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Abstract

Rayleigh waves are considered for crystals possessing at least one plane of symmetry. The secular equation is es-

tablished explicitly for surface waves propagating in any direction of the plane of symmetry, using two different

methods. This equation is a quartic for the squared wave speed in general, and a biquadratic for certain directions in

certain crystals, where it may itself be solved explicitly. Examples of such materials and directions are found in the case

of monoclinic crystals with the plane of symmetry at x3 ¼ 0. The cases of orthorhombic materials and of incompressible

materials are also treated.

� 2002 Elsevier Science Ltd. All rights reserved.

1. Introduction

The simplest physical setting involving a

boundary value problem for an elastic material is

that of a semi-infinite body with a plane boundary

left free of tractions. However, the consideration

of small amplitude deformations and motions of
such a half-space leads usually to considerable

mathematical difficulties, especially when the ma-

terial is anisotropic. Indeed in the case of general

(triclinic) anisotropy, the equations of motion (or

of equilibrium) lead to the resolution of a sextic for

the partial inhomogeneous plane waves (or de-

formations), whose roots cannot be obtained ex-

plicitly. Consequently, closed-form solutions have

been sought for materials with at least ortho-

rhombic symmetry, because then the equations of

motion lead to a biquadratic, and because this case

covers 16 different types of common symmetry

classes such as tetragonal, hexagonal, or cubic

(Royer and Dieulesaint, 1984).

In between the classes of triclinic crystals (no
plane of symmetry) and of orthorhombic crystals

(three orthogonal planes of symmetry), is the class

of monoclinic crystals, with only one plane of

symmetry. Among the three possibilities for the

orientation of the symmetry plane, the configura-

tion of a half-space x2 P 0 made of monoclinic

material with the plane of symmetry at x3 ¼ 0 is

particularly important for two-dimensional de-
formations: (a) because in-plane stress and in-

plane strain decouple from anti-plane stress and

anti-plane strain, respectively, so that the equa-

tions of motion yield a quartic; and (b) because
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these materials are structurally invariant (Ting,

2000) that is, the stress–strain relationships retain

their form with respect to rotations in the (x1; x2)-

plane about the x3-direction, so that results ob-

tained along the material axes x1, x2, x3, are easily

transposed along the rotated axes x�1, x�2, x3, say.
On the other hand, the problem of surface Ray-

leigh waves is also of prime importance because

it is relevant to the study of many other problems

for anisotropic elastic half-spaces, such as: near-

the-surface stability analysis of a deformed half-

space (Biot, 1965), normal forces applied to a

half-space (Lamb, 1904), punch and indentation of

half-space (Green and Zerna, 1968), steady state
crack propagation (Broberg, 1999), and so on. An

up-to-date account on the research and applica-

tions of surface acoustic waves in materials science

can be found in (Hess, 2002). In the present paper,

the secular equation is established for surface

waves in monoclinic crystals with the plane of

symmetry at x3 ¼ 0, where by �secular equation� is

meant the function of the squared wave speed c2

which is zero when the tractions on the plane

x2 ¼ 0 and at x2 ! 1 are zero. This equation is

valid for the propagation of a Rayleigh wave in

any direction of a symmetry plane for crystals

possessing one plane of symmetry and of course

for crystals of a higher order symmetry class, such

as orthorhombic symmetry. It is also easy to take

an eventual incompressibility of the elastic half-
space into account (Destrade et al., 2002). Finally,

after a rotation about the x3-axis, the quartic sec-

ular equation may reduce to a biquadratic which

can then be solved explicitly.

The secular equation is obtained in Section 3,

after the equations of motion and boundary con-

ditions for the problem have been recalled in

Section 2. This equation is obtained in two dif-
ferent manners, first in ‘‘covariant’’ (Furs, 1997)

form, then as a quartic in the squared wave speed

(Currie, 1979; Destrade, 2001; Ting, 2002a). In the

final section (Section 4), the results are applied to

other situations. First, a rotation is made for the

(x1; x2) plane about the x3-axis and, at least for

three monoclinic crystals (diallage, gypsum and tin

fluoride), two directions are found for which the
secular equation may be solved explicitly. Then the

results are specialized from monoclinic to ortho-

rhombic symmetry. Finally, the constraint of in-

compressibility is taken into account, and a

numerical problem left open by Nair and Sotiro-

poulos (1999) is resolved.

