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Summary

The stability of a Bell-constrained half-space in compression is studied. To this end, the
propagation of Rayleigh waves on the surface of the material when it is maintained in a static
state of triaxial prestrain is considered. The prestrain is such that the free surface of the half-
space is a principal plane of deformation. The exact secular equation is established for surface
waves travelling in a principal direction of strain with attenuation along the principal direction
normal to the free plane. As the half-space is put under increasing compressive loads, the
speed of the wave eventually tends to zero and the bifurcation criterion, or stability equation, is
reached.

Then the analysis is specialized to specific forms of strain-energy functions and prestrain,
and comparisons are made with results previously obtained in the case of incompressible
neo-Hookean or Mooney–Rivlin materials. It is found that these rubber-like incompressible
materials may be compressed more than ‘Bell empirical model’ materials, but not as much as
‘Bell simple hyperelastic’ materials, before the critical stretches, solutions to the bifurcation
criterion, are reached. In passing, some classes of incompressible materials which possess a
relative-universal bifurcation criterion are presented.

1. Introduction

The works of Maurice Anthony Biot (1905–1985) cover a wide range of topics in mechanics
and applied mathematics. Although much attention has been devoted to his contributions to the
‘acoustics, elasticity, and thermodynamics of porous media’ (1), his results in finite and incremental
elasticity (2) were also far-reaching and are still relevant to many contemporary problems. For
instance, he wrote a series of articles (summarized in his textbook (2)) on the surface and interfacial
instability of elastic media under compression and his results found applications in rubber elasticity,
viscoelasticity, folding of inhomogeneous/multilayered media, geological structures, etc. The idea
underlying his resolution of these problems is the following: consider a medium at rest under a
finite compression; superpose an incremental inhomogeneous static deformation whose amplitude
vanishes away from the interface; show that the initial compression leads to an interface deflection
which is infinite; conclude that this condition corresponds to interface bulking or instability. Biot
also noted that the dynamical counterparts to surface and interface stability analyses were Rayleigh
and Stoneley wave propagations, respectively.

This paper studies the propagation of Rayleigh waves on the surface of a compressed, internally
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constrained, hyperelastic half-space. The corresponding ‘bulking’ or ‘bifurcation’ criterion is
derived by determining under which compressive loads the wave speed tends to zero in the secular
equation. Biot often considered materials subject to incompressibility, an internal constraint which
in nonlinear elasticity imposes that det V = 1 at all times, where V is the left stretch tensor. Here,
the materials considered are subject to the constraint of Bell (3), tr V = 3. Both constraints are
equivalent in infinitesimal linear elasticity (they reduce to: tr E = 0, where E is the infinitesimal
strain tensor) but lead to quite different results at finite strains. In particular, the secular equation for
Rayleigh surface waves cannot be deduced for Bell materials from the incompressible case. This
equation was obtained in (4) as a cubic for the squared wave speed. However, this cubic corresponds
to the rationalization of the exact secular equation and has spurious roots (5); accordingly, the
corresponding relevant bifurcation criterion would have to be selected carefully. Here the exact
secular equation is found, as well as the exact bifurcation criterion.

For incompressible materials, the Mooney–Rivlin form of the strain-energy function �MR brings
satisfactory correlation between theory and experiments for rubber-like materials; this function
�MR is linear with respect to I1 and I2, the first and second invariants of the left Cauchy–Green
strain tensor B = V2. For Bell constrained materials, the strain-energy density for ‘simple
hyperelastic Bell materials’ (3) is linear with respect to i2 and i3, the second and third invariants
of V. Regarding experimental results, the strain-energy function for ‘Bell empirical model’ (6),

