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The opening angle method is a popular choice in biomechanics to estimate
residual stresses in arteries. Experimentally, it means that an artery is cut
into rings; then the rings are cut axially or radially allowing them to open
into sectors; finally, the corresponding opening angles are measured to give
residual stress levels by solving an inverse problem. However, for many tis-
sues, for example in pathological tissues, the ring does not open according
to the theory into a neat single circular sector, but rather creates an asymmetric
geometry, often with abruptly changing curvature(s). This phenomenon may
be due to a number of reasons including variation in thickness, microstructure,
mechanical properties, etc. As a result, these samples are often eliminated from
studies relying on the opening angle method, which limits progress in under-
standing and evaluating residual stresses in real arteries. With this work, we
propose an effective approach to deal with these non-trivial openings of
rings. First, we digitize pictures of opened rings to split them into multiple,
connected circular sectors. Then we measure the corresponding opening
angles for each sub-sector. Subsequently, we can determine the residual stres-
ses for individual sectors in a closed-ring configuration and, thus, approximate
the circumferential residual bending effects.
1. Introduction
The determination of residual deformations is essential to analyse and understand
the mechanical behaviour of soft biological tissues. Any incision inevitably
leads to an opening; anymaterial extraction similarly leads to a change in the geo-
metry of both the extracted piece and the region from which it was extracted—all
revealing the presence of residual stresses. The kinematics of these residual defor-
mations, together with a proper material characterization, can be used to estimate
the magnitude of the residual stresses, so that they can be accounted for when
modelling complicated biological processes and mimicking in vivo loading states.

In particular in arteries, residual stresses are known to optimize the distri-
bution of transmural stresses due to internal pressure in order to achieve better
functionality [1,2]. The conventional experimental approach for detecting and
evaluating residual stress in arteries is the opening angle method, where thin cir-
cumferential rings from an artery are cut axially/radially and open into single
sectors, revealing that the rings were under stress; see [3,4] and figure 1a. The
opening angles are then measured and used in analytical models to estimate
the magnitude and distribution of the residual stresses [5]. Over the years, it
has become apparent that this experiment is not capable of capturing the full
residual stress distribution in all real arteries.

First, this experiment reveals residual circumferential bending deformations
only, and axial residual deformations are neglected. However, an axial strip cut
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Figure 1. (a) Classical opening angle method, based on the assumption of an idealized circular sector opening. (b) Sketches of real openings reported and
demonstrated in the literature (references in brackets). (Online version in colour.)
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from the vessel (strip curling method [6]) can also exhibit a
considerable bending deformation, or can undergo a consider-
able change in dimensions, or can experience both phenomena
at the same time. This simple experiment reveals that axial
residual deformations exist in arteries, that they play an impor-
tant mechanical role [7], and that it is vital to account for them
as they have a significant effect on the overall residual stress
state. However, bending an axial strip significantly compli-
cates the calculation of residual stresses in terms of analytical
modelling, and many works prefer to neglect bending in
either circumferential or axial strip [8], or both.

The next limitation of the conventional opening angle
approach is that it ignores that arteries are multi-layered
structures, and that each layer has different mechanical prop-
erties as well as different amounts and distributions of its
main load-bearing components—elastin and collagen. As a
result, even though stresses that were holding axial or circum-
ferential strips in shape while being a part of the intact blood
vessel are released, the stresses to hold the artery’s incompa-
tible layers together, or interface stresses, remain. Indeed,
it has been shown that the three individual aortic layers,
intima, media and adventitia, undergo drastically different
residual deformations upon separation [9,10], requiring
involved analytical models to calculate them [8]. These effects
are demonstrated for both residual circumferential and axial
bending deformations by means of the opening angle and
strip curling methods, respectively.

Notwithstanding these limitations, the classical opening
angle method introduced in the 1980s remains the most
popular owing to its simplicity.

An estimation of the residual stresses based on the exper-
imental observations of residual deformations can be done
numerically with finite-element simulations and analytically
using the methodology of large deformations universal to
all nonlinear incompressible isotropic materials [11].
The models used to estimate the residual stress vary from
the simplest homogeneous, isotropic ones to more advanced
inhomogeneous, anisotropic ones that account for each
layer’s mechanics, microstructure and both circumferential
and axial residual deformations [2]. Our focus in this work
is the analytical approach.

