume that

b · Bn = 0, (A.9)

which means that the orthogonal unit vectors n and b are conjugate with respect to the B-ellipsoid.
Then, equation (A.1)1 reduces to

v2
b

v2
n − v2

f ′′(ζ )

f (ζ )
= − g′′(η − vt)

g(η − vt)
= const. = ±k2 (say). (A.10)

Clearly, from (A.2) and the strong ellipticity condition (2.4)1, we have v2
b > 0 and v2

n > 0. Now, if v2 > v2
n ,

then by (A.10), f ′′/ f and g′′/g are constants of the same sign. In this case, f and g would be of the same type
(either both hyperbolic or both sinusoidal functions), and again this would lead to a homogeneous motion. We
assume therefore that 0 � v2 < v2

n .
Upon using (A.10), the remaining equation to be satisfied, (A.1)2, reduces to

(v2
n − v2

b − v2)[ f ′g(a · B−1n) − f g′(a · B−1b)] = 0. (A.11)

Hence, there are two cases: (i) v2 �= v2
n − v2

b and (ii) v2 = v2
n − v2

b .
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Case (i). if v2 �= v2
n − v2

b , then by (A.11), we have

f ′(ζ )

f (ζ )
(a · B−1n) = g′(η − vt)

g(η − vt)
(a · B−1b) = const. = µ (say). (A.12)

Assuming µ �= 0, (A.12) yields (a · B−1n) �= 0, (a · B−1b) �= 0 and also (a · B−1n)2( f ′′/ f ) =
(a · B−1b)2(g′′/g) = µ2. However, as noted above, f ′′/ f and g′′/g must be constants of opposite signs
for an inhomogeneous motion.

Hence, µ = 0. Then, by (A.12), (a · B−1n) = (a · B−1b) = 0, which, together with (A.9), implies that n,
a and b are along principal directions. In this case, the solutions are either exponential in space and sinusoidal
in time,

f (ζ ) = a1 exp k

√√√√v2
n − v2

v2
b

ζ + a2 exp −k

√√√√v2
n − v2

v2
b

ζ,

g(η − vt) = d1 cos k(η − vt) + d2 sin k(η − vt),

 (A.13)

or sinusoidal in space and exponential in time,

f (ζ ) = a1 cos k

√√√√v2
n − v2

v2
b

ζ + a2 sin k

√√√√v2
n − v2

v2
b

ζ,

g(η − vt) = d1 exp k(η − vt) + d2 exp −k(η − vt).

 (A.14)

Here, a1, a2, d1, d2 are constants, and k and v are arbitrary (0 � v2 < v2
n).

These solutions are valid only when n, a and b are along the principal axes of the primary static deformation.
Case (ii). if v2 = v2

n − v2
b , then the solutions are either exponential in space and sinusoidal in time,

f (ζ ) = a1ekζ + a2e−kζ ,

g(η − vt) = d1 cos k(η − vt) + d2 sin k(η − vt),

}
(A.15)

or sinusoidal in space and exponential in time,

f (ζ ) = a1 cos kζ + a2 sin kζ,

g(η − vt) = d1ek(η−vt) + d2e−k(η−vt).

}
(A.16)

Here, a1, a2, d1, d2 are constants, k is arbitrary and v is given by

ρv2 = C[(n · Bn) − (b · Bb)]. (A.17)

These solutions are valid for any orientation of the plane of n and b.

APPENDIX B
Finite-amplitude inhomogeneous plane waves of complex exponential type in deformed Mooney–Rivlin
materials

Here, we prove that finite-amplitude inhomogeneous plane waves of complex exponential type may
propagate in a homogeneously deformed Mooney–Rivlin material only when the planes of constant phase
are at right angles with the planes of constant amplitude.