�BEM = 2
3β0[2(3 − i2)] 3

4 (where β0 is a material constant) is reported as consistent with many
trials on annealed metals such as aluminium, copper, or zinc. After the equations governing the
problem have been written and solved in section 2 for a general form of the strain-energy function
for a Bell-constrained half-space, the analysis is specialized in section 3 to the two specific forms
of strain-energy functions presented above, and the results are compared with those obtained by
Biot for rubber-like materials. It turns out that the maximal compressive load that can be applied
to a half-space before the bifurcation criterion is reached is larger (smaller) for simple hyperelastic
Bell materials (Bell empirical model) than for Mooney–Rivlin incompressible materials. Also, the
bifurcation criterion is the same for every material within each class, and an infinity of strain-
energy densities for which incompressible half-spaces admit such ‘universal’ bifurcation criteria is
presented in section 3.4. Finally in section 4, the pertinence of the notion of (in)stability for finitely
deformed hyperelastic materials is briefly reviewed and the general interest of the Bell constraint,
as opposed to the constraint of incompressibility, is discussed.

2. Resolution of the problem in the general case

2.1 Finite pure homogeneous triaxial pre-stretch

Let (O, x1, x2, x3) ≡ (O, i, j , k) be a Cartesian rectangular coordinate system. Let the half-space
x2 � 0 be occupied by a hyperelastic Bell-constrained material, with strain-energy density �. This
material is subject to the internal constraint that for any deformation,

i1 ≡ tr V = 3 (2.1)

at all times (3, 7), where V is the left stretch tensor. Hence, for isotropic Bell materials, � depends
only upon i2 and i3, the respective second and third invariants of V. So, � = �(i2, i3), where
i2 = [(tr V)2 − tr (V2)]/2, i3 = det V, and the constitutive equation giving the Cauchy stress tensor
T is (3)

T = pV + ω01 + ω2V2, (2.2)
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where p is an arbitrary scalar, to be found from the equations of motion and the boundary conditions;
and the material response functions ω0 and ω2 are defined by

ω0 = ∂�/∂i3, ω2 = −i−1
3 ∂�/∂i2, (2.3)

and should satisfy the Beatty–Hayes A-inequalities (3)

ω0(i2, i3) � 0, ω2(i2, i3) > 0. (2.4)

In the case where the material is maintained in a state of finite pure homogeneous static
deformation, with principal stretch ratios λ1, λ2, λ3 along the x1, x2, x3 axes, the Cauchy stress
tensor is the constant tensor To given by

To = (poλ1 + ω0 + λ2
1ω2)i ⊗ i + (poλ2 + ω0 + λ2

2ω2)j ⊗ j + (poλ3 + ω0 + λ2
3ω2)k ⊗ k.

Here ω0 and ω2 are evaluated at i2, i3 given by

i2 = λ1λ2 + λ2λ3 + λ3λ1, i3 = λ1λ2λ3. (2.5)

Of course,

λ1 + λ2 + λ3 = 3 (2.6)

in order to satisfy (2.1). It is assumed that the boundary x2 = 0 is free of tractions so that To22 = 0;
and that the compressive loads P1 and P3 are applied at x1 = ∞ and x3 = ∞ to maintain the
deformation, so that P1 = −To11 and P3 = −To33. Hence,

po = −(ω0 + λ2
2ω2)/λ2, P� = (λ2 − λ�)(−ω0 + λ�λ2ω2)/λ2 (� = 1, 3). (2.7)

2.2 Incremental equations for surface waves

Beatty and Hayes (8) wrote the general equations for small-amplitude motions in a Bell-constrained
material maintained in a static state of finite pure homogeneous deformation (as described in the
previous subsection). These equations were then specialized by this author (4) to surface (Rayleigh)
waves. The infinitesimal superposed wave is of the form �{U(kx2)eik(x1−vt)}, where U is an
unknown decaying function. Hence the wave propagates in the direction of the x1-axis with speed
v and wave number k and is attenuated in the direction of the x2-axis. The incremental tractions
acting upon the planes x2 = constant are σ ∗

