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Abstract

Small-amplitude inhomogeneous plane waves propagating in any direction in a homogeneously deformed Hadamard
material are considered. Conditions for circular polarization are established. The analysis relies on the use of complex vectors
(or bivectors) to describe the slowness and the polarization of the waves.

Generally, homogeneous circularly polarized plane waves may propagate in only two directions, the directions of the
acoustic axes, in a homogeneously deformed Hadamard material. For inhomogeneous circularly polarized plane waves, the
number of possibilities is far greater. They include an infinity of ‘transverse waves’, as well as ‘longitudinal waves’, and the
superposition of transverse waves and longitudinal waves, where ‘transverse’ and ‘longitudinal’ are used in the bivector sense.

Each and every possibility of circular polarization is examined in turn, and explicit examples of solutions are given in every
case. © 2002 Elsevier Science B.V. All rights reserved.

1. Introduction

When a homogeneous, isotropic, compressible elastic body is maintained in a state of finite homogeneous static
deformation, longitudinal waves are, in general, only possible when the propagation direction is along a principal
axis of strain. However, Hadamard [1] introduced a remarkable class of elastic materials characterized by the
property thatinfinitesimal longitudinal waves may propagate in every direction, irrespective of the basic static finite
homogeneous deformation. Many studies of the properties of Hadamard materials have been made [2–4]. Among
these we mention the result of Boulanger et al. [5], who showed that there are only two directions,n+ andn−, called
‘acoustic axes’, along whichfinite-amplitude circularly polarized transverse waves may propagate. The acoustic
axesn± are the directions along the normals to the planes of central circular sections of the ellipsoidx · B−1x = 1,
where the left Cauchy–Green tensor associated with the basic deformation is denoted byB. The acoustic axes are
determined solely by the basic static deformation and are independent of the choice of material constants and of the
function which occurs in the strain-energy function describing the Hadamard material.

Here, consideration is restricted to the propagation ofinfinitesimal plane waves in a Hadamard material maintained
in a state of finite static homogeneous deformation, and the primary emphasis of this paper is oninhomogeneous
plane waves. For these waves, the incremental displacementu is of the formu = A exp iω(NC · x − t), whereA
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andC are the amplitude and propagation bivectors, respectively,ω the real frequency, andN the complex scalar
slowness. The propagation bivectorC = C+ + iC− is prescribed withC+ �= 0, C− �= 0, andA andN are
sought such thatu satisfies the equations of motion [6]. This is equivalent to finding the eigenvaluesρN−2 and
eigenbivectorsA of the acoustical tensorQ(C): Q(C)A = ρN−2A. Our special consideration is the determination
of circularly polarized inhomogeneous plane wave solutions. For these waves, the amplitude bivectorA must be
isotropic:A · A = 0. We find that there are two distinct sets of solutions, according as to whether or notC is chosen
to be isotropic.

In the case whereC is chosen non-isotropic(C · C �= 0), the ‘projection tensor’� = 1 − {C ⊗ C/(C · C)}, may
be introduced. For this,�2 = �, �C = 0. If n+ · �n+ = 0, n− · �n− �= 0, then�n+ is an isotropic amplitude
bivector. The orthogonal projection of the directional ellipse ofC, onto the plane of central circular section of
theB−1-ellipsoid with normaln+, is a circle. There is an infinity of such choices ofC and, therefore, an infinity
of circularly polarized inhomogeneous plane waves (similar comments apply whenC · C �= 0, n− · Πn− = 0,
n+ · Πn+ �= 0).

There are only two bivectorsC satisfyingC · C �= 0, n+�n+ = 0, n−�n− = 0. Then�n+ and�n− are both
isotropic amplitude bivectors with the same eigenvalue. There aretwo circularly polarized inhomogeneous plane
waves in this case.

Finally, if the orthogonal projections of the directional ellipse ofC upon either plane of central circular section
of theB−1-ellipsoid is not a circle,n± · Πn± �= 0, then the tensor�B−1� admits two orthogonal non-isotropic
eigenbivectorsA+,A−, with different eigenvalues. In this case, if the directional ellipse ofC is chosen to be similar
and similarly situated to a (non-circular) central elliptical section of a certainM-ellipsoid,C · MC = 0, whereM

depends upon the finite deformation, then there is a corresponding isotropic amplitude bivectorA which is parallel
to either{C/(C · C)1/2} ± iA+ or {C/(C · C)1/2} ± iA−. There is a corresponding infinity of inhomogeneous
circularly polarized waves.

Turning now to the set of solutions for whichC is isotropic,C · C = 0, it is seen that ifC is chosen isotropic and
also satisfiesC ·B−1C = 0, so that the circle ofC lies in either plane of central circular section of theB−1-ellipsoid,
then the corresponding amplitude bivectorsA are parallel toC. There are two such waves.

If C is isotropic,C · C = 0, and ifC · B−1C �= 0, C · �C = 0, where� is a certain real symmetric tensor
which depends only upon the basic deformation, then the circle ofC lies in a plane of central circular section of
the ellipsoid associated with�. Corresponding to either choice ofC, there are two linearly independent isotropic
eigenbivectors ofQ(C), each with the same eigenvalue. Thus, with either choice ofC, there aretwo circularly
polarized waves which may propagate.

Finally, for isotropicC, if C · B−1C �= 0, C · �C �= 0, all isotropic amplitude eigenbivectors are parallel toC.
There is an infinity of such choices ofC and, therefore, also of circularly polarized plane waves.

Examples are presented for every type of solution. The paper is organized as follows.
In Section 2, we recall the equations governing the behavior of a Hadamard material subjected to a finite static

homogeneous deformation. For the constitutive equation, we follow Boulanger et al. [5] and choose to express the
Cauchy stress in terms of1, B, andB−1, whereB is the left Cauchy–Green strain tensor, rather than in terms of
1, B, andB2 [3,4]. Then we assume that an infinite body of Hadamard material is subjected to a finite static pure
homogeneous deformation. We also introduce the acoustic axes in the deformed state, which play an important role
in the study of elastic waves.

Then in Section 3, we consider the propagation of small-amplitude inhomogeneous plane waves in a de-
formed body of Hadamard material. The waves are of complex exponential type and their associated ampli-
tude and slowness are described through the use of bivectors [6]. Explicitly, the perturbation is the real part of
A exp iωN(C · x − t), whereω is the real frequency of the wave, andA, C, andN are complex quantities called
the ‘amplitude bivector’, ‘propagation bivector’, and ‘complex scalar slowness’, respectively. Incremental strain,
strain invariants, and stress are computed, leading to the derivation of the equations of motion and the acoustical
tensor.

Next, we seek circularly polarized solutions, which correspond [6] to the isotropy ofA (i.e. A · A = 0) or
equivalently to a double eigenvalue of the acoustical tensor.
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The case of circularly polarized waves with a non-isotropic propagation bivectorC (i.e. C · C �= 0) is treated in
Section 4. We prove that the existence of such waves is determined by a condition linkingC to some tensors which
depend only on the finite static deformation. Transverse (A · C = 0) waves are found, as well as waves which can
be decomposed into the superposition of a transverse (A · C = 0) wave and a longitudinal (A ∧ C = 0) wave.

In Section 5, we consider circularly polarized inhomogeneous plane waves with an isotropic bivectorC (i.e.
C · C = 0). We show that longitudinal waves can propagate. We also find all other circularly polarized waves.

Finally, in Section 6, we specialize our results to the case of circularly polarizedhomogeneous plane waves, when
C is a real unit vector in the direction of propagation. The result established by Boulanger et al. [5] for finite-amplitude
plane waves is recovered: circular polarization for homogeneous waves occurs only in the directions orthogonal to
either of the planes of central circular sections of the ellipsoidx · B−1x = 1, whereB is the left Cauchy–Green
strain tensor of the finite static deformation.

