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The secular equation for surface acoustic waves propagating on a monoclinic elastic half-space is
derived in a direct manner, using the method of first integrals. Although the motion is at first
assumed to correspond to generalized plane strain, the analysis shows that only two components of
the mechanical displacement and of the tractions on planes parallel to the free surface are nonzero.
Using the Stroh formalism, a system of two second order differential equations is found for the
remaining tractions. The secular equation is then obtained as a quartic for the squared wave speed.
This explicit equation is consistent with that found in the orthorhombic case. The speed of subsonic
surface waves is then computed for 12 specific monoclinic crystals. ©2001 Acoustical Society of
America. @DOI: 10.1121/1.1356703#
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I. INTRODUCTION

The modern theory of surface acoustic waves in an
tropic media owes most of its results to the pioneering wo
of A. N. Stroh. Although his two seminal articles1,2 went
largely unnoticed for a long time, their theoretical implic
tions were far reaching, as many came to realize since t
publication. Among others, Currie,3 Barnett and Lothe,4

Chadwick and Smith5 were able to use his ‘‘sextic formal
ism’’ to address many problems, such as the existence
single real secular equation for the wave speed, the exist
of a limiting velocity ~the smallest velocity of body wav
solutions! which defines ‘‘subsonic’’ and ‘‘supersonic’
ranges for the speeds, or numerical schemes to comput
polarization vectors and the speed of the surface wave
comprehensive review of these topics can be found in a t
book by Ting.6

However precise numerical procedures might be, th
is still progress to be made in the search for secular equat
in analytic form. So far, explicit expressions have remain
few. The secular equation for surface waves in orthorhom
crystals was established by Sveklo7 as early as 1948 an
later, Royer and Dieulesaint8 proved that it could account fo
16 different crystal configurations, such as tetragonal, h
agonal, or cubic. For monoclinic media, Chadwick a
Wilson9 devised a procedure to derive the secular equat
which is given as ‘‘explicit,@...# apart from the solution of
@a# bicubic equation.’’ The object of this paper is to deriv
one expression for the secular equation which isfully ex-
plicit, when the surface wave propagates in monoclinic cr
tals.

A classical approach to the problem of surface waves
anisotropic crystals is to consider that a wave propag
with speedv in the directionx1 of a material axis~on the
free plane surface! of the material, and is attenuated alon
another material axisx2 , orthogonal to the free surface, s
that the mechanical displacementu is written asu5u(x1

a!Electronic mail: destrade@math.tamu.edu
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1px22vt), wherep is unknown. Then, assuming a comple
exponential form for the displacement, the equations of m
tion are written in the absence of body forces and solved
p. Finally, the boundary conditions yield the secular equat
for v. The principal mathematical difficulty arising from thi
procedure is that the equations of motion yield a sextic~gen-
eralized plane strain! or a quartic~plane strain! for p which
in general are impractical to solve analytically, or even, a
numerical scheme suggests in the sextic case, are act
insoluble analytically~in the sense of Galois!.10

In 1994, Mozhaev11 proposed ‘‘some new ideas in th
theory of surface acoustic waves.’’ He introduced a no
method based on first integrals12 of the displacement compo
nents, which bypasses the sextic~or quartic! equation forp
and yields directly the secular equation. He successfully
plied this method to the case of orthorhombic materials.
the present paper, generalized plane strain surface waves
monoclinic crystal with plane of symmetry atx350 are ex-
amined. The method of first integrals is adapted in orde
be applied to the tractions components on the planesx3

5const, rather than to the displacement components. T
switch presents several advantages. First, the equation
motion, the boundary conditions, and eventually the sec
equation itself, are expressed directly in terms of the us
elastic stiffnesses. Second, it makes it apparent that on
the traction components is zero and thus that, in this pap
context, generalized plane strain leads to plane stress. T
the boundary conditions are written in a direct and natu
manner, because they correspond to the vanishing of
tractions on the free surface and at infinite distance from
surface. Finally, this procedure can easily accommodate
internal constraint, such as incompressibility13,14 ~the secular
equation for surface waves in incompressible monoclinic
early elastic materials is obtained elsewhere!.