21 and σ ∗
22, and the introduction of the scalar functions

t1(kx2) and t2(kx2), defined by

σ ∗
21(x1, x2, t) = kt1(kx2)e

ik(x1−vt), σ ∗
22(x1, x2, t) = kt2(kx2)e

ik(x1−vt), (2.8)

allows for a compact and simple form of the equations of motion and of the boundary conditions.
Explicitly, the equations of motion are (4)

t ′1 + iλ1λ
−1
2 t2 − (λ1λ

−1
2 C − ρv2)U1 = 0, (2.9)

t ′2 + i t1 − [b3(λ
2
1 − λ2

2) − ρv2]U2 = 0, (2.10)

U ′
2 + iλ1λ

−1
2 U1 = 0, (2.11)

b3λ
2
2U ′

1 + ib3λ
2
2U2 − t1 = 0. (2.12)
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Here the prime denotes differentiation with respect to kx2, ρ is the mass density of the material, and

b3 = −ω0 + λ1λ2ω2

λ2(λ1 + λ2)
> 0,

Cαβ = 2λ2
αδαβω2 − λ2

β(ω02 + λ2
αω22) + λ1λ2λ3(ω03 + λ2

αω23), (2.13)

C = λ−1
1 λ2C11 + λ1λ

−1
2 C22 − C12 − C21 − 2ω0 − (λ2

1 + λ2
2)ω2,

where the derivatives ω0� , ω2� (� = 2, 3) of the material response functions ω0, ω2 are taken with
respect to i� and evaluated at i2, i3 given by (2.5). Note that the quantity b3 defined above is positive
according to the A-inequalities (2.4). Finally, the boundary conditions are simply

t1(0) = t2(0) = 0. (2.14)

2.3 Exact secular equation and exact bifurcation criterion

The incremental Bell constraint (2.11) suggests the introduction of a function ϕ defined by

U1(kx2) = iϕ′(kλ1λ
−1
2 x2), U2(kx2) = ϕ(kλ1λ

−1
2 x2). (2.15)

With this choice, and by (2.9) and (2.12), the traction components t1 and t2 are expressed in terms
of ϕ as

t1 = ib3λ
2
2(λ1λ

−1
2 ϕ′′ + ϕ), t2 = −b3λ1λ2ϕ

′′′ + λ−1
1 λ2(λ1λ

−1
2 C − b3λ1λ2 − ρv2)ϕ′, (2.16)

where the prime now denotes derivative with respect to the argument of ϕ, and (2.10) reads

b3λ
2
1ϕ

′′′′ − (λ1λ
−1
2 C − 2b3λ1λ2 − ρv2)ϕ′′ + (b3λ

2
1 − ρv2)ϕ = 0. (2.17)

Now a law of exponential decay is chosen for ϕ,

ϕ(z) = Ae−s1z + Be−s2z, �(si ) > 0, (2.18)

for some constants A and B. (It is implicit in the form of (2.18) that s1 and s2 are distinct.) By
substitution into (2.17), we see that the si are roots of the following biquadratic:

(b3λ
2
1)s

4 − (λ1λ
−1
2 C − 2b3λ1λ2 − ρv2)s2 + (b3λ

2
1 − ρv2) = 0, (2.19)

so that

s2
1 + s2

2 = (λ1λ
−1
2 C − 2b3λ1λ2 − ρv2)/(b3λ

2
1) and s2

1s2
2 = (b3λ

2
1 − ρv2)/(b3λ

2
1). (2.20)

The roots s2
1 and s2

2 of this real quadratic may be both real (and then they are positive because
�(si ) > 0) or both complex (and then they are conjugate because (2.19) is a real polynomial); in
both cases, s2

1s2
2 � 0, and so by (2.20)2,

0 � v �
√

b3λ
2
1/ρ. (2.21)

The upper limit of this interval corresponds to the speed of a bulk shear wave propagating along the
x1-direction.
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Now the boundary conditions (2.14), used in conjunction with (2.16) and (2.20)1, are

(λ1λ
−1
2 s2

1 + 1)A + (λ1λ
−1
2 s2

2 + 1)B = 0, s1(λ1λ
−1
2 s2

2 + 1)A + s2(λ1λ
−1
2 s2

1 + 1)B = 0,

and the vanishing of the determinant for this linear homogeneous system of two equations gives the
exact secular equation