In spite of decades of intense work dedicated to the study
of residual stresses in soft tissues, their underlying mechan-
isms and their functions are still not fully understood [12].
It is accepted that they are strongly connected to growth
and remodelling, which may actually trigger them. It is also
established that external factors such as hypertension or
hypertrophy [13] can affect them. Residual stresses change
with age [14]; they are different in different arteries and
even along the same aorta. Clearly, any pathological changes
affecting arteries will affect residual stresses too. Some
researchers have even hypothesized that an incorrect func-
tioning of residual stresses might cause pathology. In the
aorta, for example, if the mechanism responsible for homeo-
static deposition and degradation of collagen and elastin is
not functioning properly, then an aneurysm is formed.
Aneurysms may look like a localized ballooning of the
aorta or may be more diffuse, but they are always associated
with regional variations of properties along the circumference
[15] and localized weakening. These local weak spots may be
responsible for prospective dilatation or rupture of an aneur-
ysm, which most often causes immediate death of the patient.
This is one of the reasons why it is so important to be able to
estimate accurately residual stresses in aneurysms.

Even though there has been considerable research into the
improvement of analytical models estimating residual stresses
and into theoverall understandingof their role, there still remains
one aspect related to the classical opening anglemethod that has
not been properly addressed. Many experiments show that in
some tissues, more commonly in the pathological ones, some
rings donot open according to the theory, into a neat single circu-
lar sector, but instead create an asymmetric geometry, oftenwith
abruptly changing curvature(s).

Figure 1b shows sketches of the openings collected from
several works: in the papers by Fung and collaborators
[16,17] and Sokolis [18], we find notably asymmetric openings
for porcine aortic rings from certain regions along the aorta;
similarly in the papers by Okamoto et al. [19] and Sokolis
et al. [14] for human aneurysms. In [19], rings which did not
remain on edge after the cut and rings in which more than
half the length fell over were excluded from the analysis.
This happened because of either asymmetry or the need for
physical support for the ring to remain in-plane when
opened, or both. When a portion of the ring, but less than
half, had fallen over, the opening angle was calculated using
a special technique. Specifically, out of 55 patients and 55 cor-
responding rings, the opening angles could not be measured
in 21 cases [19]. In [14], 16% of the total number of aortic
rings were disregarded. These proportions may explain why
there are so few studies of residual stresses in aneurysms,
and also raise the question of how many samples were
disregarded in other, non-aneurysmal, studies.

In this paper, we propose a simple, innovative and practi-
cal method to estimate residual stresses in asymmetric
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Figure 2. Digital image analysis steps for two samples: (a) pig AA and (b) human AAA. (i) Closed and (ii) opened configurations. Symbols (*) indicate the images
which best illustrate the changes in curvature.
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openings: we digitize asymmetric opened rings, split them
into multiple sectors and measure the opening angle of each
sub-sector (§2.1). Then, to determine residual stresses, we
formulate the following inverse analytical approximation pro-
blem. Multiple undeformed sectors deform into multiple
sectors with the same curvature, and with the only mathemat-
ical connection that deformed sectors should form a full ring
(§2.2). With this approach, we can determine the non-
homogeneous distribution of residual stresses for individual
sectors in a closed-ring configuration (§3). These stresses will
describe the residual circumferential bending stress states
everywhere but at the edges between adjacent sectors, where
we assume a complex, rapidly varying residual stress state.
One can then either interpret the non-homogeneous residual
stress distribution or simply look at its average. Analytically,
this approach is not much more complicated than the classical
opening angle model (see recent treatments in [20,21]).
2. Methods
2.1. Experiments and digital image analysis
Here, as a case study, we analyse the asymmetric openings of
two aortic rings taken from two different aortas on separate
occasions.