Throughout the paper, the dynamical analysis

is based on the use of the components of the
tractions rather than the displacements, and ex-

pressions are found in terms of the stiffnesses as

well as in terms of the reduced compliances.

2. Preliminaries

Here we recall the equations of motion for a
linearly elastic semi-infinite body, made of a

monoclinic material with the plane of symmetry at

x3 ¼ 0, and seek a solution in the form of a surface

wave solution, that is a solution which propagates

in the x1-direction, leaves the plane x2 ¼ 0 free of

tractions, and vanishes as x2 ! 1. Because for

such materials, in-plane motions are decoupled

from anti-plane motions (Stroh, 1962), it is suffi-
cient to seek a solution in the form of a two-

component displacement vector u, such as

uðx1; x2; tÞ ¼ ½U1ðx2Þ;U2ðx2Þ; 0�Teikðx1	ctÞ; ð1Þ

where U1, and U2 are functions of x2 satisfying

U1ð1Þ ¼ U2ð1Þ ¼ 0, k is the wave number, and c
is the wave speed.

With this convention, the equations of motion

are written as (Mozhaev, 1995)

aU00 þ ibU0 	 cU ¼ 0; ð2Þ
where U ¼ ½U1;U2�T and the prime denotes differ-

entiation with respect to kx2. Here the symmetric

2 � 2 matrices aij, bij, and cij, are given in terms of

the elastic stiffnesses C�s and of the mass density q
by

a ¼
C66 C26

C26 C22

� �
;

b ¼
2C16 C12 þ C66

C12 þ C66 2C26

� �
;

c ¼ C11 	 qc2 C16

C16 C66 	 qc2

� �
: ð3Þ

Finally for the problem at hand, the following
boundary conditions must also be satisfied:
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C66U 0
1ð0Þ þ C26U 0

2ð0Þ þ iC16U1ð0Þ þ iC66U2ð0Þ ¼ 0;

C26U 0
1ð0Þ þ C22U 0

2ð0Þ þ iC12U1ð0Þ þ iC26U2ð0Þ ¼ 0:

ð4Þ
Dual to this approach is one involving the com-

ponents of the tractions acting upon the planes

parallel to the free surface, instead of the compo-

nents of the mechanical displacement. Indeed, just
as in-plane strain is decoupled from anti-plane

strain, so is in-plane stress from anti-plane stress

(Stroh, 1962; Ting, 1996; Destrade, 2001). Thus,

introducing the scalars functions t1ðx2Þ and t2ðx2Þ,
defined by

r21ðx1; x2; tÞ ¼ t1ðx2Þeikðx1	ctÞ;

r22ðx1; x2; tÞ ¼ t2ðx2Þeikðx1	ctÞ; ð5Þ
where r21 and r22 are the in-plane stress compo-

nents, the equations of motions may be written as

(Destrade, 2001)

âat00 	 ib̂bt0 	 ĉct ¼ 0; ð6Þ

where t ¼ ½t1; t2�T. Here the symmetric 2 � 2 ma-

trices âaij, b̂bij, and ĉcij are given in terms of the
components of the stiffness matrix C (Destrade,

2001) or of the components of the reduced com-

pliance matrix s0 (Ting, 2002a) by

âa ¼
1

g	X 0

0 	 1
X

" #
; b̂b ¼

	2 r6

g	X
1
X 	 r2

g	X

1
X 	 r2

g	X 0

" #
;

ĉc ¼
n66 þ

r2
6

g	X 	 1
X n26 þ r2r6

g	X

n26 þ r2r6

g	X n22 þ
r2
2

g	X

2
4

3
5; ð7Þ

where X ¼ qc2 and

D ¼
C22 C26

C26 C66

				
				 ¼ C22C66 	 C2

26;

g ¼ 1

D

C11 C12 C16

C12 C22 C26

C16 C26 C66

							
							 ¼

1

s011

;

r6 ¼ 	 1

D

C12 C16

C22 C26

				
				 ¼ 	 s016

s011

;

r2 ¼
1

D

C12 C26

C16 C66

				
				 ¼ 	 s012

s011

;