[b3(λ
2
1 − λ2

2) − ρv2]
√

b3λ
2
1 + (λ1λ

−1
2 C − ρv2)

√
b3λ

2
1 − ρv2 = 0. (2.22)

In the process, we used (2.20) and dropped the factor s1 − s2. Note that by bringing the second term
of (2.22) to the right-hand side and squaring, we obtain the cubic secular equation (4), which has
spurious roots. Now for certain stretch ratios λ1, λ2, λ3, the speed v tends to zero in (2.22) and the
exact bifurcation criterion is deduced as

b3(λ
2
1 − λ2

2) + λ1λ
−1
2 C = 0. (2.23)

This equation defines a surface in the space of the stretch ratios which separates a region where the
homogeneous deformations of the Bell half-space are always stable from a region where they might
be unstable. Of course, the critical stretch ratios must also satisfy the Bell constraint (2.6).

We now recast the secular equation for surface waves in a polynomial form for the positive

quantity η, defined by η = {1 − (ρv2)/(b3λ
2
1)}

1
2 (9), as

f (η) ≡ η3 + η2 + {C/(b3λ1λ2) − 1}η − λ−2
1 λ2

2 = 0. (2.24)

Clearly, at η = 0 (corresponding to a transverse bulk wave), we have f (0) = −λ−2
1 λ2

2 < 0;
at η = 1 (corresponding to v = 0), the secular equation tends to the bifurcation criterion
f (1) = [b3(λ

2
1 − λ2

2) + λ1λ
−1
2 C]/(b3λ

2
1) = 0.

Up to this point, the setting has been that of incremental surface motions and deformations for a
general Bell-constrained half-space, maintained in a static state of arbitrary pure homogeneous
triaxial stretch. More results may actually be obtained in this general setting regarding the conditions
of existence and the uniqueness of a Rayleigh wave; this is done elsewhere (10). We now turn our
attention to two specific types of Bell materials and compare the results obtained in plane and in
equibiaxial prestrains with those obtained for rubber-like incompressible materials.

3. Specific forms of strain-energy densities

3.1 Simple hyperelastic Bell materials

For simple hyperelastic Bell materials (3), the strain-energy function �SHB is given by

�SHB = C1(3 − i2) + C2(1 − i3), (3.1)

where C1 and C2 are positive constants. The material response functions ω0 and ω2 and the quantities
b3 and C provided by (2.3) and (2.13) are now

ω0 = −C2, ω2 = C1/ i3, b3 = C2 + C1λ
−1
3

λ2(λ1 + λ2)
, C = 2(C2 + C1λ

−1
3 ). (3.2)
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Fig. 1 Near-the-surface stability for ‘simple hyperelastic Bell’ materials. (a) Region of stability; (b) surface
wave speed

In that context, the bifurcation criterion (2.23) simplifies considerably to

3λ1 − λ2 = 0, (3.3)

which is a particularly simple linear relationship between the stretch ratios λ1 and λ2. This
bifurcation criterion is universal to the whole class of simple hyperelastic Bell materials because
it does not depend on C1, C2. This equation delimits a plane in the stretch ratios space (λ1, λ2, λ3),
which cuts the constraint plane (2.6) along the straight segment going from the point (0, 0, 3) to the
point ( 3

4 , 9
4 , 0). Moreover, the analysis below shows that the region which is stable with respect to

incremental perturbations (where there exists a root ρv2 > 0 to the secular equation) is 3λ1−λ2 > 0.
In Fig. 1(a), the plane (3.3) cuts the triangle of the possible values for the stretch ratios (2.6) into
two parts, of which the visible one is the region of linear surface stability of any simple hyperelastic
Bell material.