The plan of the paper is the following. After a brie
review of the basic equations describing motion in linea
elastic monoclinic materials~Sec. II!, the equations of mo-
tion are written down in Sec. III for a surface acoustic wa
with three displacement components which depend on
1398(4)/1398/5/$18.00 © 2001 Acoustical Society of America
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coordinates, that in the direction of propagation and tha
the direction normal to the free surface~generalized plane
strain!. Then in Sec. IV, it is seen that one of the tracti
components is identically zero~plane stress!, and that conse-
quently, so is one of the displacement components~plane
strain!. For the remaining two traction components, coup
equations of motion and the boundary conditions are deri
in Sec. V. Finally in Sec. VI, the method of first integrals
applied and the secular equation for acoustic surface wa
in monoclinic elastic materials is derived explicitly. As
check, the subcase of orthorhombic materials is treated,
numerical results obtained by Chadwick and Wilson9 for
some monoclinic materials are recovered.

II. PRELIMINARIES

First, the governing equations for a monoclinic elas
material are recalled. The material axes of the media
denoted byx1 , x2 , andx3 , and the planex350 is assumed
to be a plane of material symmetry. For such a material,
relationship between the nominal stresss and the straine is
given by15

F s11

s22

s33

s23

s31

s12

G53
c11 c12 c13 0 0 c16

c12 c22 c23 0 0 c26

c13 c23 c33 0 0 c36

0 0 0 c44 c45 0

0 0 0 c45 c55 0

c16 c26 c36 0 0 c66

4 F
e11

e22

e33

2e23

2e31

2e12

G ,

~1!

wherec’s denote the elastic stiffnesses, and the strain co
ponentse’s are related to the displacement componentsu1 ,
u2 , u3 through

2e i j 5~ui , j1uj ,i ! ~ i , j 51,2,3!. ~2!

The equations of motion, written in the absence of bo
forces, are

s i j , j5rui ,tt ~ i 51,2,3!, ~3!

wherer is the mass density of the material, and the com
denotes differentiation.

Finally, the 636 matrix c given in Eq. ~1! must be
positive definite in order for the strain-energy function de
sity to be positive.

III. SURFACE WAVES

Now the propagation of a surface wave on a se
infinite body of monoclinic media is modeled. In the sam
manner as Mozhaev,11 the amplitude of the associated di
placement is assumed to be varying sinusoidally with time
the direction of propagationx1 , while its variation in the
direction x2 , orthogonal to the free surface, is not stat
explicitly. Thus callingv the speed of the wave, andk the
associated wave number, the displacement component
written in the form

uj~x1 ,x2 ,x3 ,t !5U j~x2!eik~x12vt ! ~ j 51,2,3!, ~4!
1399 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001
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where theU’s depend onx2 only. For these waves, th
planes of constant phase are orthogonal to thex1-axis, and
the planes of constant amplitude are orthogonal to
x2-axis.

The stress-strain relations~1! reduce to

t115 ic11U11c12U281c16~U181 iU 2!,

t225 ic12U11c22U281c26~U181 iU 2!,

t335 ic13U11c23U281c36~U181 iU 2!, ~5!

t325c44U381 ic45U3 , t135c45U381 ic55U3 ,

t125 ic16U11c26U281c66~U181 iU 2!,

where the prime denotes differentiation with respect tokx2 ,
and thet’s are defined by

s i j ~x1 ,x2 ,x3 ,t !5kti j ~x2!eik~x12vt ! ~ i , j 51,2,3!. ~6!

The boundary conditions of the problem~surface x2

50 free of tractions, vanishing displacement asx2 tends to
infinity! are

t i2~0!50, Ui~`!50 ~ i 51,2,3!. ~7!

Finally, the equations of motion~3! reduce to

i t 111t128 52rv2U1 , i t 121t228 52rv2U2 ,
~8!

i t 131t328 52rv2U3 .

At this point, a sextic formalism could be developed f
the three displacement componentsU1 , U2 , U3 , and the
three traction componentst12, t22, t32. However, it turns out
that one of these traction components is identically zero, a
now proved.

IV. PLANE STRESS

It is known ~see the Appendix of Stroh’s 1962 pape2

and also Ting’s book,6 p. 66! that for a two-dimensiona
deformation of a monoclinic crystal with axis of symmetry
x350, the displacementsu1 andu2 are decoupled fromu3 .
Taking u350 for surface waves, it follows from the stress
strain relationships~5! that t135t3250. Here, an alternative
proof of this result is presented.