2. Basic equations

2.1. Hadamard materials

We consider homogeneous isotropic hyperelastic materials of the Hadamard type. These are characterized by a
strain-energy densityΣ , measured per unit volume of the undeformed state, given by [2]

2Σ = aII + bI + f (III), (2.1)

wherea, b are two material constants. Also,f (III) is a material function, andI, II, III are principal invariants of
the left Cauchy–Green tensorB

I = tr B, 2II = I2 − tr(B2), III = detB, (2.2)

with B given by

B = FFT, Bij =
(

∂xi

∂XA

) (
∂xj

∂XA

)
, FiA =

(
∂xi

∂XA

)
, (2.3)

wherexi are the coordinates at timet of a particle whose coordinates areXA in the undeformed state. The deformation
gradientF is such that detF > 0.

The constitutive equation for the Cauchy stresst for a Hadamard material is [5]:

t = [aII III−1/2 + g(III1/2)]1 + bB − aIII B−1, (2.4)

where the functiong is defined by

g = g(III1/2) = III1/2f ′(III). (2.5)

We exclude consideration of the special case wherea = 0, when the material is a ‘restricted Hadamard material’
[7–10]. Then, assuminga �= 0, it may be shown [4,5] that in order for the strong ellipticity conditions to hold, the
following inequalities must be valid:

a > 0, b ≥ 0, g′ ≥ 0. (2.6)

It is assumed throughout that these conditions are satisfied.
We also assume that the body of Hadamard material is free of stress in the undeformed state. Thust = 0 when

B = 1. Then we must have [5]:

f ′(1) = −(a + 2b). (2.7)
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The equations of motion, in the absence of body forces, are

ρẍ = div t, ρẍi = ∂tij

∂xj
, (2.8)

where ẍi are the acceleration components. Also,ρ is the current mass density, related to the densityρ0 of the
material in the undeformed state through

ρ = III−1/2ρ0. (2.9)

2.2. Homogeneously deformed Hadamard material

Now, we assume that a Hadamard material undergoes a finite pure homogeneous static deformation, bringing a
particle initially atX in the undeformed state tox in the deformed state. Let (O, i, j,k) be a rectangular Cartesian
coordinate system defined by an origin O and the unit vectorsi, j,k along the three directions of principal stretches.
Then the finite homogeneous deformation is given by

x = λ1Xi + λ2Y j + λ3Zk, (2.10)

whereλα, α = 1,2,3 are the stretch ratios in each principal direction. Throughout the paper, it is assumed that
these ratios are distinct and ordered as

λ1 > λ2 > λ3. (2.11)

Let F andB be the deformation gradient and left Cauchy–Green strain tensor corresponding to this deformation.
Then

F = diag(λ1, λ2, λ3), B = diag(λ2
1, λ

2
2, λ

2
3), (2.12)

and the corresponding strain invariantsI, II, III are

I = λ2
1 + λ2

2 + λ2
3, II = λ2

1λ
2
2 + λ2

2λ
2
3 + λ2

1λ
2
3, III = λ2

1λ
2
2λ

2
3. (2.13)

In this deformed state, two specific directions play an important role with respect to the propagation of finite-amplitude
homogeneous plane waves. They are the so-called acoustic axes, whose directions are the only ones along which
finite-amplitude circularly polarized waves may propagate. It has been proved [5] for a Hadamard material that the
acoustic axes are the normals to the planes of central circular sections of theB−1-ellipsoid(x · B−1x = 1), which
are along the unit vectorsn± defined by

n± = αi ± γ j, α2 + γ 2 = 1, α =
√√√√λ−2

2 − λ−2
1

λ−2
3 − λ−2

1

, γ =
√√√√λ−2

3 − λ−2
2

λ−2
3 − λ−2

1

,

α2λ−2
3 + γ 2λ−2

1 = λ−2
2 , γ 2λ2

1 + α2λ2
3 − λ2

2 = α2γ 2III(λ−2
3 − λ−2

1 )2. (2.14)

These unit vectorsn± also appear in the Hamilton cyclic decomposition of theB−1 tensor [11]:

B−1 = λ−2
2 1 − 1

2(λ
−2
3 − λ−2

1 )[n+ ⊗ n− + n− ⊗ n+], (2.15)

where⊗ denotes the dyadic product.
Finally, the constant Cauchy stress tensorT necessary to maintain the finite homogeneous deformation (2.10) is

given by [5]:

T = [aII III−1/2 + g(III1/2)]1 + bIII−1/2B − aIII1/2B−1. (2.16)
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3. Small-amplitude plane waves in a deformed Hadamard material

Now we consider the propagation of an infinitesimal plane wave of complex exponential type in a Hadamard
material held in a state of static finite homogeneous deformation. The emphasis is on inhomogeneous plane waves.
We derive the equations of motion and the corresponding acoustical tensor.

3.1. Plane waves of complex exponential type

We assume that a plane wave of complex exponential type is superposed upon the finite static deformation
described in Section 2.2. This motion, which brings a particle fromx, given by (2.10), tōx in the current configuration
of the material, is written as [6]:

x̄ = x + 1
2ε{A eiω(NC·x−t) + c.c.}. (3.1)

Here,ε is a small parameter, such that terms of orderε2 or higher may be neglected in comparison with first order
terms,A (amplitude) andC (propagation) are complex vectors (or ‘bivectors’ [6]),ω the real frequency,N the
complex scalar slowness, and ‘c.c.’ the complex conjugate.

An ellipse may be associated with a bivector [6]. Thus, if the bivectorD has real and imaginary partsD+ andD−,
so thatD = D+ + iD−, then the equation of the corresponding ellipse isr = D+ cosθ + D− sinθ , 0 ≤ θ ≤ 2π .
The ellipse is a circle ifD · D = 0, and degenerates to a line segment ifD ∧ D̄ = 0.

In the case where the amplitude bivectorA is such that

A · A = 0, (3.2)

the wave described by (3.1) is circularly polarized and the amplitude bivectorA is said to be ‘isotropic’. IfA∧Ā = 0,
the wave is linearly polarized, andA has ‘a real direction’.

In general, the propagation bivectorC may be written as [11]:

C = mm̂ + in̂, (3.3)

wherem is a real number(m ≥ 1) andm̂, n̂ are real orthogonal unit vectors. By suitable choices ofm, m̂ andn̂, all
possible propagation bivectorsC are determined [6].

3.2. Strain increments

Let the deformation gradient corresponding to the motion (3.1) beF̄. It is given by

F̄ = ∂ x̄
∂X

= [1 + 1

2
ε{iωNA ⊗ C eiω(NC·x−t) + c.c.}]F. (3.4)

The left Cauchy–Green tensorB̄ = F̄F̄T and its inversēB−1 are, up to orderε, given by

B̄ = B + 1
2ε{iωN [A ⊗ BC + BC ⊗ A] eiω(NC·x−t) + c.c.}, (3.5)

B̄−1 = B−1 − 1
2ε{iωN [C ⊗ B−1A + B−1A ⊗ C] eiω(NC·x−t) + c.c.}. (3.6)

The corresponding strain invariantsĪ , II, III are given by

Ī = I + ε{iωN(A · BC)eiω(NC·x−t) + c.c.}, (3.7)

II = II + ε{iωN [II(A · C) − III(A · B−1C)] eiω(NC·x−t) + c.c.}, (3.8)

III = III + εIII{iωN(A · C)eiω(NC·x−t) + c.c.}. (3.9)

Finally, the mass densitȳρ in the current configuration is

ρ̄ = III−1/2ρ(1 − 1
2ε{iωN(A · C)eiω(NC·x−t) + c.c.}). (3.10)
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3.3. Equations of motion and acoustical tensor