For the propagating surface wave, we write the secular equation (2.24) in terms of η as

f (η) = η3 + η2 + (1 + 2λ−1
1 λ2)η − λ−2

1 λ2
2 = 0. (3.4)

As noted in the general case, f (0) < 0. At the other end of the interval (2.21), f (1) = (3λ1 −
λ2)(λ1 + λ2)λ

−2
1 . So, because f is a monotone increasing function for η > 0, there exists a root

to the secular equation (3.4) in the interval [0, 1] if and only if 3λ1 − λ2 > 0; moreover, the root is
unique.

In Fig. 1(b), the influence of the prestrain upon the speed of the surface wave is illustrated in the
case of plane strain (λ3 = 1). On the abscissa, λ1 is increased from a compressive value (λ1 < 1) to
a tensile value (λ1 > 1). The coordinate on the ordinate is the squared surface wave speed, scaled
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with respect to the transverse bulk wave speed, that is, ρv2/(µλ2
1). At λ1 = 1, the half-space is

isotropic (λ1 = λ2 = λ3 = 1) because of (2.6), and the scaled squared speed is equal to 0·9126, the
value found by Lord Rayleigh (11) in the incompressible linear isotropic case. Under an increasing
compressive load (P1 > 0, λ1 < 1), the surface wave speed decreases until the critical stretch of
(λ1)cr = 0·5 (see section 3.3). Conversely, under a tensile load (P1 < 0, λ1 > 1), the surface wave
speed increases, with the speed of the transverse bulk wave as an upper bound.

3.2 Bell’s empirical model

For Bell’s empirical model materials (6), the strain-energy function �BEM is given by

�BEM = 2
3β0[2(3 − i2)]

3
4 , (3.5)

where β0 is a positive constant. The material response functions ω0 and ω2 and the quantities b3
and C provided by (2.3) and (2.13) are now

ω0 = 0, ω2 = i−1
3 β0[2(3 − i2)]−

1
4 , b3 = λ1ω2

λ1 + λ2
, C =

[
2 − (λ1 − λ2)

2

4(3 − i2)

]
λ1λ2ω2.

In that context, the bifurcation criterion (2.23) may be arranged as

3 − (λ1 − λ2)
2

4(3 − i2)
− λ−1

1 λ2 = 0, (3.6)

which is the stability equation (7.10) of Beatty and Pan (12) for this problem; it is actually a cubic
for λ1 and λ2. It delimits a surface in the stretch ratios space (λ1, λ2, λ3), which cuts the constraint
plane (2.6) into a part which is ‘unstable’ (in the linearized theory) and a part which is always
stable (in the linearized theory). This partition of the triangle of possible stretch ratios is visible on
Fig. 2(a). By extension from the plane strain case where λ3 = 1 (treated below), we deduce that the
visible part of the triangle is the stable one. For a clearer picture, Fig. 2(b) (where the plane of the
figure coincides with the plane of the triangle) shows the intersection between the triangle and the
bifurcation curve.

For the propagating surface wave we consider only the case where the underlying deformation is
a plane strain such that λ3 = 1. Then the Bell constraint (2.6) reduces to λ1 + λ2 = 2, and neither
λ1 nor λ2 may be greater than 2. Then the secular equation (2.24) reduces to

f (η) = η3 + η2 + λ−1
1 (2 − λ1)η − λ−2

1 (2 − λ1)
2 = 0. (3.7)

As noted in the general case, f (0) < 0. On the other hand, f (1) = 2(3λ1 − 2)/λ2
1, and so, because

f is a monotone increasing function for η > 0, there exists a root to the secular equation (3.7) in
the interval [0, 1] if and only if 3λ1 − 2 > 0; moreover, the root is unique.