Using Eqs.~5!4, ~8!3, and~5!5, two first order differential
equations fort32 andU3 are found as

t325 ic45U31c44U38 , t328 5~c552rv2!U32 ic45U38 .
~9!

These equations may be inverted to giveU3 andU38 as

~c44c552c45
2 2c44rv2!U35 ic45t321c44t328 ,

~10!
~c44c552c45

2 2c44rv2!U385~c552rv2!t322 ic45t328 .

Differentiation of Eq. ~10!1 and comparison with Eq
~10!2 yields the following second order differential equatio
for t32:

c44t329 12ic45t328 2~c552rv2!t3250. ~11!

The boundary conditions~7! and Eq. ~5!4 imply that the
stress componentt32 must satisfyt32(0)5t32(`)50. The
only solution of this boundary value problem for the diffe
1399M. Destrade: Surface waves in monoclinic media
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ential equation~11! is the trivial one. Consequently,

t32~x2!50 for all x2 , ~12!

and so it is proved that, as far as the propagation of sur
acoustic waves in monoclinic crystals with plane of symm
try at x350 is concerned, generalized plane strain leads
plane stress.

It is also worth noting that by Eq.~10!1, plane stress
leads in turn to plane strain which, as an assumption, was
needed a priori. This result was obtained by Stroh2 in a dif-
ferent manner: ‘‘@when# there is a reflection plane normal t
the x3 axis, @...# there is no coupling of the displacementu3

with u1 andu2 ; any two dimensional problem reduces to o
of plane strain (u350) and one of anti-plane strain (u1

5u250).’’
Now the equations of motion can be written for the r

maining displacements and traction components.

V. EQUATIONS OF MOTION

Here, the equations of motion are derived, first as a s
tem of four first order differential equations for the nonze
components of mechanical displacement and tractions,
then as a system of two second order differential equat
for the tractions.

The stress–strain relations~5! and the equations of mo
tion ~8! lead to a system of differential equations for t
displacement componentsU1 , U2 , and for the traction com-
ponentst1 , t2 , defined by

t15t12, t25t22. ~13!

This system is as follows

Fu8
t8 G5F iN1 N2

2~N31X1! iN1
TG Fut G , ~14!

where u5@U1 ,U2#T, t5@ t1 ,t2#T, X5rv2, and the 232
matricesN1 , N2 , andN3 are submatrices of the fundament
Eq
fo
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elasticity matrix N, introduced by Ingebrigsten an
Tonning.16 Explicitly, N1 , N2 , N3 are given by6

2N15F r 6 1

r 2 0G , N25F s22 2s26

2s26 s66
G5N2

T ,

~15!

2N35Fh 0

0 0G52N3
T ,

where the quantitiesr 2 , r 6 , s22, s26, s66, andh are given in
terms of the elastic stiffnesses as

D5Uc22 c26

c26 c66
U5c22c662c26

2 ,

r 65
1

D
~c22c162c12c26!, r 25

1

D
~c12c662c16c26!,

si j 5
1

D
ci j ~ i , j 52,6!, ~16!

h5
1

D Uc11 c12 c16

c12 c22 c26

c16 c26 c66

U
5c112

c66c12
2 1c22c16

2 22c12c16c26

c22c662c26
2 .

Throughout the paper, it is assumed that the matrixN3

1X1 is not singular, which means that the surface wa
propagates at a speed distinct from that given byrv25h.
This assumption made, the second vector line of the sys
~14! yields

u5 i ~N31X1!21N1
Tt2~N31X1!21t8. ~17!

On the other hand, differentiation of the system~14! leads to
Fu9
t9 G5F 2N1N12N2~N31X1! i ~N1N21N2N1

T!

2 i @~N31X1!N11N1
T~N31X1!# 2~N31X1!N22N1

TN1
TG Fut G . ~18!
s
ith
po-
Now the second vector line of this equation yields, using
~17!, a system of two second order differential equations
t, written as

â iktk92 i b̂ iktk82ĝ iktk50, ~19!

where the symmetric 232 matricesâ, b̂, andĝ, are given
by

â52~N31X1!21,

b̂52N1~N31X1!212~N31X1!21N1
T , ~20!

