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The secular equation for surface acoustic waves propagating on an orthotropic incompressible
half-space is derived in a direct manner, using the method of first integrals. ©2001 Acoustical
Society of America.@DOI: 10.1121/1.1378346#
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I. INTRODUCTION

The problem of elastic waves propagating on the f
surface of a semi-infinite elastic body is a well-covered
search topic, initiated by Rayleigh1 in his study of seismic
waves within the context of classical linear elasticity. F
anisotropic crystals, Barnett and Lothe2 have drawn on the
works of Stroh3 to build a complete theory of surface wav
based on an analogy between surface wave propagation
straight line dislocation motion. Extensive coverage and s
veys of that topic can be found, for instance, in a textbook
Ting.4

Recently, there has been some interest5–7 in the study of
wave propagation in anisotropic materials subjected to
constraint ofincompressibility. Our purpose in the presen
paper is to establish the secular equation for surface~Ray-
leigh! waves propagating on the free plane surface of
incompressible orthotropic half-space. A similar proble
was solved by Chadwick8 within the context of finite elastic-
ity: he considered the propagation of small-amplitude surf
waves in a finitely deformed incompressible material;
deformation was static and purely homogeneous, and
strain energy function for the incompressible nonlinea
elastic material was such that the deformed body prese
orthotropic anisotropy. Following Nair and Sotiropoulos,7 in
the present article we focus on an orthotropic linearly ela
material for which the usual stress–strain relations are m
fied to take the incompressibility constraint into account,
adding an isotropic pressure term. These authors have ar
that ‘‘the assumptions of incompressibility and orthotro
are applicable to several materials as, for example, poly
Kratons, thermoplastic elastomers, rubber composites w
low frequency waves are considered to justify the assu
tion of material homogeneity, etc.’’ Other studies use th
assumptions for the modeling of laminated composites m
alternatively with reinforcing ~filler! layers and matrix
~binder! layers,9 or with stiff fibers and incompressible epox
matrices.10

Our primary purpose in this paper is to show that t
method of first integrals used by Mozhaev11 to derive, in a
rapid and elegant manner, the secular equation for sur
waves in ~compressible! orthotropic materials, can also b
employed in the case of incompressible orthotropic mat
als. This can be achieved by applying the method of fi
integrals to a system of second order ordinary differen

a!Electronic mail: michel.destrade@math.tamu.edu
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equations for the components of thetractions on surfaces
parallel to the free surface, rather than for the component
the mechanical displacement~as in Ref. 11!. In the latter
case, the pressure appears in the system of differential e
tions, whereas in the former case, it does not, and hence
number of unknowns is reduced from four~the pressure and
the components of the mechanical displacement! to three
~the components of the traction on surfaces parallel to
free surface!. Also, the mechanical boundary conditions a
easily written, because they correspond to the nullity of th
traction components on the free surface of the half-spa
and at an infinite distance from this surface. A third adva
tage of this approach is that the assumption of plane strain7 is
not requireda priori.

The paper is organized as follows. In Sec. II, the ba
equations governing the propagation of elastic waves in
orthotropic incompressible material are recalled. In Sec.
these equations are written for the case of surface acou
waves. Then a system of six first order differential equatio
for the displacement and the traction components is deriv
Eventually a system of three second order differential eq
tions is found for the traction components. One of these th
equations is trivially solved when the boundary conditio
are applied. In Sec. IV, the method of first integrals11,12 is
applied to the two remaining equations, and the secular eq
tion for surface waves in orthotropic incompressible mate
als is quickly derived. As a check, the isotropic case
treated and Rayleigh’s original equation1 is recovered. Also,
the correspondence between this paper’s result and C
wick’s result8 is shown. Finally in Sec. V, possible develop
ments for this work are presented.

II. PRELIMINARIES

First, the governing equations for an incompressi
orthotropic elastic material are recalled. The material axe
the body are denoted byx1 , x2 , andx3 . The equations may
be derived from the classical linearized equations of an
tropic elasticity13 by adding an isotropic pressure termp1
~say! to the nominal stresss ~say!. Hence, for orthotropic
incompressible elastic bodies,7

s1152p1C11e111C12e221C13e33,

s2252p1C12e111C22e221C23e33,
~1!

s3352p1C13e111C23e221C33e33,

s3252C44e32, s1352C55e31, s1252C66e12,
837837/4/$18.00 © 2001 Acoustical Society of America
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wheree ’s denote the strain components, andC’s the elastic
constants. The strain components are related to the disp
ment componentsu1 , u2 , u3 through

e i j 5~ui , j1uj ,i !/2 ~ i , j 51,2,3!. ~2!

Finally, the incompressibility constraint reads as

u1,11u2,21u3,350, ~3!

and the equations of motion, in the absence of body for
are written as

s i j , j5rui ,tt ~ i 51,2,3!, ~4!

wherer is the mass density of the material, and the com
denotes differentiation. These are the equations establi
by Nair and Sotiropoulos.7 These authors also note that f
plane strain, the strain–energy function density is posit
definite when the following inequalities are satisfied:

C66>0, C111C2222C12>0. ~5!