n66 ¼
C22

D
¼ 1

s011

s011 s016

s016 s066

					
					;

n22 ¼
C66

D
¼ 1

s011

s011 s012

s012 s022

					
					;

n26 ¼ 	C26

D
¼ 1

s011

s011 s016

s012 s026

					
					: ð8Þ

We recall that for two-dimensional deformations

of a monoclinic material with the plane of sym-

metry at x3 ¼ 0 involving the coordinates x1 and x2

only, the relevant non-zero stiffnesses and reduced

compliances are related through

C11 C12 C16

C12 C22 C26

C16 C26 C66

2
4

3
5 s011 s012 s016

s012 s022 s026

s016 s026 s066

2
4

3
5 ¼

1 0 0
0 1 0

0 0 1

2
4

3
5:
ð9Þ

Finally the boundary conditions are written in a

much simpler form than when displacement com-

ponents are involved, as

t1ð0Þ ¼ t2ð0Þ ¼ 0; and t1ð1Þ ¼ t2ð1Þ ¼ 0:

ð10Þ

3. The secular equation

3.1. The characteristic polynomial

Now we seek solutions to the equations of

motion (6) in the form

tðx2Þ ¼ eikpx2T; ð11Þ
where IðpÞ > 0, to ensure the decay of the wave

amplitude away from the free surface, and T is a

constant vector. So we have by (6),

	âa11p2 þ b̂b11p 	 ĉc11 b̂b12p 	 ĉc12

b̂b12p 	 ĉc12 	âa22p2 	 ĉc22

� �
T ¼ 0

0

� �
:

ð12Þ
Hence, for nontrivial solutions to exist, p must be

the root of a quartic, which corresponds to the

determinant of the matrix above being equal to

zero. This quartic, the characteristic polynomial of

the equations of motion, may be written as
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p4 þ 2x3p3 þ x2p2 þ 2x1p þ x0 ¼ 0; ð13Þ
where the coefficients x3, x2, x1, and x0 are given
by

x3 ¼ 	 s016

s011

;

x2 ¼
1

s011

½s066 þ 2s012 	 X ðs0ð1; 2Þ þ s0ð1; 6ÞÞ�;

x1 ¼ 	 1

s011

½s026 þ X ðs0ð1; 2j2; 6Þ 	 s0ð1; 6j1; 2ÞÞ�;

x0 ¼
1

s011

½s022 	 X ðs0ð1; 2Þ þ s0ð2; 6ÞÞ þ X 2s0ð1; 2; 6Þ�:

ð14Þ
Here, the expression s0ðn1 . . . nkjm1 . . .mkÞ repre-

sents the determinant of the k � k matrix which is
a submatrix of the matrix s0ij (i; j ¼ 1; . . . ; 6) and

whose components correspond to the intersections

of the rows n1; . . . ; nk and the columns m1; . . . ;mk.

Moreover, when n1 ¼ m1; . . . ; nk ¼ mk, the shorter

expression s0ðn1 . . . nkÞ � s0ðn1 . . . nkjn1 . . . nkÞ is

used. The quartic (13) was obtained by Ting

(2002a,b), and by Furs (1997) in terms of invari-

ants of the stiffness matrix C. Note that when
X ¼ qc2 ¼ 0, the quartic of the elastostatic case is

recovered as (Steeds, 1973, p. 72)

s011p
4 	 2s016p

3 þ ð2s012 þ s066Þp2 	 2s026p þ s022 ¼ 0:

ð15Þ
Now we use the boundary conditions (10)1;2 at the

free surface to establish the secular equation. Let

p1 and p2 be the roots of the characteristic poly-

nomial (13) with positive imaginary part, and let

TðrÞ be a vector satisfying (12) when p ¼ pr ðr ¼
1; 2Þ. These vectors are in the form, say,

Tð1Þ ¼
âa22p2

1 þ ĉc22

b̂b12p1 	 ĉc12

" #
;