ĝ5N22N1~N31X1!21N1
T ,

or, explicitly, by their components,
.
r â115

1

h2X
, â1250, â2252

1

X
,

b̂1152
2r 6

h2X
, b̂125

1

X
2

r 2

h2X
, b̂2250,

~21!

ĝ115s221
r 6

2

h2X
2

1

X
, ĝ125

r 2r 6

h2x
2s26,

ĝ225
r 2

2

h2X
1s66.

The system~19! of second order differential equation
for the traction components is more convenient to work w
than the corresponding system for the displacement com
1400M. Destrade: Surface waves in monoclinic media



1401 J. Acoust. S
TABLE I. Values of the relevant elastic stiffnesses~GPa!, density~kg m23!, and surface wave speed~m s21! for
12 monoclinic crystals.

Material c11 c22 c12 c16 c26 c66 r v

aegirite-augite 216 156 66 19 25 46.5 3420 3382
augite 218 182 72 25 20 51.1 3320 3615
diallage 211 154 37 12 15 62.2 3300 4000
diopside 238 204 88 234 219 58.8 3310 3799
diphenyl 14.6 5.95 2.88 2.02 0.40 2.26 1114 1276
epidote 202 212 45 214.3 0 43.2 3400 3409
gypsum 50.2 94.5 28.2 27.5 211.0 32.4 2310 3011
hornblende 192 116 61 10 4 31.8 3120 3049
microcline 122 66 26 213 23 23.8 2561 2816
oligoclase 124 81 54 27 16 27.4 2638 2413
tartaric acid 46.5 93 36.7 20.4 212.0 8.20 1760 1756
tin fluoride 33.6 47.9 5.3 6.5 25.1 12.9 4875 1339
te

he
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to
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e-
ots
nents, because the boundary conditions are simply writ
using Eqs.~7!, ~5!, and~13!, as

t i~0!5t i~`!50 ~ i 51,2!. ~22!

This claim is further justified in the next section, where t
secular equation is quickly derived.

VI. SECULAR EQUATION

Now the method of first integrals is applied to the sy
tem ~19!. Mozhaev11 defined the following inner product,

~ f ,f!5E
0

`

~ f f̄1 f̄ f!dx2 , ~23!

and multiplying Eq.~19! by i t j gives

â ikDk j1b̂ ikEk j1ĝ ikFk j50, ~24!

where the 232 matricesD, E, F, are defined by

Dk j5~ i t k9,t j !, Ek j5~ tk9 ,t j !, Fk j5~ tk ,i t j !. ~25!

By writing down Fk j1F jk , it is easy to check that the
matrix F is antisymmetric. Integrating directlyEk j1Ejk ,
and integratingDk j1D jk by parts, and using the bounda
conditions Eq.~22!, it is found that the matricesE andD are
also antisymmetric. SoD, E, and F may be written in the
form

D5F 0 D

2D 0 G E5F 0 E

2E 0G F5F 0 F

2F 0G , ~26!

and Eq.~24! yields the following system of three linearl
independent equations for the three unknownsD, E, F,

â11D1b̂11E1ĝ11F50,

â12D1b̂12E1ĝ12F50, ~27!

â22D1b̂22E1ĝ22F50.

This homogeneous linear algebraic system yields nontri
solutions forD, E, andF, only when its determinant is zero
which, accounting for the fact thatâ125b̂2250, is equiva-
lent to b̂12(â11ĝ222â22ĝ11)52â22b̂11ĝ12, or equivalently,
using the expressions Eqs.~21! and multiplying by X3(h
2X)3,
oc. Am., Vol. 109, No. 4, April 2001
n,

-

al

@h2~11r 2!X#$~h2X!@~h2X!~s22X21!1r 6
2X#

1X2@~h2X!s661r 2
2#%

52r 6X2~h2X!@~h2X!s262r 2r 6#. ~28!

Hence the secular equation is obtained explicitly as th
quartic Eq. (28) in X5rv2, with coefficients expressed in
terms of the elastic stiffnesses through Eqs.~16!.