The material is first subjected to a pure homogeneous static deformation, with corresponding deformation
gradient F and left Cauchy–Green strain tensor B given by

F = diag (λ1, λ2, λ3), B = diag (λ2
1, λ2

2, λ2
3), with J = det F = λ1λ2λ3. (B.1)
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Then a linearly-polarized inhomogeneous plane wave of finite amplitude is superposed upon the large static
deformation. The motion is given by

x = x + β{eiω(S·x−t) + c.c.}a = x + 2βe−ωS−·x cos ω(S+ · x − t)a. (B.2)

Here, β is a finite real scalar, S = S+ + iS− is a complex vector and ω is the real frequency.
The deformation gradient F associated with the motion (B.2) is given by

F = ∂x/∂X = F̌F, where F̌ = 1 + βωa ⊗ {ieiω(S·x−t)S + c.c.}. (B.3)

The left Cauchy–Green tensor is B given by B = F F
T = F̌BF̌

T.
The incompressibility constraint demands that

det F = [1 + βω{i(a · S)eiω(S·x−t) + c.c.}](λ1λ2λ3) = 1, (B.4)

at all times. Therefore we must have

a · S = 0, λ1λ2λ3 = 1. (B.5)

Also, J̌ = det F̌ and J = det F are given by

J̌ = 1, and J = J̌ J = J = λ1λ2λ3 = 1. (B.6)

In the absence of body forces, the equations of motion, written in the intermediate configuration, read

divx ( J̌ TF̌
−1T) = ρ J̌

∂2x

∂t2
,

∂( J̌ TF̌
−1T)i j

∂x j
= ρ J̌

∂2xi

∂t2
, (B.7)

where T is the Cauchy stress tensor associated with motion (B.2). For a Mooney–Rivlin material, T is related
to the deformation gradient through

T = −p1 + CB − DB
−1

, (B.8)

where p is the pressure.
Upon using (B.8), we have

J̌ TF̌
−1T = −p J̌ F̌

−1T + C J̌ F̌B − D J̌ B
−1

F̌
−1T. (B.9)

Hence, with equation (B.6) and ∂( J̌ F̌
−1T
i j )/∂x j = 0, the Euler–Jacobi–Piola identity, the equations of

motion (B.7) reduce to

F̌
−1Tgradx p = Cdivx(F̌B) − Ddivx(B

−1
F̌

−1T) − ρ(∂2x/∂t2). (B.10)

Now we compute in turn the three terms of the right-hand side of this equation. For the first term, we have

Cdivx(F̌B) = Cβωdivx[a ⊗ {ieiω(S·x−t)
BS + c.c.}]

= −Cβω2{(S · BS)eiω(S·x−t) + c.c.}a. (B.11)

Using (B.5), the second term is found as

Ddivx(B
−1

F̌
−1T) = Dβω2{[(S · S)B−1a + (a · B

−1S)S]eiω(S·x−t) + c.c.}
+ Dβ2ω3(a · B

−1a){i(S · S)e2iω(S·x−t)S + c.c.}
+ Dβ2ω3(a · B

−1a)eiω(S−S̃)·x{i[(S − S̃) · S̃]S + c.c.}. (B.12)
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Finally, the third term is given by

−ρ(∂2x/∂t2) = ρβω2a{eiω(S·x−t) + c.c.}. (B.13)

In view of (B.11), (B.12), and (B.13), we must take p (to within a constant term) of the form

p = βω{i p1eiω(S·x−t) + c.c.} + β2ω2{p2e2iω(S·x−t) + c.c.} + β2ω2 p3eiω(S−S̃)·x, (B.14)

where p1, p2, p3 are scalars (p3 is real). With this decomposition, we compute the right-hand side of (B.10)
as

−F̌
−1Tgradx p = βω2{p1eiω(S·x−t)S + c.c.} − β2ω3{i p2e2iω(S·x−t)S + c.c.}

− β2ω3 p3i(S − S̃)eiω(S−S̃)·x. (B.15)

Now, using (B.11), (B.12), (B.13) and (B.15), we write the equations of motion (B.10), separating the

respective coefficients of eiω(S·x−t), e2iω(S·x−t), and eiω(S−S̃)·x, as

− p1S + C(S · BS)a + D[(S · S)B−1a + (a · B
−1S)S] = ρa,

− p2S − D(a · B
−1a)(S · S)S = 0,

− p3(S − S̃) + D(a · B
−1a){[(S − S̃) · S̃)]S + [(S − S̃) · S)]̃S} = 0.

(B.16)

Writing S as S = S+ + iS−, equation (B.16)3 is equivalent to

[p3 − 2D(a · B
−1a)(S− · S−)]S− = [2D(a · B

−1a)(S− · S+)]S+. (B.17)

Now, because the motion is inhomogeneous, S− is not parallel to S+ and therefore, we must have p3 −
2D(a · B

−1a)(S− · S−) = 0 and also

S− · S+ = 0, (B.18)

which means that the planes of constant phase are orthogonal to the planes of constant amplitude.