Tð2Þ ¼
âa22p2

2 þ ĉc22

b̂b12p2 	 ĉc12

" #
: ð16Þ

Then, assuming p1 6¼ p2, the tractions t defined in
(5) are a combination of Tð1Þ and Tð2Þ for some

constants q1 and q2,

tðx2Þ ¼ q1e
ikp1x2Tð1Þ þ q2e

ikp2x2Tð2Þ: ð17Þ
Using Ting�s (2002a, 2002b) notation, t may be

written as

tðx2Þ ¼ Bheikx� iq; ð18Þ
where q is the vector ½q1; q2�T, and the matrices B
and heikx� i are defined by

B ¼ ½Tð1Þ;Tð2Þ�; heikx� i ¼ diagðeikp1x2 ; eikp2x2Þ: ð19Þ
The tractions satisfy the boundary conditions (10)1,

that is tð0Þ ¼ 0, when

Bq ¼ 0: ð20Þ
This system has non-trivial solutions when det

B ¼ 0, that is when the following secular equation

is satisfied

âa22b̂b12p1p2 	 âa22ĉc12ðp1 þ p2Þ 	 b̂b12ĉc22 ¼ 0: ð21Þ
Now we try to obtain more satisfactory expres-

sions for this equation.

3.2. The ‘‘covariant’’ secular equation

First, we decompose p1 þ p2 and p1p2 into their

real and imaginary parts as

p1 þ p2 ¼ uþ þ iu	; p1p2 ¼ vþ þ iv	: ð22Þ

It is known that when the roots of the quartic (13)

are p1, p2, p1, and p2, then uþ, u	, vþ, and v	 satisfy

x3 ¼ 	uþ;

x2 ¼ ðuþÞ2 þ ðu	Þ2 þ 2vþ;

x1 ¼ 	uþvþ 	 u	v	; x0 ¼ ðvþÞ2 þ ðv	Þ2
; ð23Þ

which leads to the following cubic for vþ,

ðvþÞ3 þ b2ðvþÞ2 þ b1ðvþÞ þ b0 ¼ 0; ð24Þ
where b2 ¼ 	x2=2, b1 ¼ x1x3 	 x0, and b0 ¼
½x0ðx2 	 x2

3Þ 	 x2
1�=2. On the other hand, the

secular equation (21) may also be separated into its

real and imaginary parts,

âa22b̂b12ðvþÞ 	 âa22ĉc12ðuþÞ 	 b̂b12ĉc12 ¼ 0;

âa22b̂b12ðv	Þ 	 âa22ĉc12ðu	Þ ¼ 0: ð25Þ

At this point, it is important to emphasize that the

system of six equations (23) and (25) for the five

unknowns uþ, u	, vþ, v	, and X , is consistent. This

is due a fundamental result of the modern theory

of surface waves in anisotropic elasticity by Stroh

(1962), which states that the complex secular

equation (21) is actually equivalent to a single real
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equation (for alternative proofs see Currie, 1974;

or Taylor, 1978). In fact, it can be proved that with

the appropriate normalization of the Stroh eigen-

vectors, the real and imaginary parts of the secular

equation are equal but opposite in sign (Ting,
1996, p. 469).

Now, vþ must satisfy the cubic (24) and also the

linear equation (25)1, which using (23)1, is

ðvþÞ þ a0 ¼ 0;

where

a0 ¼ X
s016½s026 	 Xs0ð1; 6j1; 2Þ�
s011½1 	 X ðs011 	 s012Þ�

þ X
s022 	 s0ð1; 2Þ

1 	 Xs011

:

ð26Þ

Working along similar lines but with the dis-

placements components (1) rather than with the

traction components (5), Furs (1997) showed that

vþ was simultaneously the root of a cubic (as in
(24)) and of a quadratic (in contrast to (26)).

By writing the resultant of those two polynomi-

als, he obtained the secular equation in ‘‘covari-

ant form’’ (his wording) as corresponding to the

nullity of a 5 � 5 determinant. The same ap-

proach applied here to (24) and (26), would yield

the ‘‘covariant’’ secular equation as correspond-

ing to the nullity of a 4 � 4 determinant. How-
ever, vþ is easily deduced from (26) as vþ ¼ 	a0

and substituted into (24) to yield the ‘‘covariant’’

secular equation,

a3
0 	 b2a2

0 þ b1a0 	 b0 ¼ 0: ð27Þ
Although not stated as such, Furs�s ‘‘covariant’’

secular equation is a polynomial of degree 6 in

X ¼ qc2. Eq. (27) is a polynomial of degree 9 in

X ¼ qc2, but it may be factorized into the product

of two polynomials, one of degree 5, which cor-

responds to spurious roots, and one of degree 4,
which is the quartic secular equation. This very

equation is obtained in a different and more direct

manner in the next subsection as Eq. (31).