For consistency, the orthorhombic case, wherec165c26

5c4550, is now considered. In this case, the coefficients
~16! reduce to

r 650, r 25
c12

c22
, s225

1

c66
,

~29!

s2650, s665
1

c22
, h5c112

c12
2

c22
,

and the right hand-side of Eq.~28! is zero, while the left
hand-side yields the equation

@h2~11r 2!X#$~h2X!2~s22X21!

1X2@~h2X!s661r 2
2#%50. ~30!

The nullity of the first factor in this equation corresponds
b̂1250. Because for the orthorhombic case,â125ĝ125b̂11

5b̂2250 also, the equations of motion~19! then decouple
into

â11t191ĝ11t150, â22t291ĝ22t250, ~31!

whose solutions satisfying the boundary conditions Eqs.~22!
are the trivial ones. The nullity of the second factor in E
~30! corresponds to the well-studied6,7,17secular equation for
surface waves in orthorhombic crystals,

c22

c11
S c11c222c12

2

c22c66
2

rv2

c66
D 2S 12

rv2

c66
D

2S rv2

c66
D 2S 12

rv2

c11
D50. ~32!

Finally, concrete examples are given~see Table I!. In
each considered case, the secular equation~28! has either
two or four positive real roots, out of which only one corr
sponds to a subsonic wave. The elimination of the other ro
1401M. Destrade: Surface waves in monoclinic media
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is made by comparison with the speed of a homogene
body wave propagating in the direction of thex1 material
axis. For this body wave, the functionsUi(x2), t i(x2), (i
51,2), are constant, and the equations of motion imply t
the determinant of the 434 matrix in Eq.~14! is zero, con-
dition from which the body wave speed can be found. Al
it is checked a posteriori that the valueX5h corresponds to
the supersonic range, and so that the matrixN31X1 is in-
deed invertible within the subsonic range. For instance,
tin fluoride,h is of the order of 33107, the secular equation
~28! has the roots 1339, 2350, 2513, and 3403, and the s
est body wave in thex1 direction travels at 1504 m s21;
hence a subsonic surface wave travels in tin fluoride at 1
m s21.

Barnett, Chadwick, and Lothe,18 and Chadwick and
Willson9 considered surface waves propagating in mo
clinic materials, and computed the surface wave speedv in
two steps, first by solving numerically a bicubic, then
substituting the result into another equation of whichv is the
only zero. These authors studied surface wave propaga
for every value of the anglea between the reference plan
and the plane of material symmetry. Numerical values fov
are only given in the cases of aegirite-augite, diallage, g
sum, and microcline, and ata50, these results are in agre
ment with those presented in Table I. Sources of experim
tal data and extensive discussions on limiting spee
existence of secluded supersonic surface waves, rotatio
the reference plane with respect to the plane of material s
metry, etc., can be found in these articles and in referen
therein.

VII. CONCLUDING REMARKS

Surface wave motion in monoclinic crystals with pla
of symmetry atx350 turned out to correspond to plan
strain and plane stress motion~Sec. IV!. Thanks to this, the
equations of of motion yielded a system of only two diffe
ential equations for the tractions~Sec. V!. Once the method
of first integrals was applied, a homogeneous system of th
linearly independent equations for three unknowns was
tained~Sec. VI!. Had the motion not corresponded to pla
stress, then the same procedure would have given a sy
of 18 equations for 18 unknowns, when the equations
motion are written for the displacement components,11 or a
system of 9 equations for 9 unknowns, when the equation
motion are written for the traction components as in
present paper. However, these equations are not linearl
dependent, and the secular equation cannot be obtaine
this manner. Hence, it ought to be stressed again that
method presented in the paper is not a general method
surface wave traveling in arbitrary direction in an anisotro
crystal, but was limited to the study of a surface wave pro
gating in thex1-direction of a monoclinic crystal with plan
of symmetry atx350, with attenuation in thex2-direction.
1402 J. Acoust. Soc. Am., Vol. 109, No. 4, April 2001
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Nevertheless, some plane strain problems remain o
and it is hoped that the method exposed in this paper m
help solve them analytically. Also, beyond mathematical s
isfaction, the derivation of an explicit secular equation p
vides a basis for a possible nonlinear perturbative analys
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