3.3 Comparisons with incompressible rubber

The stability of a deformed half-space made of incompressible rubber was first studied by Biot. He
used the neo-Hookean model but noted (2, p. 165) that the results were also valid for the Mooney–
Rivlin model (Flavin (13) solved explicitly this latter case). Biot obtained the bifurcation criterion,
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Fig. 2 Near-the-surface stability for ‘Bell empirical model’ materials. (a) Region of stability; (b) bifurcation
curve in triangle

showed that it is universal relative to both classes of materials, and computed the value of the critical
stretch (λ1)cr at which the rubber half-space becomes ‘unstable’ under compressive loads, first in
the case of plane strain λ3 = 1, then in the case of the biaxial strain λ2 = λ3. Also, Green and
Zerna (14, p. 137) found the critical stretch for the biaxial prestrain λ1 = λ3. In each case a cubic
must be solved in order to evaluate the critical stretch. In the case of a general triaxial prestrain, the
bifurcation criterion is

λ3
1 + λ2

1λ2 + 3λ1λ
2
2 − λ3

2 = 0. (3.8)

We now show that for Bell’s empirical models and for simple hyperelastic Bell materials, the
critical stretch can be found explicitly.

First we let the half-space made of Bell-constrained material be deformed in such a way that there
is no extension in the x3-direction (λ3 = 1). According to (2.7)2,3, this deformation is possible when
the loads P1 = 2(1 − λ1)[λ1ω2 − ω0/(2 − λ1)] and P3 = (1 − λ1)[ω2 − ω0/(2 − λ1)] are applied
at infinity. Then λ2 = 2 − λ1 by (2.6). For Bell’s empirical model and for simple hyperelastic Bell
materials, the bifurcation criterion (3.3) reduces respectively to

3(λ1)cr − 2 = 0 and 4(λ1)cr − 2 = 0. (3.9)

Next we let the half-space made of Bell-constrained material expand freely in the x3-direction,
so that P3 = 0. Then we have λ2 = λ3 = (3 − λ1)/2 by (2.7)3 and (2.6), and the load P1 =
(3/2)(1 − λ1)[λ1ω2 − 2ω0/(3 − λ1)] must be applied at infinity to maintain the deformation. For
Bell’s empirical model and for simple hyperelastic Bell materials, the bifurcation criterion (3.3)
reduces respectively to

11(λ1)cr − 6 = 0 and 7(λ1)cr − 3 = 0. (3.10)
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Table 1 Critical stretch ratios (λ1)cr for surface instability

Bell empirical rubber simple Bell

λ1 = λ3 0·706 0·666 0·600
λ3 = 1 0·667 0·544 0·500
λ2 = λ3 0·545 0·444 0·429

Finally we consider that the Bell material is subject to a biaxial prestrain such that λ1 = λ3. Then
λ2 = 3 − 2λ1 and P1 = P3 = 3(1 − λ1)[λ1ω2 − ω0/(3 − 2λ1)]. For Bell’s empirical model and for
simple hyperelastic Bell materials, the bifurcation criterion (3.3) reduces respectively to

17(λ1)cr − 12 = 0 and 5(λ1)cr − 3 = 0. (3.11)

In Table 1, the numerical values for the critical stretches are given for the classes of Bell’s
empirical model (second column), of neo-Hookean and Mooney–Rivlin incompressible materials
(2, 14) (third column), and of simple hyperelastic Bell materials (fourth column), in the cases of
plane strain (third row) and of biaxial strain (second and fourth rows). It appears that rubber can
be compressed more than Bell’s empirical model but less than simple hyperelastic Bell materials
before it loses its near-the-surface stability (in the linearized theory).

3.4 A note on relative-universal bifurcation criteria

The strain-energy functions for the Mooney–Rivlin model and for the simple hyperelastic Bell
material depend both upon two distinct material constants:

�MR = D1(I1 − 3) + D2(I2 − 3), �SHB = C1(3 − i2) + C2(1 − i3), (3.12)

respectively, where D1, D2 are constants and I1, I2 are the first two invariants of the left Cauchy–
Green tensor B = V2. The fact that their bifurcation criteria are ‘relative-universal’ (15) to each
class might come as a surprising result, but is easily understood once the strain-energy functions are
written in terms of the principal stretches of the deformation (9) as �MR(I1, I2) ≡ WMR(λ1, λ2, λ3)

and �SHB(i2, i3) ≡ WSHB(λ1, λ2, λ3), where

WMR = D1(λ
2
1 + λ2

2 + λ2
3 − 3) + D2(λ

2
1λ

2
2 + λ2

2λ
2
3 + λ2

3λ
2
1 − 3), (3.13)