3.3. The quartic secular equation

In order to obtain the quartic secular equation

directly, we recall that the vectors Tð1Þ, Tð2Þ, in (16)
were computed using the second line of (12). When

the first line is used, these vectors are

Tð1Þ ¼ b̂b12p1 	 ĉc12

âa11p2
1 	 b̂b11p1 þ ĉc11

" #
;

Tð2Þ ¼ b̂b12p2 	 ĉc12

âa11p2
2 	 b̂b11p2 þ ĉc11

" #
: ð28Þ

By the same steps that lead from (17) to (21), we

obtain the following alternative form of the com-
plex secular equation

âa11b̂b12p1p2 	 âa11ĉc12ðp1 þ p2Þ þ b̂b11ĉc12 	 b̂b12ĉc11 ¼ 0:

ð29Þ
By simple comparison of (21) and (29), the

complex terms involving p1p2 and p1 þ p2 may
be eliminated, and the secular equation becomes

real,

âa11b̂b12ĉc22 þ âa22b̂b11ĉc12 	 âa22b̂b12ĉc11 ¼ 0: ð30Þ
This equation is a quartic in X ¼ qc2. It was es-

tablished by this author (Destrade, 2001) in terms

of the stiffnesses and by Ting (2002a) in terms of

the compliances (see also Currie (1979) for a less

explicit expression, obtained by writing the

equations of motion for the displacements instead

of the traction components). This polynomial of

degree 4 in X ¼ qc2 is also the one obtained in
the previous subsection by factorization of the

‘‘covariant’’ equation (27). Note that it may be

obtained directly by using an adequate combi-

nation of the vectors (16) and (28) for the col-

umns of the matrix B. It is written explicitly with

the coefficients in terms of the reduced compli-

ances as

d4X 4 þ d3X 3 þ d2X 2 þ d1X 	 1 ¼ 0; ð31Þ

where

d4 ¼ s011ðs066s
0
12s

0
11 	 s066s

02
11 þ s012s

02
16 	 2s016s

0
11s

0
26

	 s012s
0
11s

0
22 þ s0216s

0
11 þ s0312 	 s011s

02
12 þ s0211s

0
22Þ;

d3 ¼ 	2s0211s
0
22 þ s0311 	 s0211s

0
12 þ 3s066s

02
11 þ s0212s

0
11

	 2s0216s
0
11 þ 4s016s

0
11s

0
26 	 2s066s

0
11s

0
12 þ s022s

0
11s

0
12

	 s0216s
0
12;

d2 ¼ 	3s011s
0
66 þ s0216 	 2s016s

0
26 	 3s0211 þ s011s

0
22

þ 2s011s
0
12 þ s066s

0
12;

d1 ¼ 3s011 	 s012 þ s066: ð32Þ
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Values of the Rayleigh wave speed cR are given for

the 12 crystals of Table 1 in (Destrade, 2001). They

correspond to the square root of the least positive

root of (31).

In the isotropic case, the reduced compliances
take the following values:

s011 ¼ s022 ¼
c2

P

4qc2
Sðc2

P 	 c2
SÞ
;

s012 ¼
2c2

S 	 c2
P

4qc2
Sðc2

P 	 c2
SÞ
; s066 ¼

1

qc2
S

; ð33Þ

and s016 ¼ s026 ¼ 0, where cP and cS are the speeds of

the longitudinal and transverse bulk waves, re-

spectively. Then the quartic (31) factorizes into the

product of a polynomial of degree one and of the

cubic found by Rayleigh (1885)

c2

c2
S


 �3

	 8
c2

c2
S


 �2

þ 24



	 16c2

S

c2
P

�
c2

c2
S

	 16 1



	 c2

S

c2
P

�
¼ 0: ð34Þ

4. Applications

Now we apply the results of the previous sec-
tion to other settings, namely, to the case of a

surface wave propagating in any direction in the

plane of symmetry x3 ¼ 0 for monoclinic crystals;

then to the case of a surface wave propagating

along a material axis for rhombic crystals; and

finally to the case where the half-space is made of

an incompressible monoclinic material. We also

seek exact analytic solutions for the speed of
Rayleigh waves.