The first ring comes from a healthy porcine aorta (Landrace
cross domestic pig, 32 kg, castrated male, approx. four months
old), particularly its upper abdominal part, denoted as ‘pig
AA’ (abdominal aorta). The second ring comes from a human
abdominal aortic aneurysm (5.7 cm max. aneurysm in a 55-
year-old male patient), denoted ‘human AAA’ (abdominal
aortic aneurysm). Samples were collected at the Center for Bioen-
gineering Research and Education, Schulich School of
Engineering, University of Calgary, Calgary, Canada, following
protocols approved by the ethics board. They were stored at
−4°C and tested within a few hours from extraction. Both rings
sliced from aortas were about 4mm in height and cleared from
connective tissues using surgical scissors. Then they were fully
immersed in room temperature phosphate-buffered saline sol-
ution (PBS, pH = 7.4) for 10min and allowed to equilibrate
before ‘closed configuration’ imaging. A single cut along the
anterior part of the aorta was performed using surgical scissors
and the opening rings were subsequently left to rest for 10min
before the final ‘opened configuration’ image capture.

The digital image analysis of both closed and opened con-
figurations was conducted using built-in and adapted functions
of Matlab (version R2018a). We treated differently the closed
and opened configurations. Closed configurations, although not
perfectly circular, were considered circular. Here the main objec-
tive was to determine the mean aortic ring thickness and radius
from the images. These quantities fully describe the geometry of
the deformed, load-free ring. First, the image of the ring was
binarized; as the human AAA sample had quite a bit of colour
variation along the thickness, different thresholds were used
for human AAA and pig AA samples. Next, a Sobel-based algor-
ithm was used to detect the edges of the rings. As pointed out by
Holzapfel et al. [9], these edges are just approximations of real
boundaries, which are impossible to determine exactly, and they
have to be manually adjusted for an optimal fit. Here the edges
were represented as natural cubic spline curves with 30 knots,
and these knots were manually dragged to reach a good corre-
spondence with the real ring boundaries. This manual
adjustment was not necessary for the pig AA sample but proved
essential for the human AAA sample, as its boundaries
were not clear. Next, the shortest distances between spline-
approximated inner and outer edges were found and averaged
to determine the mean thickness of the rings. Then the centroid
of the binarized shape was found. Finally, the mid-line between
the inner and outer spline edges was determined and the distance
from its knots to the centroid was averaged to estimate the mean
radius, as depicted in figure 2.

For the opened configurations, the initial steps were the same
as for the closed configuration, but here the main goal was to
determine the smallest number of individual arcs that would
fit the mid-line between inner and outer spline edges. To do
this, the Hough circle transform was used to fit the mid-line
[22]; the arcs of the circles intersecting at points of abrupt curva-
ture changes were then selected to represent the mid-line (figure
2). Their radii and slanted angles were determined (angles
formed by rays passing through fitted circle intersections and
sample ends). It was possible to represent both human AAA
and pig AA opened rings with just three sectors. We note that
for the human AAA there is a smooth transition between arcs
and sectors, in contrast to the transitions in the pig AA sample.
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Figure 3. Closed, residually stressed, deformed (a) and open, stress-free, undeformed (b) configurations. (Online version in colour.)
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It should be noted that the determination of the average thick-
ness of the individual sectors in the opened configuration was
challenging, as is often the case when dealing with irregular
and heterogeneous strips of tissue after pathological remodelling.

2.2. Closing of N sectors into an intact tube
Assume that we have N joint sectors from different circular-
cylindrical tubes. With the following plane-strain bending
deformations:

r ¼ r(i)(R), u ¼ k(i)Q, z ¼ l(i)z Z, (i ¼ 1 . . .N), (2:1)

they form a closed intact tube occupying the region

a � r � b, 0 � u � 2p, 0 � z � ‘: (2:2)

Here (R, θ, Z) are the coordinates of the cylindrical system
aligned with the unit vectors (ER, EΘ, EZ) in the undeformed
(open, stress free) configuration, and (r, θ, z) and (er, eθ, ez) are
their counterparts in the deformed (closed, residually stressed)
configuration. Also, l(i)z is the axial stretch of the ith sector and
κ(i) reflects the change in the central angles between the ith sector’s
undeformed and deformed configurations.

Each sector i = 1…N occupies its own portion of the tube
defined as

�a(i)
d � u(i) � a(i)

d , with u(i) ¼ u� a(i)
d �

Xi�1

k¼1

2a(k)
d : (2:3)

Here θ(i) is the conveniently chosen subsidiary circumferential
coordinate used to locate the position of the deformed sectors
i = 1…N. When i = 1, the sector is located at u [ [0, 2a(1)

d ];
when i = 2, it is located at u [ [2a(1)

d ; 2a(1)
d þ 2a(2)

d ], etc. Clearly,
the following condition must hold:

XN
i¼1

a(i)
d ¼ p, (2:4)

so that all sectors are joined into a full circle (condition of kine-
matical compatibility between sectors).