WSHB = C1(3 − λ1λ2 + λ2λ3 + λ3λ1) + C2(1 − λ1λ2λ3). (3.14)

Indeed, the bifurcation criterion for a general incompressible hyperelastic half-space may be
written in terms of the first and second derivatives of its strain-energy function W with respect to λi

(i = 1, 2) as (9)

λ2[W1 + (2 − λ−1
1 λ2)W2] + λ2

1W11 − 2λ1λ2W12 + λ2
2W22 = 0. (3.15)

When W is specialized to the Mooney–Rivlin form (3.13), it yields the relative-universal bifurcation
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criterion (3.8). In fact, many subclasses of incompressible materials have relative-universal
bifurcation criteria. For instance, any incompressible material with the following strain-energy
function:

W = D1(λ
n
1 + λn

2 + λn
3 − 3) + D2(λ

n
1λn

2 + λn
2λn

3 + λn
3λn

1 − 3) (3.16)

(where n = 1, 2, 3, . . . ), has the following relative-universal bifurcation criterion:

(n − 1)λn+1
1 + λn

1λ2 + (n + 1)λ1λ
n
2 − λn+1

2 = 0. (3.17)

In particular, the bifurcation criterion (3.3), which happens to coincide with (3.17) when n = 1, is
also valid for incompressible Varga materials (n = 1 in (3.16)).

Turning back to Bell-constrained materials, we note that it is a simple matter to write the
quantities b3 and C in (2.13) in terms of the derivatives of W (λ1, λ2, λ3). We find that

b3 = W1 − W2

λ2λ3(λ
2
1 − λ2

2)
, C = W11 − 2W12 + W22

λ3
, (3.18)

so that the bifurcation criterion (2.23) for Bell materials is rewritten as

W1 − W2 + λ1(W11 − 2W12 + W22) = 0. (3.19)

When W is specialized to the simple hyperelastic Bell model (3.14), it yields the relative-universal
bifurcation criterion (3.3). Similarly, when W is specialized to the strain-energy function of the Bell
empirical model (3.5), written as

WBEM = 2
3β0[2(3 − λ1λ2 + λ2λ3 + λ3λ1)]

3
4 , (3.20)

it yields the bifurcation criterion (3.6).

4. Concluding remarks on stability and on the Bell constraint

A word of caution is needed, in conclusion, regarding the notion of instability. Throughout the
paper, care has been taken to talk of instability ‘in the linearized theory’ and of a region in
the stretch ratios space where the deformed half-space ‘might be unstable’. This is so because
conclusions about the actual stability of a finitely deformed half-space do not necessarily come out
of the dynamical method of surface wave analysis. As Chadwick and Jarvis (16) pointed out, ‘the
exponential growth of a solution obtained . . . on the basis of a linearized theory eventually violates
the assumption underlying the linearization’. Some authors have linked instability analysis and
bifurcation theory, but as Guz remarked (17, p. 268), such a comparative analysis ‘is only qualitative
and to a certain extent sketchy’. Finally, Biot (2) adopted a static approach to the problem and found
that at the critical stretch, the surface deflection (that is, the component of the displacement normal
to the surface) became infinite; however, it is clear that such a deformation can hardly be called
‘incremental’. Nevertheless, it is comforting to remark that each approach yields the same result for
the critical stretches, and to know that, to some extent, concording experimental results exist (18).
On the other hand, the linear theory of stability has its limits. As kindly pointed out by a referee,
Chadwick and Jarvis (16) go on to say that in a situation where exponential growth occurs, ‘further
enquiry is needed to discover whether or not the terms initially neglected cause the motion to be
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stabilized’. Such a line of inquiry has indeed been followed ever since (see for instance Fu (19) or
Fu and Rogerson (20)), with the result that in certain cases, terms neglected in the linear theory do
indeed contribute to a greater stability.