4.1. Rotation in the plane of symmetry and explicit

wave speeds

Monoclinic materials with the plane of sym-

metry at x3 ¼ 0 have a stiffness matrix C which is

�structurally invariant� that is, a matrix whose
components which are zero remain zero after a

rotation of the coordinate axes around the x3-axis

(Bond, 1943). Ting (2000) proved recently that

the submatrix of the reduced compliance matrix

appearing in (9) is also structurally invariant.

Here, we exploit this property in order to derive

the secular equation for surface waves propagat-

ing in any direction in the plane of symmetry.

Previous efforts covering this topic include those

of Chadwick and Wilson (1992) and of Furs

(1997).
First, we consider a surface wave propagat-

ing on the plane x�2 ¼ 0 and polarized in the

x�1-direction, where the coordinate system x�i is

obtained from the material axes coordinate system

xi through a rotation about the x3-axis by an ar-

bitrary angle h, say. Hence,

x�1
x�2
x�3

2
64

3
75 ¼

m n 0

	n m 0

0 0 1

2
64

3
75

x1

x2

x3

2
64

3
75;

m ¼ cos h; n ¼ sin h: ð35Þ

Next, following Ting (2000), we infer that all the

results from the previous section are directly ap-

plicable to this wave, as long as the reduced

compliances s0ij (i; j ¼ 1,2,6) are replaced by the

following �starred� quantities,

ðs011Þ
� ¼ s011m

4 þ ð2s012 þ s066Þm2n2 þ s022n
4

þ 2ðs016m
2 þ s026n

2Þmn;
ðs022Þ

� ¼ s022m
4 þ ð2s012 þ s066Þm2n2 þ s011n

4

	 2ðs026m
2 þ s016n

2Þmn;
ðs012Þ

� ¼ s012 þ ðs011 þ s022 	 2s012 	 s066Þm2n2

	 ðs016 	 s026Þðm2 	 n2Þmn;
ðs016Þ

� ¼ s016m
4 	 s026n

4 	 3ðs016 	 s026Þm2n2 	 ½2s011m
2

	 2s022n
2 	 ð2s012 þ s066Þðm2 	 n2Þ�mn;

ðs026Þ
� ¼ s026m

4 	 s016n
4 þ 3ðs016 	 s026Þm2n2 þ ½2s022m

2

	 2s011n
2 	 ð2s012 þ s066Þðm2 	 n2Þ�mn;

ðs066Þ
� ¼ s066 þ 4ðs011 þ s022 	 2s012 	 s066Þm2n2

	 4ðs016 	 s026Þðm2 	 n2Þmn: ð36Þ

In particular, the secular equation for the surface

wave is the starred version of (31), that is
d�

4X
4 þ d�

3X
3 þ d�

2X
2 þ d�

1X 	 1 ¼ 0.

Because the coefficients d�
4 , d�

3 , d�
2 , and d�

1 in this

quartic are functions of h, it might be possible that

for certain angles, the quartic turns into a biqua-

dratic, for which the real root X may be found
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explicitly. Some work has been devoted to the

search of explicit expressions for the speed of

elastic surface waves. For instance, Lamb (1904)

noted that Rayleigh�s cubic equation (24) factor-

izes into the product of a polynomial of degree one

and of a quadratic in c2=c2
S when Poisson�s ratio is

1=4, that is when c2
P ¼ 3c2

S or equivalently, when

the two Lam�ee constants are equal; in that case,

c2
R ¼ 2c2

Sð1 	 1=
ffiffiffi
3

p
Þ. In the general case, closed-

form expressions are rather cumbersome for the

relevant root of the cubic in isotropic (Nkemzi,

1997) or orthorhombic (Romeo, 2001) half-spaces

and only approximate expressions are sought

(Royer and Dieulesaint, 1984; Mozhaev, 1991).
However, Mozhaev (1995) showed that for the

special orthorhombic materials such that c12 ¼ c66

(or with an equivalent relationship for different

choices of the material axes), the squared Rayleigh

wave speed could be obtained as the root of a

quadratic. Similarly, Ting (2002b) showed that the

quartic (31) simplifies to the product of a squared

polynomial of degree one and of quadratic in X for
the special monoclinic materials with the plane of

symmetry at x3 ¼ 0 such that s016 	 2s026 ¼ s012 ¼ 0.