The Cauchy stress̄T necessary to support the motion (3.1) is [5]:

T̄ = [aII III
−1/2 + g(III

1/2
)]1 + bIII

−1/2
B̄ − aIII

1/2
B̄−1. (3.11)

Using (3.5)–(3.11), we find that

T̄ = T + 1
2ε{iωN T̂ eiω(NC·x−t) + c.c.}, (3.12)

whereT̂ is given by

T̂ = {(A · C)g′ + a[(tr B−1)(A · C) − 2(A · B−1C)]}III1/21 − b(A · C)III−1/2B

+bIII−1/2[A ⊗ BC + BC ⊗ A] − a(A · C)III1/2B−1 + aIII1/2[C ⊗ B−1A + B−1A ⊗ C]. (3.13)

Now, in the absence of body forces, the equations of motion (2.8), written for the motion (3.1), are: divT̄ = ρ̄ ¨̄x. In
our context, they yield

−ω2N2T̂ · C = −ρω2III−1/2A or Q(C)A = ρN−2A, (3.14)

where theacoustical tensor Q(C) is given by

Q(C) = b(C · BC)1 + (IIIg′ + aII)C ⊗ C + aIII[(C · C)B−1 − C ⊗ B−1C − B−1C ⊗ C]. (3.15)

By inspection of the form ofQ(C), we deduce two facts about the acoustical tensor.
First, the acoustical tensor is a complex symmetric tensor

Q = QT, (3.16)

and, therefore, eigenbivectors ofQ(C) corresponding to distinct eigenvalues will be orthogonal to each other (e.g.
[11]).

Second, the propagation bivectorC is an eigenbivector ofQ(C) with eigenvalueρN−2
‖ (say) given by

ρN−2
‖ = b(C · BC) + (IIIg′ + aII)(C · C) − aIII(C · B−1C). (3.17)

We now seek small-amplitude circularly polarized inhomogeneous plane wave solutions to the equations of
motion in a deformed Hadamard material. These solutions correspond to a double root of the acoustical tensor, or
equivalently [6], to an isotropic amplitude eigenbivectorA for Q(C). We follow the usual [12,13] procedure for
inhomogeneous solutions of complex exponential type, which consists in separating the cases where the propagation
bivectorC is non-isotropic(C · C �= 0), from the cases where it is isotropic(C · C = 0).

4. Circularly polarized inhomogeneous plane waves with a non-isotropic propagation bivector C

Here we determine all possible circularly polarized solutions of complex exponential type with a non-isotropic
bivectorC: C ·C �= 0. It is seen that these waves can be constructed not only as ‘transverse’ waves—in the sense that
A · C = 0, but also as the superposition of a transverse wave and ‘longitudinal’ wave—in the sense thatA ∧ C = 0.
Explicit solutions are presented.

Assuming that the ellipse ofC is not a circle, so thatC · C �= 0, the acoustical tensorQ(C) may be written

Q(C) = b(C · BC)1 + [IIIg′ + aII − aIIIC∗ · B−1C∗]C ⊗ C + aIII(C · C)�, (4.1)

where

C∗ = C
(C · C)1/2

, � = �B−1�, � = 1 − C∗ ⊗ C∗, �2 = �, �C = 0. (4.2)
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Also �A = A whenA · C = 0. The tensor� is called the ‘complex projection operator’. Detailed properties of�
are given in Appendix A. In particular, properties of� are presented there.

We recall thatQ(C) has eigenbivectorC with eigenvalueρN−2
‖ given by (3.17):

Q(C)C = ρN−2
‖ C. (4.3)

We wish to determine the other eigenbivectors. Four cases have to be considered (see Appendix A):

Case (i):n+ · �n+ �= 0, n− · �n− �= 0.
Case (iia):n+ · �n+ = 0, n− · �n− �= 0.
Case (iib):n+ · �n+ �= 0, n− · �n− = 0.
Case (iii):n+ · �n+ = 0, n− · �n− = 0.

4.1. Case (i): superposition of transverse and longitudinal waves

Here,n+ · �n+ �= 0, n− · �n− �= 0. It follows that the orthogonal projection of the ellipse ofC upon either
plane of central circular section of theB−1-ellipsoid is not a circle. It will be seen that the acoustical tensor hasC
as an eigenbivector, so that the corresponding wave may be called longitudinal, and two further distinct orthogonal
eigenbivectors both orthogonal toC, so that the corresponding waves may be called transverse. The transverse wave
slownesses are distinct, so that for a givenC, if two wave slownesses are to be equal, then this possibility will only
occur if the wave slowness for one of the transverse waves is equal to the wave slowness of the longitudinal wave.
It will be seen that there is an infinite number of possible choices ofC for which this is so. Then the corresponding
waves are circularly polarized. Any possibleC has an ellipse which is similar and similarly situated to the ellipse
in which the plane ofC cuts a certainM-ellipsoid, with the two exceptions when the plane ofC coincides with a
plane of central circular section of theM-ellipsoid.

It may be shown (see Appendix A) that� has unit orthogonal eigenbivectorsA±, given by

A± = K+ ± K−

[2(1 + K+ · K−)]1/2
, K± = �n±

(n± · �n±
)1/2

, (4.4)

and corresponding distinct eigenvaluesδ±, given by

δ± = λ−2
2 − 1

2(λ
−2
3 − λ−2

1 )[(n+ · �n+
)(n− · �n−

)]1/2(K+ · K− ± 1). (4.5)

Also, A± are orthogonal toC, the other eigenbivector of�, with corresponding eigenvalue zero.
So the eigenbivectors ofQ(C) are:C, with eigenvalueρN−2

‖ , andA±, with corresponding distinct eigenvalues
bC · BC + aIII(C · C)δ±. Because the eigenvalues corresponding toA+ and A− are distinct, the only way in
which an isotropic eigenbivector ofQ(C) will arise is when the eigenvalueρN−2

‖ is equal to one of the eigenvalues
corresponding to eitherA+ or to A−. Thus, for an isotropic eigenbivector we needC to satisfy

[ρN−2
‖ − bC · BC − aIII(C · C)δ+][ρN−2

‖ − bC · BC − aIII(C · C)δ−] = 0. (4.6)

Using (3.17) and (A.22), this equation may be written

C · MC = 0, (4.7)

whereM is the tensor defined by

M = (g′)2III1 + ag′[II1 − IIIB−1] + a2B. (4.8)

We note thatM is coaxial withB and has eigenvaluesµ2
α, given by

µ2
α = (g′)2III + ag′(II − IIIλ−2

α ) + a2λ2
α, α = 1,2,3. (4.9)
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Using (2.6) and (2.11), we find that

µ2
1 > µ2

2 > µ2
3 > 0. (4.10)

Thus,M is a positive definite tensor, determined by the finite static deformation, and the associated quadricx·Mx = 1
is an ellipsoid.

So, now ifC is chosen to satisfy (4.7), i.e. if the plane of the ellipse ofC cuts theM-ellipsoid in an ellipse which
is similar and similarly situated to the ellipse ofC, thenQ(C) has a double eigenvalue,ρN−2

‖ , corresponding to
the eigenbivectorC, and also either toA+ or to A−. Consequently, all isotropic eigenbivectorsA of the acoustical
tensorQ(C) must be orthogonal toA+ (or A−), be such thatA · A = 0, and consequently, up to a scalar factor, be
of the form

A = C∗ + iA− or C∗ + iA+, (4.11)

with corresponding eigenvalueρN−2
‖ . Of course, the amplitude bivectorA is a combination ofC∗, which corresponds

to a longitudinal wave in the sense that the amplitude bivector is ‘parallel’ to the propagation bivectorC, and of the
amplitudeA−, which corresponds to a transverse wave in the sense that the amplitude bivectorA− is ‘orthogonal’
to the propagation bivectorC.