Undeformed sectors i = 1…N need to be either bent, unbent
or everted to form a closed intact tube. Solution (2.1), as the most
general plane-strain bending solution, is capable of capturing all
these deformations via a single parameter κ(i). If we denote the
central angle of the ith undeformed sector as 2a(i)

r , then κ(i) can
be expressed as

k(i) ¼ a(i)
d

a(i)
r
[ � p

a(i)
r
,

p

a(i)
r

� �
n {0},

�
a(i)
r [ (0, p], a(i)

d [ [�p, p] n {0}
�
:

(2:5)

Therefore, κ(i) > 1 corresponds to regular plane-strain bending,
κ(i)∈ (0, 1] corresponds to unbending, κ(i) < 0 corresponds to
unbending beyond the configuration of a rectangular block, i.e.
eversion.

Assume that there are N1 sectors that were bent and unbent
from their undeformed states and N2 sectors that were everted,
so that N1 +N2 =N. We will use the sets N1 = {i∈ [1, N ] : κ(i) >
0} and N2 = {i∈ [1, N ] : κ(i) < 0} to differentiate between these
sectors. If we define the undeformed radii as R(a)≡A(i) and
R(b)≡ B(i), then the sectors from sets N1 and N2 will occupy
the following regions:

A(i) � R � B(i), �a(i)
r � Q � a(i)

r , 0 � Z � L(i), when i [ N1

(2:6)

and B(i) � R � A(i), a(i)
r � Q � �a(i)

r , 0 � Z � L(i),

when i [ N2:
(2:7)

The corresponding deformation gradients F (i) are

F(i) ¼ dr(i)

dR
(R)er � Er þ k(i)r

R
eQ � EQ þ l(i)z ez � EZ,

l(i)z ¼ l
L(i)

(i ¼ 1 . . .N):

(2:8)

Taking the sectors to be incompressible, det F(i) ¼ 1 must hold at
all times, from which we deduce that

r(i) ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2 � (A(i))2

k(i)l(i)z
þ a2

s
, b ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
(B(i))2 � (A(i))2

k(i)l(i)z
þ a2

s

(i ¼ 1 . . .N),

(2:9)

so that the principal stretches can be expressed as

l(i)r ¼ R
jk(i)jl(i)z r

, l(i)u ¼ jk(i)jr
R

and l(i)z :

For sectors made of incompressible, isotropic and hyper-
elastic material with strain energy density W =W(I1, I2), the
constitutive law for the Cauchy stress tensor σ is

s ¼ �pIþ 2W1B� 2W2B�1, (2:10)

where p is the Lagrange multiplier introduced to ensure
incompressibility, I is the identity tensor, B = FFT is the
left Cauchy–Green deformation tensor and Wi = ∂W/∂Ii (i = 1, 2)
with invariants I1 = trB and I2 = trB−1. It follows that, for
the deformations (2.1), the Cauchy stress tensors σ (i) for sectors
i = 1…N have the following structure:

s(i) ¼ s(i)
rr er � er þ s(i)

uueu � eu þ s(i)
zzez � ez: (2:11)

As the components of the deformation gradients (2.8) do not
depend on θ and z, we readily deduce from the equilibrium
equations that for each sector p(i) = p(i)(r) only, and that

ds(i)
rr

dr
þ s(i)

rr � s(i)
uu

r
¼ 0, (i ¼ 1 . . .N), (2:12)

are the only non-trivial equations of equilibrium. They are to be
solved subject to the following boundary conditions of traction-
free inner and outer faces of the deformed sectors:

s(i)
rr (a) ¼ s(i)

rr (b) ¼ 0, (i ¼ 1 . . .N): (2:13)

Note that the normal forces on the deformed sub-sectors’ end
faces are all zero, and thus continuous in the closed ring.