Now the starred version of the quartic (31) may be

rewritten in canonical form

Y 4 þ aY 2 þ bY þ e ¼ 0; Y ¼ X þ d�
3

4d�
4

; ð37Þ

where

a ¼ ½8d�
2d

�
4 	 3ðd�

3 Þ
2�=½8ðd�

4 Þ
2�;

b ¼ ½ðd�
3 Þ

3 	 4d�
2d

�
3d

�
4 þ 8d�

1 ðd�
4 Þ

2�=½8ðd�
4 Þ

3�;
e ¼ ½16d�

2 ðd�
3 Þ

2d�
4 	 3ðd�

3 Þ
4 	 256ðd�

4 Þ
3

	 64d�
1d

�
3 ðd�

4 Þ
2�=½256ðd�

4 Þ
4�:

ð38Þ

Clearly, it becomes a biquadratic if b ¼ 0 for a

certain angle h ¼ a say. Then, solving the equation

b ¼ 0 at h ¼ a for da
2 , for instance, yields the fol-

lowing biquadratic,

Y 4 þ 2
da

1

da
3

"
	 da

3

4da
4


 �2
#
Y 2 þ da

3

4da
4


 �4

	 da
1d

a
3

8ðda
4 Þ

2
	 1

da
4

¼ 0; ð39Þ

whose explicit relevant root X ¼ qc2
R ¼ Y 	 da

3=
ð4da

4 Þ is

X ¼ 	 da
3

4da
4

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da

3

4da
4


 �2

	 da
1

da
3

	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
da

1

da
3


 �2

þ 1

da
4

svuut
:

ð40Þ

Twice, the resolution allowed for a plus or a

minus sign. One time, the plus sign was selected

because X ¼ qc2
R must be positive; the other

time, the minus sign was selected by continuity

with the known result (Lamb, 1904) in the

special isotropic case where Poisson�s ratio is

1=4.

Of course, the existence of an angle h ¼ a such

that b ¼ 0 is not guaranteed. However, numerical

simulations show that at least for diallage, gyp-

sum, and tin fluoride, two angles a may indeed be
found such that a surface wave propagating in the

xa
1-direction with attenuation in the xa

2-direction,

where (xa
1; x

a
2) are obtained from the material axes

(x1; x2) by a rotation about the x3-axis of the angle

a, has a velocity cR ¼
ffiffiffiffiffiffiffiffiffi
X=q

p
which is given ex-

plicitly by (40). For diallage, the angles are

a ¼ 80:24� and 87.64� with corresponding Ray-

leigh speeds cR ¼ 3960 and 3952 m/s, respectively;
for gypsum, the angles are a ¼ 18:82� and 65.00�
with corresponding Rayleigh speeds cR ¼ 2895

and 2946 m/s, respectively; and for tin fluoride, the

angles are a ¼ 4:01� and 31.21� with correspond-

ing Rayleigh speeds cR ¼ 1324 and 1351 m/s, re-

spectively.

4.2. Orthorhombic crystals

For orthorhombic crystals, s016 ¼ s026 ¼ 0, so

that b̂b11 ¼ ĉc12 ¼ 0 and the results obtained for

monoclinic materials are greatly simplified. In

particular, the characteristic polynomial (13) is

now a biquadratic in p

p4 	 Sp2 þ P ¼ 0; ð41Þ

where the real scalars S and P are given by

S ¼ 1

s011

½s066 þ 2s012 	 X ðs011s
0
22 	 s0212 þ s011s

0
66Þ�;