There is an infinity of possible choices forC which satisfy (4.7). Any elliptical section of theM-ellipsoid may be
chosen forC, apart from the two central circular sections—we recall thatC may not be isotropic. These ‘forbidden’
isotropicC, in the planes of central circular section of theM-ellipsoid, are

C = γ (a + λ2
1g

′)1/2

λ1(a + λ2
2g

′)1/2
i ± ij ∓ α(a + λ2

3g
′)1/2

λ3(a + λ2
1g

′)1/2
k. (4.12)

4.2. Example: superposition of transverse and longitudinal waves

Let C be writtenC = C1i + C2j + C3k. The condition (4.7) isC2
1µ

2
1 + C2

2µ
2
2 + C2

3µ
2
3 = 0. Recalling (4.10) we

choose

C = µ2i + iµ1j. (4.13)

Then

�n± = − αµ2
1

µ2
2 − µ2

1

i ± γk − i
αµ1µ2

µ2
2 − µ2

1

j. (4.14)

It may be checked thatn+ · �n+ = n− · �n−, so thatA± are parallel to�n+ ± �n−. Thus,

A+ = µ1i − iµ2j

(µ2
1 − µ2

2)
1/2

, A− = k, δ+ = A+ · �A+ = A+ · B−1A+ = µ2
1λ

−2
1 − µ2

2λ
−2
2

µ2
1 − µ2

2

,

δ− = A− · �A− = A− · B−1A− = λ−2
3 . (4.15)

Using (4.9), we have

C · C = µ2
2 − µ2

1 = a(λ2
2 − λ2

1)(a + g′λ2
3),

C · B−1C = µ2
2λ

−2
1 − µ2

1λ
−2
2 = (λ2

2 − λ2
1)[(g

′)2III + ag′II + a2(λ2
1 + λ2

2)]

λ2
1λ

2
2

,

ρN−2
‖ = (λ2

2 − λ2
1)III(g

′ + aλ−2
3 )(a2 − bg′). (4.16)

It then follows that the difference between the eigenvalues corresponding toC andA− is

ρN−2
‖ − bC · B−1C − aIIIλ−2

3 C · C = (IIIg′ + aII)C · C − aIIIC · B−1C − aIIIλ−2
3 C · C = 0. (4.17)
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Thus the isotropic eigenbivector corresponding to the eigenvalueρN−2
‖ for the above choice (4.13) ofC is

A = µ2i + iµ1j

(µ2
1 − µ2

2)
1/2

± ik. (4.18)

Then, assuming thata2 − bg′ > 0, the corresponding explicit solution is given by

x̄ = x + ε

[
µ2

(µ2
2 − µ2

1)
1/2

]
e−ωN‖µ1y cosω(N‖µ2x − t),

ȳ = y + ε

[
µ1

(µ2
2 − µ2

1)
1/2

]
e−ωN‖µ1y cosω(N‖µ2x − t),

z̄ = z ± ε e−ωN‖µ1y sinω(N‖µ2x − t). (4.19)

Here (x, y, z) = (λ1X, λ2Y, λ3Z), N‖ is given by (4.16)3, andµ1, µ2 by (4.9). One radius of the circle of
polarization is alongi, an orthogonal radius alongµ1j ± (µ2

1 − µ2
2)

1/2k. The waves travel in thex-direction with
speed(N‖µ2)

−1, and are attenuated in they-direction.

4.3. Remark: special case C · j = 0

It is shown (Appendix A, Case (i)) that�n+ and�n− are parallel ifC · j = 0. The eigenbivectors of� are
thenC∗, K+, j. Using (4.1), the eigenbivectors ofQ(C) are alsoC∗, K+, j in this case. However, becauseC∗

2 = 0,
(C∗

1)
2 + (C∗

3)
2 = 1, it follows that equating any two of the eigenvalues ofQ(C) will lead to aC∗ which is a ‘real’

bivector—a scalar multiple of a real vector.
The conclusion is therefore that ifC · j = 0, then the only possible circularly polarized waves are homogeneous.

4.4. Case (iia): Transverse circularly polarized waves

Here,n− · �n− �= 0 andn+ · �n+ = 0, so that�n+ is isotropic. The projection, of the ellipse ofC upon the
plane of central circular section of theB−1-ellipsoid with normaln+, is a circle.

Using the results in Appendix A relating to Case (iia), we conclude that�n+ is an eigenbivector ofQ(C) with
eigenvalueρN−2

⊥ , given by

ρN−2
⊥ = b(C · BC) + aIII(C · C)ν⊥, ν⊥ = λ−2

2 − 1
2(λ

−2
3 − λ−2

1 )n+ · �n− = 1
2I�. (4.20)

See (A.15). The eigenvalueρN−2
⊥ is a double root of the secular equation because one root is zero and the sum of the

other roots is 2b(C ·BC)+aIII(C ·C)I� = 2ρN−2
⊥ . All isotropic eigenbivectors,A⊥ (say), ofQ(C), corresponding

to ρN−2
⊥ , are parallel to�n+, and orthogonal toC (see Appendix A). BecauseC · A⊥ = 0, we refer to these waves

as transverse.
Using the fact thatn+ · �n+ = 0, we deduce thatC has the form

C = pn+ + s( j ∧ n+ ± ij), (4.21)

wherep ands are arbitrary constants. To relate this to the expression (3.3) forC = mm̂+in̂, for whichC·C = m2−1,
C · C̄ = m2 + 1, we conclude that

C =
√
m2 − 1n+ + eiθ ( j ∧ n+ ± ij) = (α

√
m2 − 1 + γ eiθ )i ± i eiθ j + (γ

√
m2 − 1 − α eiθ )k, (4.22)

whereθ andm are arbitrary.
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Also, becauseA⊥ is parallel to�n+, it may be written

A⊥ = eiθ ( j ∧ n+ + ij). (4.23)

Now, using (2.14), we find that

C · BC = IIIΛ2
⊥, ν⊥ =

√
m2 − 1Λ⊥, (4.24)

where

Λ⊥ =
√
m2 − 1λ−2

2 + eiθ
√
λ−2

2 − λ−2
1

√
λ−2

3 − λ−2
2 . (4.25)

Hence, from (4.20),

ρN−2
⊥ = IIIΛ⊥(bΛ⊥ + a

√
m2 − 1). (4.26)

Remark. Forbidden choices ofC.

Throughout, it has been assumed thatn+ · �n+ = 0 andn− · �n− �= 0, and alsoC · C �= 0. The condition
C·C �= 0 means thatC given by (4.22) must be such thatm �= 1 or equivalentlyC·n+ �= 0. The propagation bivector
C given by (4.22) always satisfiesn+ · �n+ = 0. However, as shown in Appendix A, Case (iii),n− · �n− = 0
also, if eitherC · i = 0 or C · k = 0. There are thus three forbidden choices ofC given by (4.22):C · i = 0 or
C · k = 0 or C · n+ = 0.

Any other choices ofC given by (4.22) lead to circularly polarized transverse waves, all of which have the common
amplitude bivectorA⊥ given by (4.23). We note thatA⊥ is determined byn+, which, in turn, is determined by
the basic static homogeneous deformation. There is thus an infinity of circularly polarized transverse waves all
propagating with common amplitude bivectorA⊥ given by (4.23). We now present an example.