Table 1. Results from the digital image analysis: in the undeformed configuration, a(i)
r is the opening angle of the ith sub-sector and C(i) is its mid-line radius;

in the deformed configuration, a and b are the inner and outer radii of the ring, respectively (figure 3).

configuration pig AA sample human AAA sample

undeformed a(i)
r C(i), mm a(i)

r C(i), mm

sector 1 103.18° 2.25 − 33.1° 10.4

sector 2 74.59° 3.15 44.46° 16.8

sector 3 63.59° 4.95 − 25.26° 15.2

deformed a, mm b, mm a, mm b, mm

3.56 5.33 6.6 9.47
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Where is this approach valid? From figure 2, we observe that
the sectors in the opened configuration often exhibit regions
where the curvature is approximately constant, and also transition
regions where the curvature changes rapidly. Our analytical
model is not expected to be valid in the vicinity of the transition
regions, as it gives a point-wise discontinuity in the stress between
the sectors when closed into the ring (the normal forces on each
end face of the sectors are zero, and thus continuous), and a dis-
continuity in the moments. In reality, the stress and resulting
moment states in these regions are too complicated to be captured
by the present simplified model, which is geometrically oriented.
3. Numerical analysis
3.1. Solution procedure
All the necessary geometric parameters for both the human
AAA and pig AA samples required for the analytical model-
ling are summarized in table 1.

We fully determined the deformed configurations of the
samples, described by the inner and outer radii a and b. As for
the undeformed configuration of each sample, it is described
by three sectors with mid-lines radii C(i) = (A(i) + B(i))/2 (i= 1, 2,
3) and the corresponding referential anglesa(i)

r . The undeformed
thicknessesH(i) = |B(i)−A(i)| (i = 1, 2, 3) of the sectors are delib-
erately left unfixed in the solution of the analytical problem. For
the same reason, C(i) is reported instead of A(i) and B(i), as these
quantities can be determined once C(i) andH(i) are known.

We note straight away that the undeformed sectors for the
pig AA sample experience bending and unbending, while
the sectors for the human AAA, in addition to regular bend-
ing, undergo eversion, which is reflected in the negative sign
of a(1)

r and a(3)
r .

The sectors can be modelled using any material model by
prescribing the strain energy density function W. Ideally, this
model should account for both mechanical and microstruc-
tural properties of cardiovascular tissues as well as
anisotropy and nonlinearity. Here, for illustrative purposes
and due to the absence of mechanical/microstructural data
for our samples, we chose the simple isotropic neo-Hookean
material, with strain energy density function

W (i) ¼ m(i)

2
(I(i)1 � 3), (3:1)

where μ(i) is the shear modulus.
For each sample, there are seven equations to satisfy: the

joining condition (2.4), the three equilibrium equations (2.12)
and the three boundary conditions (2.13). Which seven
unknowns should be selected to solve this problem?
Clearly, it is quite challenging to measure experimentally
the deformed angles a(i)

d (i = 1, 2, 3) formed by the sectors
in the closed configuration; instead, we treat them as three
variables to be determined from the analysis.

Next, it is clear that three sectors with different referential
angles a(i)

r andmid-line radii C(i) do not close into sectors with
the same curvature and thickness h = b− a. Here we can take
one of three routes. We can assume that sectors have different
mechanical and microstructural properties, or that they have
different axial deformations in closing l(i)z , or that they
have different undeformed thicknesses H(i) (i = 1, 2, 3).

Owing to the absence ofmechanical data for the individual
sectors, we have to assume that the material along the circum-
ference of the aorta is homogeneous, i.e. μ(1) = μ(2) = μ(3) = μ.
Therefore, our choice of strain energy density functions (3.1)
makes our solution independent of the shear modulus μ,
which may thus be removed from the analysis by way of
non-dimensionalization, i.e. by using σ (i)/μ as the measure
of stress (which we call σ (i) for convenience from now on).
Accounting for the shear modulus of samples would result
in a scaling of the residual stresses, but the qualitative results
would remain the same.

Hence, in our numerical simulations we have to assume
that the undeformed sectors opened asymmetrically either
because of variations in wall thicknessH(i) or because of differ-
ences in residual axial deformations l(i)z (i = 1, 2, 3). In the first
scenario, wewould have to assume that the l(i)z are the same for
all sectors (l(1)z ¼ l(2)z ¼ l(3)z ¼ lz, say); in the second scenario,
that the H(i) are the same for all three sectors (H(1) =H(2) =
H(3) =H, say). One may argue that, in general, the l(i)z are
harder to measure than the H(i). However, thickness measure-
ments can also be challenging for a given sample, especially for
pathological tissues such as a human AAA sample.
3.2. Numerical results
Tables 2 and 3 display the results from the solution procedure
described in the previous section.