P ¼ 1

s011

ð1 	 Xs066Þ½s022 	 X ðs011s
0
22 	 s0212Þ�: ð42Þ

M. Destrade / Mechanics of Materials 35 (2003) 931–939 937



Note that, depending upon the sign of S2 	 4P and

of S, the roots p1 and p2 of the biquadratic with

positive imaginary parts are either purely imagi-

nary:

p1 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	S þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 	 4P

p
Þ=2

q
;

p2 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	S 	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
S2 	 4P

p
Þ=2

q
(when S2 	 4P > 0, S < 0), or of the form: p1 ¼
aþ ib, p2 ¼ 	aþ ib, where

a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðS þ 2

ffiffiffi
P

p
Þ=4

q
and

b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð	S þ 2

ffiffiffi
P

p
Þ=4

q
(when S2 	 4P < 0). In any case, we have

p1p2 ¼ 	
ffiffiffi
P

p
: ð43Þ

It is now easy to see that the secular equation (21) is

simplified to (using (43))

âa22

ffiffiffi
P

p
þ ĉc22 ¼ 0: ð44Þ

Explicitly, the secular equation (44) is written as

ð1 	 Xs011Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 	 Xs066

p
	 X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s011½s022 	 X ðs011s

0
22 	 s0212Þ�

q
¼ 0: ð45Þ

The secular equation for surface waves in ortho-

rhombic crystals was first established by Sveklo

(1948) in terms of the elastic stiffnesses. Ting
(2002b) found the cubic secular equation in terms

of the elastic reduced compliances, an equation

which may be deduced from (45) by rationaliza-

tion; however, the squaring process introduces

spurious roots, while the exact secular equation

(45) has a unique root (Romeo, 2001).

Note that after rotation about the x3-axis, the

secular equation is again d�
4X

4 þ d�
3X

3 þ d�
2X

2þ
d�

1X 	 1 ¼ 0, where the d�0s are given by (32) and

(36) with s016 ¼ s026 ¼ 0. Also, special directions in

which the secular equation is a biquadratic might

also be found for orthorhombic crystals, following

a procedure similar to the one exposed in the

previous subsection.

4.3. Incompressible monoclinic materials

According to Klintworth and Stronge (1990),

‘‘many anisotropic composite materials appear

relatively incompressible because their bulk mod-
ulus is large compared with their shear moduli. In

particular, low-density cellular materials are highly

compliant in shear because the flexural rigidity of

the cell walls is small.’’ Nair and Sotiropoulos

(1997, 1999) also studied incompressible aniso-

tropic materials; in particular they considered

surface waves in monoclinic materials with the

plane of symmetry at x3 ¼ 0, but did not obtain
the secular equation explicitly.

Recently, Destrade et al. (2002) proved that in

linear anisotropic elasticity, the constraint of in-

compressibility implied that certain relationships

must be satisfied for some compliances. In the

present context, the following relationships must

hold,

s011 þ s012 ¼ s012 þ s022 ¼ s016 þ s026 ¼ 0; ð46Þ

and they greatly simplify the quartic secular equa-

tion (31) to

2s0211ðs0216 	 s011s
0
66ÞX 4 	 5s011ðs0216 	 s011s

0
66ÞX 3

þ ½3s0216 	 4s011ðs011 þ s066Þ�X 2

þ ð4s011 þ s066ÞX 	 1 ¼ 0: ð47Þ

This equation was obtained by Destrade et al.

(2002) in a less explicit manner.

Nair and Sotiropoulos (1999) introduced the

constants a, b, and c defined by

a ¼ s011

s011s
0
66 	 s0216

; b ¼ s066

4s011

	 1; c ¼ 	 s016

s011

; ð48Þ

when these equations are solved for s011, s016, and

s066, the secular equation (47) may be written as a

quartic in x � X=a ¼ qc2=a,

2x4 	 5ð4b þ 4 	 c2Þx3

þ ð16b þ 20 	 3c2Þð4b þ 4 	 c2Þx2

	 4ðb þ 2Þð4b þ 4 	 c2Þ2xþ ð4b þ 4 	 c2Þ3

¼ 0: ð49Þ

Now a numerical example is given, as the surface

wave speed is computed in the case (Nair and
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Sotiropoulos, 1999) where b ¼ 0:3 and d ¼ 0:1.

Then, the secular equation (49) is the quartic

2:0000x4 	 25:950x3 þ 128:56x2 	 247:81x

þ 139:80 ¼ 0 ð50Þ

for which the least real root is x ¼ 0:94671, in

agreement with the likely limit of the �iterative

solution� given by Nair and Sotiropoulos (1999).
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