4.5. Example: transverse circularly polarized waves

We takeθ = 0, and then from Eqs. (4.22)–(4.25), we deduce the following circularly polarized plane wave
solution

x̄ = x + ε

√√√√λ−2
2 − λ−2

1

λ−2
3 − λ−2

1

e−ωN⊥y cosω(mN⊥p · x − t), ȳ = y − ε e−ωN⊥y sinω(mN⊥p · x − t),

z̄ = z − ε

√√√√λ−2
3 − λ−2

2

λ−2
3 − λ−2

1

e−ωN⊥y cosω(mN⊥p · x − t). (4.27)

Here(x, y, z) are the coordinates in the state of finite static deformation given by (2.10),m ≥ 1 is arbitrary,N⊥ is

given by (4.22)3, with Λ⊥ = λ−2
2

√
m2 − 1 +

√
λ−2

2 − λ−2
1

√
λ−2

3 − λ−2
2 , andp is the unit vector defined by

mp = j ∧ n+ +
√
m2 − 1n+. (4.28)

The radius of the circle of polarization at(x, y, z) is ε e−ωN⊥y , two orthogonal radii being alongj andj ∧ n+. This
wave propagates with speed(mN⊥)−1 in the direction ofp, and is attenuated in the direction ofj, orthogonal to
p. Note thathomogeneous circularly polarized plane waves can only travel in the directionn± of an acoustic axis
[5]. In the present example, the normal to the planes of constant phase isp, which may lie in any direction in the
xz-plane, asm varies from 1 to∞.
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4.6. Case (iib): further transverse circularly polarized waves

Here,n− · �n− = 0, n+ · �n+ �= 0. This is identical to Case (iia), whenn+ andn− are interchanged, i.e. when
γ is replaced by−γ . Accordingly, many details will be omitted.

Using the results in Appendix A relating to Case (iib), we conclude that the isotropic bivector�n− is an
eigenbivector ofQ(C) with eigenvalueρN̂−2

⊥ say, given by

ρN̂−2
⊥ = b(C · BC) + aIII(C · C)ν̂⊥, ν̂⊥ = λ−2

2 − 1
2(λ

−2
3 − λ−2

1 )n+ · �n−
, (4.29)

precisely the same form as (4.20), but different in substance. All isotropic eigenbivectorsÂ⊥ (say) of Q(C),
corresponding toρN̂−2

⊥ , are parallel to�n−, and orthogonal toC.
As in Case (iia), we deduce the form ofC

C = p̂n− + ŝ(j ∧ n− ± ij) = (α
√
m2 − 1 − γ eiθ )i ± i eiθ j − (γ

√
m2 − 1 + α eiθ )k. (4.30)

Also,

Â⊥ = eiθ (j ∧ n− + ij), (4.31)

and

C · BC = IIIΛ̂2
⊥, ν̂⊥ =

√
m2 − 1Λ̂⊥, (4.32)

where

Λ̂⊥ =
√
m2 − 1λ−2

2 − eiθ
√
λ−2

2 − λ−2
1

√
λ−2

3 − λ−2
2 . (4.33)

Then

ρN̂−2
⊥ = IIIΛ̂⊥(bΛ̂⊥ + a

√
m2 − 1). (4.34)

Thus, as in Case (iib), apart from the three cases whenC · i = 0 orC ·k = 0 orC ·n− = 0, any choice ofC given by
(4.30) will lead to a circularly polarized transverse wave. There is an infinity of such waves, all sharing a common
amplitude bivector̂A⊥ given by (4.31), which is determined by the basic static homogeneous deformation.

4.7. Case (iii): principal circularly polarized waves

Heren+ · �n+ = 0, n− · �n− = 0, so that both�n+ and�n− are isotropic. As shown in Appendix A, Case
(iii), the propagation bivectorC must satisfy either

(a) C · i = 0 or (b) C · k = 0. (4.35)

It is not possible to have bothC · i = 0, andC · k = 0, because thenC ∧ j = 0, and(C · n±)2 = 0, C · C �= 0. The
possible forms forC are

C = k ± iαj, (4.36a)

and

C = i ± iγ j. (4.36b)

As shown in Appendix A,�n+ and�n− are linearly independent eigenbivectors of�, with common eigenvalue
λ−2

2 . So these bivectors�n+ and�n− are isotropic eigenbivectors of the acoustical tensorQ(C), with eigenvalues
ρN−2

a , ρN−2
b (say) given by

ρN−2
a = b(C · BC) + aIII(C · C)λ−2

1 = (b + aλ2
1)λ

2
3(λ

2
2 − λ2

3)

λ2
1 − λ2

3

, (4.37a)
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and

ρN−2
b = b(C · BC) + aIII(C · C)λ−2

3 = (b + aλ2
3)λ

2
1(λ

2
1 − λ2

2)

λ2
1 − λ2

3

. (4.37b)

Thus, in Case (a), corresponding toC given by (4.36a), there are three eigenbivectors forQ(C), namelyC given
by (4.36a) with eigenvalue zero,�n+ with eigenvalueρN−2

a , and�n−, also with eigenvalueρN−2
a . Here,�n+

and�n− are, respectively, parallel to the bivectorsA1 andA2 say, given by

A1 = γ i − αk ∓ ij, A2 = γ i + αk ± ij. (4.38)

Similarly, in Case (b), there are three eigenbivectors forQ(C) − C given by (4.36b), and�n+ and�n−, also
with common eigenvalueρN−2

b . Here, the bivectors�n+ and�n− are again parallel to the bivectorsA1 andA2
given by (4.38).

It may be noted that there are two circularly polarized waves with amplitude bivector along�n+ given by (4.38),
one with propagation bivector given by (4.36a), and complex slowness given by (4.37a), the other withC given by
(4.36b), and complex slowness given by (4.37b). Similarly, there are two circularly polarized waves with amplitude
bivector along�n− given by (4.38).

Using (2.6), we note thatρN−2
a , ρN−2

b are both real and positive. Consequently, the direction of propagation,
which in general is parallel to the real part ofNC, see (3.1), is here parallel toC+, i.e. k in Case (a) ori in Case
(b). Similarly, the direction of attenuation, which in general is parallel to the imaginary part ofNC, see (3.1), is
here parallel toC−, i.e. j. Hence, the direction of propagation is either along the principal axis corresponding to
the largest strain or along the principal axis corresponding to the least strain, whilst the direction of attenuation is
along the intermediate axis. Such inhomogeneous waves for which the planes of constant phase and the planes of
constant amplitude are normal to principal axes of the basic homogeneous strain, may be called ‘principal’ waves
[14]. Here, their circle of polarization has a radius along the intermediate axis and orthogonal radii along either
n+ ∧ j or n− ∧ j. Here is a specific example.

Example (Principal circularly polarized waves). LetC = i + iγ j.

In this case, we find the following two special principal circularly polarized waves,

x̄ = x + εγ e−ωNbγy cosω(Nbx − t), ȳ = y ± ε e−ωNbγy sinω(Nbx − t),

z̄ = z ∓ εα e−ωNbγy cosω(Nbx − t), (4.39)

where(x, y, z) = (λ1X, λ2Y, λ3Z) andω is arbitrary. For these waves, the propagation is in the direction ofi, the
attenuation in the direction ofj, and the speed isN−1

b , whereNb is given by (4.37b).
Hence, we have investigated all possible circularly polarized inhomogeneous plane waves of small-amplitude

propagating in a finitely deformed Hadamard material, with a non-isotropic bivectorC. There are two types of such
solutions. One type corresponds to waves whose amplitude bivectorA is orthogonal to the propagation bivector
C; another type corresponds to waves whose amplitude bivectorA is the sum of a bivector orthogonal toC and a
bivector parallel toC.

Central to this investigation was the use of the tensor� given by (4.2) for which it was assumed thatC · C �= 0.
Now we examine in detail the cases whereC · C = 0.

5. Circularly polarized inhomogeneous plane waves with an isotropic propagation bivector C

Here we seek circularly polarized inhomogeneous plane waves with an isotropic bivectorC. It is seen that such
waves can propagate in the deformed Hadamard material as long as the circle ofC is not similarly situated to either
of the central circular sections of theB−1-ellipsoid.