Finally, the motivation for the use of the Bell constraint is now exposed. Using his countless
experiments, James F. Bell produced a large literature corroborating the existence for certain metals
of the constraint that now bears his name. A thorough background and detailed account of his
research is given in a recent review by Beatty (21). Note, however, that the actual existence of ‘Bell
materials’ is controversial and that Bell’s results have been criticized (22, 23). From a theoretical
point of view there is justification in studying classical problems (such as the one presented here)
for a material subject to an internal constraint other than incompressibility. Indeed incompressibility
is an exceptional isotropic constraint because the corresponding reaction stress is spherical. This
property distinguishes incompressibility among generic isotropic constraints. For instance Pucci
and Saccomandi (24) proved that the deformation (25)

x1 = AX1 + sin λX2, x2 = DX2, x3 = AX3 − cos λX2,

where A, D, λ are constants, is universal for all isotropically constrained materials, apart from
incompressible materials. Also, it is always possible to subject a constrained material successively
to a triaxial stretch followed by a simple shear:

x1 = λ1 X1 + kλ2 X2, x2 = λ2 X2, x3 = λ3 X3,

where the λi and k are constants, in such a way that the following relations for the Cauchy
stress components are universal: σ11 = σ22 and σ12 = 0, except when the reaction stress is
spherical (these and related points are developed in detail by Saccomandi in (15, 26)). Therefore,
a better understanding of the (theoretical) behaviour of Bell constrained materials gives us a
better understanding of isotropic constraints and of their general—and not exceptional—mechanical
properties.

Acknowledgements

A preliminary version of this work was presented at the Second Canadian Conference on
Nonlinear Mechanics in June 2002. Also, further results were presented in November 2002 at
the Miniworkshop on Mathematical Problems in the Nonlinear Elastodynamics of Rubber-Like
Materials, held at the Mathematisches Forschungsinstitut, Oberwolfach, Germany, and I thank the
organizers and the institute for their invitation. Finally, I thank Jeffrey Ryan for the use of his
computing facilities.

References

1. M. A. Biot, Acoustics, Elasticity, and Thermodynamics of Porous Media: Twenty-One Papers
by M. A. Biot (ed. I. Tolstoy; Acoustical Society of America, New York 1991).

2. , Mechanics of Incremental Deformations (Wiley, New York 1965).
3. M. F. Beatty and M. A. Hayes, J. Elast. 29 (1992) 1–84.
4. M. Destrade, Int. J. Non-Linear Mech. 38 (2003) 809–814.
5. M. Romeo, J. Acoust. Soc. Amer. 110(2001) 59–67.
6. J. F. Bell, Int. J. Plasticity 1 (1985) 3–27.



604 M. DESTRADE

7. M. F. Beatty and M. A. Hayes, Q. Jl Mech. Appl. Math. 45 (1992) 663–709.
8. and , Zeit. Angew. Math. Phys. 46 (1995) 356–371.
9. M. A. Dowaikh and R. W. Ogden, IMA J. Appl. Math. 44 (1990) 261–284.

10. M. Destrade, Math. Mech. Solids to appear.
11. Lord Rayleigh, Proc. R. Soc. A17 (1885) 4–11.
12. M. F. Beatty and F. X. Pan, Int. J. Non-Linear Mech. 33 (1998) 867–906.
13. J. N. Flavin, Q. Jl Mech. Appl. Math. 16 (1963) 441–449.
14. A. E. Green and W. Zerna, Theoretical Elasticity (Dover, New York 1992).
15. G. Saccomandi, Nonlinear Elasticity: Theory and Applications (ed. Y. B. Fu and R. W. Ogden;

Cambridge University Press, London 2001) 97–134.
16. P. Chadwick and D. A. Jarvis, Proc. R. Soc. A 366(1979) 517–536.
17. A. N. Guz, Fundamentals of the Three-Dimensional Theory of Stability of Deformable Bodies

(Springer, Berlin 1999).
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