III. SURFACE WAVES

Here the equations of motion for a surface wave in
semi-infinite body made of an orthotropic incompressi
elastic material are established. Attention is restricted
propagating inhomogeneous surface waves which are
sonic with respect to homogeneous body waves. The mo
ization of the surface wave follows that of Mozhaev:11 the
plane wave propagates with speedv, wave numberk, and
corresponding displacement and pressure of the form

@uj~x1 ,x2 ,x3!,p~x1 ,x2 ,x3!#5@U j~x2!,kP~x2!#eik(x12vt)

~ j 51,2,3!, ~6!

where theU ’s and P are unknowns functions ofx2 alone.
For these waves, the planes of constant phase are orthog
to the x1-axis, and the planes of constant amplitude are
thogonal to thex2-axis. The stress–strain relations~1! reduce
to

t1152P1 iC11U11C12U28 ,

t2252P1 iC12U11C22U28 ,
~7!

t3352P1 iC13U11C23U28 ,

t325C44U38 , t135 iC55U3 , t125C66~U181 iU 2!,

where the prime denotes differentiation with respect tokx2 ,
and thet ’s are defined by

s i j ~x1 ,x2 ,x3!5kti j ~x2!eik(x12vt) ~ i , j 51,2,3!. ~8!

The surfacex250 is assumed to be free of tractions, a
the mechanical displacement and pressure are assumed
vanishing asx2 tends to infinity. These conditions lead to th
following boundary conditions:

t i2~0!50, Ui~`!50 ~ i 51,2,3!, P~`!50. ~9!

Finally, the equations of motion~4! and the incompress
ibility constraint ~3! reduce to
838 J. Acoust. Soc. Am., Vol. 110, No. 2, Aug. 2001
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i t 111t128 52rv2U1 , i t 121t228 52rv2U2 ,
~10!

i t 131t328 52rv2U3 , iU 11U2850.

Note that a classical approach would be to substitute
these last equations, the expressions obtained earlier fo
stress tensor components, which would lead to a system
four second order differential equations for the unkno
functionsU1 , U2 , U3 , P. Instead, the Stroh formalism i
now used to derive a system of six first order different
equations for the components of the displacement and
tractions on the surfacex25const. Thus, introducing the no
tation

t i5t i2 ~ i 51,2,3!, ~11!

and using Eqs.~7!–~10!, the system is found as

U1852 iU 21~1/C66!t1 , U2852 iU 1 , U385~1/C44!t3 ,

t185~C111C2222C122rv2!U12 i t 2 , ~12!

t2852rv2U22 i t 1 , t385~C552rv2!U3 .

Now a system of three second order differential eq
tions for t1 , t2 , t3 is derived as follows. First, the differen
tiation of ~12!4 – 6 yields relations between thet i9 and the
ui8 , t i8 , or equivalently, using~12!1 – 3 between thet i9 and
theui , t i8 , t i . Then, substitution for theui by their expres-
sion in terms of thet i8 , t i obtained from~12!426 is per-
formed. Eventually it is found that thet i9 , t i8 , t i ( i
51,2,3) must satisfy the following equations,

~rv2!t192 i ~C111C2222C1222rv2!t28

1~C111C2222C122rv2!~12rv2/C66!t150,

~C111C2222C122rv2!t291 i ~C111C2222C1222rv2!t18

1rv2t250, ~13!

C44t392~C552rv2!t350,

and are subject to the following boundary conditions:

t i~0!5t i~`!50 ~ i 51,2,3!. ~14!

The third differential equation in the system~13! is de-
coupled from the two others, and can be solved exactly. T
ing the boundary conditions~14!3 into account, it is seen tha

t3~x2!50, for all x2 , ~15!

and hence the motion is a pure mode14 for the tractions on
the surfacex25const. Now the coupled system of the tw
remaining equations may be solved.

IV. SECULAR EQUATION

For surface waves in compressible orthotropic materi
Mozhaev11 applied the method of first integrals to a syste
of two differential equations for the two nonzero compone
of the mechanical displacement. Here a similar procedure
the two nonzero componentst1 , t2 of the tractions on the
surfacex25const is followed, and the secular equation f
surface waves in incompressible orthotropic materials is
tained in a direct manner.
M. Destrade: Surface waves in orthotropic incompressible materials
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The differential equations~13!1,2 for t1 , t2 are ex-
pressed as

jt192 i ~d22j!t281~d2j!~12j!t150,
~16!

~d2j!t291 i ~d22j!t181jt250,

wherej andd are defined by

j5~rv2!/C66, d5~C111C2222C12!/C66. ~17!

The speed given byj51 ~that isrv25C66) corresponds
to the speed of a body~homogeneous! wave propagating in
the x1-direction, and gives therefore an upper bound for
speed of subsonic waves. Throughout the rest of
paper, it is assumed that the surface wave travels wit
speed distinct from that given byj5d ~that is
rv2Þ(C111C2222C12)/C66).