M. Destrade, M. Hayes / Wave Motion 35 (2002) 289–309 301

5.1. The acoustical tensor

WhenC · C = 0, the acoustical tensorQ(C) given by (3.15) reduces to

Q(C) = b(C · BC)1 + (IIIg′ + aII)C ⊗ C − aIII[C ⊗ B−1C + B−1C ⊗ C], (5.1)

andC is an isotropic eigenbivector ofQ(C) with eigenvalueρN−2
0 (say), given by

ρN−2
0 = b(C · BC) − aIII(C · B−1C). (5.2)

Because the eigenbivectorC is isotropic, the eigenvalueρN−2
0 is at least double [11]. LetρN−2

1 be the remaining
eigenvalue ofQ(C), possibly equal toρN−2

0 . This quantity can be deduced from the equality trQ(C) = 2ρN−2
0 +

ρN−2
1 , using (5.1) and (5.2). It is given by

ρN−2
1 = b(C · BC). (5.3)

Also, the bivectorC ∧ B−1C is clearly an eigenbivector ofQ(C), with eigenvalueρN−2
1 .

Hence, we see that the two eigenvalues given by (5.2) and (5.3) are distinct or equal according as to whether or
not C · B−1C is equal to zero. Consequently, we consider in turn the following cases:

1. C · B−1C = 0, C · C = 0;
2. C · B−1C �= 0, C · C = 0.

5.2. Case (1): C · C = C · B−1C = 0: longitudinal circularly polarized waves

In this case,ρN−2
0 = b(C · BC) is a triple eigenvalue ofQ(C). The condition

C · C = C · B−1C = 0, (5.4)

means that the plane ofC must coincide with either plane of central circular section of theB−1-ellipsoid [11]. Let
A be an eigenbivector ofQ(C). ThenQ(C)A = ρN−2

0 A is equivalent to

[aIII(A · C)]B−1C = [(IIIg′ + aII)(A · C) − aIII(A · B−1C)]C. (5.5)

However,B−1C andC can never be parallel. Indeed, if we hadB−1C = λ−2C for C = m̂+ in̂, thenB−1m̂ = λ−2m̂,
B−1n̂ = λ−2n̂, andλ−2 would have to be a double real eigenvalue forB−1, which is not possible. So, the coefficients
of B−1C andC in (5.5) must be zero, which yield in turn

A · C = 0 and A · B−1C = 0. (5.6)

Therefore,A is parallel toB−1C ∧ C, which itself is parallel toC.
We conclude that when (5.4) holds, all eigenbivectors ofQ(C) are isotropic and parallel toC. The corresponding

circularly polarized waves are said to be longitudinal.

Example (Longitudinal circularly polarized waves). We letC = p + ij, wherep = γ i + αk.

With this choice, (5.4) is satisfied, and all amplitude bivectors are parallel toC. The corresponding eigenvalue
ρN−2

0 is given by

ρN−2
0 = b(C · BC) = bλ−2

2 (λ2
1 − λ2

2)(λ
2
2 − λ2

3) > 0. (5.7)



302 M. Destrade, M. Hayes / Wave Motion 35 (2002) 289–309

Thus an example of a longitudinal circularly polarized wave propagating in a deformed Hadamard material is

x̄ = x + εγ e−ωN0y cosω(N0p · x − t), ȳ = y − ε e−ωN0y sinω(N0p · x − t),

z̄ = z + εα e−ωN0y cosω(N0p · x − t). (5.8)

Here (x, y, z) = (λ1X, λ2Y, λ3Z) andω is arbitrary. This wave travels in the direction ofp with speedN−1
0

given by (5.7), and is attenuated in the direction ofj. The vectorsp andj are two orthogonal radii of the circle of
polarization.

5.3. Case (2): C · C = 0, C · B−1C �= 0. Other circularly polarized waves

Because the ellipse ofC is a circle, the condition

C · B−1C �= 0, (5.9)

means thatC may not lie in either plane of central circular sections of theB−1-ellipsoid. An immediate consequence
of this condition and of the isotropy ofC is that the bivectorsC, B−1C, andC ∧ B−1C are linearly independent, so
that any bivector may be written as a linear combination ofC, B−1C, andC∧B−1C. In particular, the eigenbivectors
A of Q(C) with eigenvalueρN−2

0 must be orthogonal toC ∧ B−1C, the eigenbivector ofQ(C) with eigenvalue
ρN−2

1 (�= ρN−2
0 ), and may therefore be written as

A = α1C + α2B−1C (5.10)

for some complex scalarsα1 andα2. We seek to determineα1 andα2.
Now, Q(C)A = ρN−2

0 A yields

{(g′)III(C · B−1C) + a[II(C · B−1C) − III(C · B−2C)]}α2 = 0 (5.11)

or using the Cayley–Hamilton theorem and the isotropy ofC,

(C · �C)α2 = 0, where � = (g′)IIIB−1 − aB. (5.12)

Therefore, there are two possibilities for the eigenbivectors ofQ(C):
Case (a)α2 = 0, and the eigenbivectorsA = α1C are all isotropic and parallel toC, and
Case (b)α2 �= 0, C · �C = 0, and there is a double infinity of eigenbivectors, of the form (5.10).
Now we examine the consequences of this result for the possibility of circular polarization.
In Case (a), all eigenbivectors of the acoustical tensor with the eigenvalueρN−2

0 are isotropic and the correspond-
ing waves are therefore circularly polarized. They are longitudinal waves, in the sense that the amplitude bivector
A is parallel to the propagation bivectorC.

In Case (b),α2 is arbitrary and we choose it to makeA given by (5.10) isotropic. We have, up to a complex factor,

A = C and A = (C · B−2C)C − 2(C · B−1C)B−1C. (5.13)

Also, we note that it is always possible to find an isotropic bivectorC such that the equationC ·�C = 0 is satisfied.
Indeed, becauseC · C = 0, this equation can be written asC · [� + β21]C = 0, whereβ is an arbitrary real
scalar. By choosingβ sufficiently large, we can ensure that the diagonal tensor [� + β21] is positive definite, and
prescribe the circle ofC to lie in either of the planes of central circular sections of the ellipsoidx · [� + β21]
x = 1.

As an example, we prescribe an isotropic bivectorC and write the corresponding longitudinal circularly polarized
wave.
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Example (Longitudinal circularly polarized wave). LetC = q + ij, where the real unit vectorq is defined by

q =
√

(λ2
2 − λ2

3)(g
′λ2

1 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
i +

√
(λ2

1 − λ2
2)(g

′λ2
3 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
k.

It can be checked that this bivectorC satisfiesC · B−1C �= 0 andC · C = C · �C = 0.

The eigenvalueρN−2
0 given by (5.2) reduces to

ρN−2
0 = (λ2

1 − λ2
2)(λ

2
2 − λ2

3)(bg′ − a2)

g′λ2
2 + a

, (5.14)

and turns out to be real. Of course, its sign depends on whetherbg′ is greater or smaller thana2. We consider these
two possibilities in turn and introduce the quantityv0, which has the dimension of a speed, and is defined by

ρv2
0 = (λ2

1 − λ2
2)(λ

2
2 − λ2

3)|bg′ − a2|
g′λ2

2 + a
. (5.15)

If bg′ > a2, then a solution to the incremental equations of motion in a deformed Hadamard material, corresponding
to a longitudinal circularly polarized wave, is given by

x̄ = x + ε

√
(λ2

2 − λ2
3)(g

′λ2
1 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
e−ky cosk(q · x − v0t), ȳ = y − ε e−ky sink(q · x − v0t),

z̄ = z + ε

√
(λ2

1 − λ2
2)(g

′λ2
3 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
e−ky cosk(q · x − v0t). (5.16)

If bg′ < a2, then a solution is given by

x̄ = x + ε

√
(λ2

2 − λ2
3)(g

′λ2
1 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
e−kq·x cosk(y − v0t), ȳ = y − ε e−kq·x sink(y − v0t),

z̄ = z + ε

√
(λ2

1 − λ2
2)(g

′λ2
3 + a)

(λ2
1 − λ2

3)(g
′λ2

2 + a)
e−kq·x cosk(y − v0t). (5.17)

In both cases,(x, y, z) = (λ1X, λ2Y, λ3Z) andk is arbitrary. Whenbg′ > a2, the wave propagates in the direction
of q and is attenuated in the direction ofj; whenbg′ < a2, the wave propagates in the direction ofj and is attenuated
in the direction ofq. In both cases, the wave travels with speedv0 given by (5.15) and is circularly polarized, the
vectorsq andj being two orthogonal radii of the circle of polarization.

6. Concluding remarks: homogeneous plane waves

The analysis carried above (Sections 4 and 5) can be applied to the consideration of homogeneous plane waves,
simply by taking

C = n, (6.1)

wheren is a real unit vector in the direction of propagation of the wave. However, the case of an isotropic propagation
vectorC ·C = 0 (Section 5) does not arise, because nowC ·C = n ·n = 1. Also, transverse and longitudinal waves
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cannot be superposed (Section 4.1) to form a circularly polarized homogeneous wave because the condition (4.7),
which reduces here toC · MC = n · Mn = n2

1µ
2
1 + n2

2µ
2
2 + n2

3µ
2
3 = 0, cannot be satisfied. Now, for completeness,

we consider briefly the propagation of circularly polarized homogeneous plane waves.
First, we recall that homogeneous longitudinal plane waves may propagate in every directionn in a Hadamard

material maintained in a state of finite static homogeneous deformation. Two transverse plane waves may also
propagate in every directionn. If the corresponding directions of polarization are alongh, l, forming an orthonormal
triad with n, then it has been shown [5] thath · B−1l = 0, so thath andl must lie along the principal axes of the
elliptical section of theB−1-ellipsoidx ·B−1x = 1 by the central planen ·x = 0. Here we present a simple derivation
of this result.

The acoustical tensorQ(n) for homogeneous plane waves may be obtained from the expression (3.15) forQ(C),
by replacingC with n. Indeed

Q(n) = b(n · Bn)1 + (IIIg′ + aII)n ⊗ n + aIII(B−1 − n ⊗ B−1n − B−1n ⊗ n), (6.2)

and

Q(n)n = [b(n · Bn) + IIIg′ + aII − aIII(n · B−1n)]n. (6.3)

Becauseh, l are eigenvectors ofQ(n), both orthogonal ton, we have

Q(n)h = [b(n · Bn) + aIII(h · B−1h)]h, (6.4)

Q(n)l = [b(n · Bn) + aIII(l · B−1l)]l. (6.5)

Thus, for circularly polarized homogeneous plane waves,n must be such that

h · B−1h = l · B−1l, h · B−1l = 0, h · l = 0, (6.6)

and hence,n = n±, the normals to the planes of central circular sections of theB−1-ellipsoid. The corresponding
speed of propagationv⊥ say, is given by

ρv2
⊥ = b(n · Bn) + aIIIλ−2

2 = λ−2
2 (bλ−2

2 + aIII). (6.7)

This result was established for finite-amplitude plane waves by Boulanger et al. [5]. We note that on replacingC
by n± in (4.29),ν⊥ becomesλ−2

2 , and then we obtain (6.7) on replacingN−2
⊥ by v2

⊥.
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Appendix A. Properties of the complex projection operator

Here we present some properties of the complex projection operator�, defined in (4.2). In particular, we determine
the eigenvalues and eigenbivectors of� = �B−1�, the tensor which arises in the expression (4.1) for the acoustical
tensorQ(C). Many of these properties may be found in [13], but are included here for completeness. The material
is self-contained.

If h is a real unit vector, thenφ defined by

φ = 1 − h ⊗ h, φij = δij − hihj , (A.1)
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is a projection operator with the properties

φ2 = φ, φ h = 0, φ l = l ∀l : l · h = 0. (A.2)

For any second order tensorg, the projection ofg on the plane with unit normalh, is φ g φ, with components

(φ g φ)ij = φimgmpφpj = (δim − hihm)gmp(δpj − hphj ). (A.3)

In the case of bivectors, letC be a non-isotropic bivector:C · C �= 0. LetC∗ = C/(C · C)1/2. Then the complex
projection operator�, defined by

� = 1 − C∗ ⊗ C∗, (A.4)

is such that corresponding to (A.1) for the real projection operator�, we have

�2 = �, �C∗ = 0, �D = D ∀D : D · C = 0. (A.5)

We consider the complex tensor�, defined by

� = �B−1�, χij = (δim − C∗
i C

∗
m)B−1

mp(δpj − C∗
pC

∗
j ), (A.6)

whereB−1 is real, positive definite, and symmetric.

A.1. General properties of �

Recalling Eq. (2.15)

B−1 = λ−2
2 1 − 1

2(λ
−2
3 − λ−2

1 )[n+ ⊗ n− + n− ⊗ n+], (A.7)

it follows that

� = λ−2
2 � − 1

2(λ
−2
3 − λ−2

1 )[�n+ ⊗ �n− + �n− ⊗ �n+]. (A.8)

Equivalently, providedn+ · �n+ �= 0, n− · �n− �= 0, � may be written

� = λ−2
2 � − 1

2(λ
−2
3 − λ−2

1 )[(n+ · �n+
)(n− · �n−

)]1/2[K+ ⊗ K− + K− ⊗ K+], (A.9)

whereK± are unit bivectors given by

K± = �n±

(n± · �n±
)1/2

. (A.10)

A.2. Eigenvalues of �

We note that� is symmetric. Also�C∗ = 0, so that� has one zero eigenvalue corresponding to its eigenbivector
C∗. The other eigenvalues are the roots,α, of the quadratic,

α2 − I�α + II� = 0, (A.11)

where

I� = tr � = tr(�B−1�) = tr B−1 − C∗ · B−1C∗,

2II� = (I�)2 − tr(�2) = (I�)2 − tr(B−2) + 2C∗ · B−1C∗ − (C∗ · B−1C∗)2 = 2(C∗ · B−1C∗)
III

. (A.12)

The condition that the quadratic have a double root forα is that

I2
� = 4II�, (A.13)
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or equivalently,

III(tr B−1 − C∗ · B−1C∗)2 = 4C∗ · BC∗. (A.14)

If this is satisfied, the double root of the quadratic isα̂ (say), given by

α̂ = 1

2
I� = f

1

2
(tr B−1 − C∗ · B−1C∗) = 2(C∗ · B−1C∗)

III
= λ−2

2 − 1

2
(λ−2

3 − λ−2
1 )(n+ · �n−

), (A.15)

on using (A.8).
The quadratic has a zero root providedII� = 0 or

C∗ · BC∗ = 0, (A.16)

in which caseC∗ is any bivector whose ellipse is similar and similarly situated to a section of theB-ellipsoid, other
than a central circular section (throughout this Appendix A, it is assumed thatC is not an isotropic bivector). There
is thus an infinity of possibleC∗ satisfying (A.16)—or equivalently an infinity of possible choices ofC∗ for which
� has two zero eigenvalues. In this instance, the third eigenvalue isI� = tr �.

The conditions that the quadratic have a double zero root areI� = 0, II� = 0, or

C∗ · �C∗ = 0, C∗ · BC∗ = 0, (A.17)

where� is the real positive definite tensor given by

� = (tr B−1)1 − B−1. (A.18)

In general, any central plane will cut the ellipsoids associated with� and withB in a pair of concentric ellipses.
There are two ‘exceptional’ central planes for which each of these ellipses is similar and similarly situated to the
other ellipse [11]. The two bivectorsC∗ which satisfy (A.17) may be obtained by choosingC∗ to lie in an exceptional
central plane such that its ellipse is similar and similarly situated to the elliptical section of the� or B ellipsoid by
the exceptional plane. In general, there are just two bivectorsC∗ which satisfy (A.17). Thus, in general, there are
just two bivectorsC∗ for which � has a triple zero root.