Now multiplication of ~16!1 by t18 and ~16!2 by t28 , and
integration betweenx250 and x25`, yields, using the
boundary conditions~14!,

jt18~0!222i ~d22j!E t18t2850,

~18!and

~d2j!t28~0!212i ~d22j!E t18t2850,

so that

jt18~0!21~d2j!t28~0!250. ~19!

Similarly, multiplication of ~16!1 by jt181 i (d22j)t2 and
~16!2 by (d2j)t282 i (d22j)t1 , and integration between
x250 andx25`, yields

j2t18~0!212i ~d22j!~d2j!~12j!E t1t250,

and

~d2j!2t28~0!222i ~d22j!jE t1t250, ~20!

so that

j3t18~0!21~d2j!3~12j!t28~0!250. ~21!

Equations~19! and ~21! form a trivial system of two equa
tions for the unknownst18(0)2 and t28(0)2, whose determi-
nant must be zero:

j~d2j!@~d2j!2~12j!2j2#50. ~22!

It follows that thesecular equationis given by

~d2j!2~12j!5j2,

i.e.,

~C111C2222C122rv2!2~C662rv2!5C66~rv2!2. ~23!

This equation constitutes the main result of the paper:
direct and explicit derivation of the secular equation for su
sonic surface waves propagating in a semi-infinite bo
made of orthotropic incompressible linearly elastic mater
It is worth mentioning that this result can be used for oth
types of anisotropy: Royer and Dieulesaint15 have indeed
J. Acoust. Soc. Am., Vol. 110, No. 2, Aug. 2001 M. De
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proved that with respect to surface waves, results establis
for the orthotropic case may be applied to 16 different co
figurations, including cubic, tetragonal, and hexagonal
isotropy.

In order to justify the existence of a real wave speed,
secular equation~23! is expressed as

f ~j!50, where f ~j!5j22~d2j!2~12j!. ~24!

As noted earlier, for traveling subsonic surface waves,
secular equation is subject to

0<j<1. ~25!

Within this range, it is easy to prove thatf is a monotonic
increasing function ofj, and that

f ~0!52d2, f ~1!51. ~26!

It follows that the secular equation has a unique positive r
in the interval~25!.

For consistency purposes, the main result establishe
this paper is related to previous studies. First, attention
given to the isotropic limit, whenC115C225l12m, C12

5l, C665m, wherel andm are the classical Lame´ moduli
of elasticity. In this case, the secular equation, written foj
5rv2/m, reduces to

~42j!2~12j!5j2, or j328j2124j21650,
~27!

which is the well-known equation derived by Lor
Rayleigh,1 by considering the incompressible limit (l5`)
for an isotropic linear elastic material.

Next, another previous result is put into perspecti
Chadwick8 has adapted the Stroh formalism to the theory
prestressed incompressible nonlinearly elastic mater
Considering a material whose stored energy function is s
that the body will present orthorhombic anisotropy once
has been subjected to a large pure homogeneous defo
tion, he obtained the secular equation for surface wa
propagating in a principal direction as

@2~B1C2s̄ !2rv2#@C~A2rv2!#1/2

5~C2s̄ !22C~A2rv2!, ~28!

whereA, B, C are constants defined in terms of the stra
energy, initial pressure, and initial stretch ratios, ands̄ is the
normal stress applied on the surfacex250. When this sur-
face is free of tractions,s̄50 and after squaring, Eq.~28!
reduces to

~2B1C2A2h2!2~C2h2!5C~h2!2, ~29!

where h25C2A1rv2. This equation may be formally
compared to Eq.~23!2 , whereh2, C, and 2B2A play the
role of rv2, C66, andC111C222C6622C12, respectively.

Finally, Nair and Sotiropoulos6 have obtained anim-
plicit form of the secular equation for surface waves pro
gating in a monoclinic incompressible material. By takin
the elastic coefficientsC16 andC26 to be zero in their analy-
sis, the reader may check that the explicit secular equa
~23! is recovered.
839strade: Surface waves in orthotropic incompressible materials
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V. DISCUSSION

The secular equation for surface waves on an inco
pressible orthotropic half-space was derived directly. He
it has been shown that a powerful method presented
Mozhaev,11 but which seems to have remained unnotic
can be adapted to take the constraint of incompressib
into account.

For monoclinic or triclinic materials, the method of fir
integrals cannot be applied in the case of a three dimensi
displacement. As demonstrated by Mozhaev,11 it leads to a
trivial system of 18 equations for 18 unknowns, but the ra
of the system turns out to be 17 at most, a fact which app
to have been overlooked by the author.

However, for plane straindeformations, some furthe
results may be established. For instance, Sotiropoulos
Nair5 have studied the reflection of plane elastic waves fr
a free surface in incompressible monoclinic materials w
plane of symmetry atx350, and Nair and Sotiropoulos6 have
considered interfacial waves with an interlayer in the sa
type of materials. In particular, they derived the secu
equation for surface~Rayleigh! waves in an implicit form.
The first integrals method makes it possible to write
secular equation in explicit form, as is proved in a forthco
ing article. Possibly, interfacial~Stoneley! waves may also
be investigated

.
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