A.3. Eigenbivectors of �

How to proceed to determine the eigenbivectors of� will depend upon whether or notn+ · �n+ andn− · �n−
are zero. Accordingly, we consider the four cases:

Case (i):n+ · �n+ �= 0, n− · �n− �= 0.
Case (iia):n+ · �n+ = 0, n− · �n− �= 0.
Case (iib):n+ · �n+ �= 0, n− · �n− = 0.
Case (iii):n+ · �n+ = 0, n− · �n− = 0.

Case (i): n+ · �n+ �= 0, n− · �n− �= 0. The form of (A.9) immediately gives the eigenbivectors of�. We have

�A± = δ±A±, (A.19)

where

δ± = λ−2
2 − 1

2
(λ−2

3 − λ−2
1 )[(n+ · �n+

)(n− · �n−
)]1/2(K+ · K− ± 1),

A± = K+ ± K−

[2(1 + K+ · K−)]1/2
. (A.20)
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We note that [13]

�A± = A±, A± · A± = 1,

A+ · A− = 0, A+ · B−1A− = (�A+
) · B−1(�A−

) = A+ · �A− = 0. (A.21)

We also note, on using (A.20) and (A.21), that

δ+ − δ− = −(λ−2
3 − λ−2

1 )[(n+ · �n+
)(n− · �n−

)]1/2,

δ+ + δ− = A+ · �A+ + A− · �A− = A+ · B−1A+ + A− · B−1A− = tr B−1 − C∗ · B−1C∗

=
(

II

III

)
− C∗ · B−1C∗, δ+δ− = (A+ · B−1A+)(A− · B−1A−) = C∗ · BC∗

III
. (A.22)

Thus, the eigenbivectors of� are A±, with corresponding distinct eigenvaluesδ±, and C with corresponding
eigenvalue zero.

Remark. Special caseC · j = 0.

We note that

�n+ ∧ �n− = [C ∧ (n+ ∧ C)] ∧ [C ∧ (n− ∧ C)]

(C · C)2
= [(n+ ∧ n−) · C∗]C∗ = 2αγ (C∗ · j)C∗. (A.23)

Assuming that neither�n+ nor �n− is zero, it follows that it is only whenC∗ · j = 0 that�n+ and�n− are
parallel. AssumingC∗ · j = 0, then

�n+ = (αC∗
3 − γC∗

1)(C
∗
3i − C∗

1k), �n− = (αC∗
3 + γC∗

1)(C
∗
3i − C∗

1k). (A.24)

We digress to consider the possibility thatαC∗
3 = γC∗

1, in which case�n+ = 0. Then, usingC∗
2 = 0, it follows

thatC∗ = C∗
1n+/α so thatC∗ is a ‘real’ bivector, that is, a scalar multiple of a real vector. We exclude consideration

of this possibility because it leads to homogeneous waves. Similarly, we exclude consideration of the possibility
thatαC∗

3 = −γC∗
1 so that�n− = 0 and usingC∗

2 = 0, leads toC∗ = C∗
1n−/α, again a real propagation bivector,

leading to homogeneous waves.
Returning now to (A.24) withα2(C∗

3)
2 �= γ 2(C∗

1)
2, it follows from (A.9) that

� = [λ−2
2 − (λ−2

3 − λ−2
1 )(α2(C∗

3)
2 − γ 2(C∗

1)
2)]K+ ⊗ K+ + λ−2

2 j ⊗ j,

K+ = �n+

αC∗
3 − γC∗

1
= C∗

3i − C∗
1k. (A.25)

The eigenbivectors of� are nowC∗, K+, andj, with corresponding eigenvalues 0,λ−2
2 − (λ−2

3 − λ−2
1 )(α2(C∗

3)
2 −

γ 2(C∗
1)

2), andλ−2
2 . BecauseC∗

2 = 0 and(C∗
1)

2 + (C∗
3)

2 = 1, it follows that equating any two of these eigenvalues
will lead to a C∗ which is a real bivector. So, isotropic eigenbivectors are only possible when the propagation
bivectorC is a real bivector. Accordingly, only homogeneous circularly polarized waves are possible whenC∗

2 = 0.
Thus, this special caseC · j = 0 plays no role in the study of circularly polarized inhomogeneous plane waves.
Case (iia): n+ · �n+ = 0, n− · �n− �= 0. In this case(�n+

) · (�n+
) = 0, so that�n+ is an isotropic bivector.

Indeed, the orthogonal projection of the ellipse ofC∗ onto the plane with normaln+ is a circle. So

��n+ = ν⊥�n+
, ν⊥ = λ−2

2 − 1
2(λ

−2
3 − λ−2

1 )n+ · �n−
. (A.26)

We also have�C = 0, �C = 0. It may be checked that there is no bivector�n+ + ε�n− (ε �= 0) which is
orthogonal to the eigenbivectorC and forming with�n+ a third eigenbivector of�. Thus,�n+ is an isotropic
eigenbivector of� with eigenvalueν⊥.



308 M. Destrade, M. Hayes / Wave Motion 35 (2002) 289–309

Case (iib): n+ · �n+ �= 0, n− · �n− = 0. This is similar to Case (iia). In this case,�n− is an isotropic
eigenbivector of� with eigenvalueν⊥. Also, of course,�n− is orthogonal toC, the eigenbivector with eigenvalue
zero.

Case (iii): n+ · �n+ = 0, n− · �n− = 0. Here both�n+ and�n− are isotropic bivectors—the ellipse ofC∗
when projected upon a plane with normaln+ is a circle, and so is its projection onto a plane with normaln−. Also,
n+ · �n+ = 0, n− · �n− = 0, lead to

C∗ · (n+ ± n−) = 0, (C∗ · n±)2 = 1, (A.27)

so that the ellipse ofC∗ lieseither in a plane with normal alongn+ + n− (= 2αi, recall (2.14)), which is along the
internal bisector of the angle betweenn+ andn−, or in a plane with normal alongn+ − n− (= 2γk, recall (2.14)),
which is along the external bisector of the angle betweenn+ andn−. Thus, there are only two cases:

(a) C∗ · i = 0, (b) C∗ · k = 0. (A.28)

In case (a), we find (recall (2.14)) from (A.27),

C∗ = ±iαj + k
γ

, n+ · �n− = 2α2, ��n± = λ−2
1 �n±

. (A.29)

Also, these isotropic eigenbivectors�n+ and�n− are linearly independent. Indeed, if�n+ = µ�n− for some
scalarµ, then 0= n+ · �n+ = µn+ · �n− = 2µα2, so thatµ = 0.

In case (b), we find

C∗ = i ± iγ j
α

, n+ · �n− = 2γ 2, ��n± = λ−2
3 �n±

. (A.30)

As before, the isotropic eigenbivectors of�, �n+ and�n− are linearly independent. Thus,� has eigenvalues zero
and double eigenvalueλ−2

1 (in case (a)), orλ−2
3 (in case (b)), and corresponding eigenbivectorC and isotropic

eigenbivectors�n+ and�n−. Of course,C, �n+, and�n− are linearly independent. Indeed, if for some scalars
p, q,

C∗ = p�n+ + q�n−
, (A.31)

then

0 = �C∗ = p�n+ + q�n−
, (A.32)

so that�n+ is a scalar multiple of�n−. But we have already seen that�n+ and�n− are linearly independent.
ThusC, �n+, and�n− are linearly independent.
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