When we assume that the ring opens asymmetrically
owing to differences in the residual axial deformations l(i)z
(i = 1, 2, 3), we find for the pig AA sample that the unde-
formed sectors have to be contracted axially (l(i)z , 1) in
order to close into the full ring (table 2). The common thick-
ness of the undeformed sectors, H = 1.71 mm, is smaller than
the thickness of the deformed ring, h = b− a = 1.77 mm. The
undeformed sectors of the human AAA sample, in contrast,
have to be pre-stretched axially (l(i)z . 1) when closed, so
that their initial thickness H = 3.05 mm is larger than the



Table 2. Results from the solution procedure when there is no variation in the wall thicknesses. Here a(i)
d is the opening angle, λ(i) is the axial contraction

found for the ith sub-sector, and H = H(1) = H(2) = H(3) is the common thickness (in millimetres).

pig AA sample human AAA sample

a(i)
d H, mm l(i)

z a(i)
d H, mm l(i)

z

sector 1 52.97° 0.96 43.41° 1.05

sector 2 53.92° 1.71 0.95 88.82° 3.05 1.11

sector 3 73.11° 0.94 47.77° 1.06

Table 3. Results from the solution procedure when there is no variation in the residual axial deformations. Here a(i)
d is the opening angle, H(i) is the thickness

found for the ith sub-sector, and l ¼ l(1)z ¼ l(2)z ¼ l(3)z is the common axial pre-stretch.

pig AA sample human AAA sample

a(i)
d H(i), mm λz a(i)

d H(i), mm λz

sector 1 53.21° 1.70 42.71° 3.10

sector 2 54.01° 1.71 0.95 89.98° 3.01 1.08

sector 3 72.78° 1.72 47.31° 3.08
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thickness of the resulting ring h = b− a = 2.87 mm. Moreover,
we notice that sector 2 requires more axial pre-stretch than
sectors 1 and 3. This is not surprising when considering
that sectors 1 and 3 went through significant eversion defor-
mations; sector 2 was bent to a smaller degree; and all sectors
had to have the same thickness when closed into the single
ring (according to the assumption that a and b are fixed).

We find qualitatively similar results when we assume that
the ring opens asymmetrically because of differences in the
thickness H(i) (i = 1, 2, 3) along the circumference; see table
3. We see that, for the pig AA sample, the variation in thick-
ness is not considerable, similarly to the minor variation
between the axial pre-stretches in the previous case. For the
human AAA sample, we see that sectors 1 and 3 undergo
more significant changes in thickness to ensure compatibility
with sector 2.

Note that we could have equally started with a ‘mixed’
case, where thickness and axial stretch of some sectors are
assumed to be the same, so that the problem is solved for
combinations of axial pre-stretches and thicknesses. Poten-
tially, this strategy could be beneficial for the human AAA
sample, where sectors 1 and 3 have similar deformations; so
that the determined changes in height and thickness may be
less substantial. Also, the thickness of the sectors in the ring
configuration do not have to be the same, which can be
accounted for in a subsequent version of the proposed model.

Note also that we do not discard the possibility of the
microstructure and/or mechanics causing significant changes
between the undeformed and deformed sectors’ thicknesses
and heights; as stated earlier, this information can be easily
included in the proposed model. This possibility is more rel-
evant for the human AAA sample than for the pig AA
sample as healthy pig tissues are fairly homogeneous,
while tissues of abdominal aortic aneurysms are quite
inhomogeneous and may have local weak zones.

As there is no substantial difference in results between the
cases when asymmetric opening occurred due to variation in
wall thickness H(i) or due to different residual axial defor-
mations l(i)z (i = 1, 2, 3), we depict the corresponding
principal stretches and transmural residual stress states for
all sectors of both samples for the first case only (i.e. when
H(1) =H(2) =H(3) =H) in figures 4 and 5. The grey arrows
along the curved sides of the sub-sectors in the closed con-
figuration indicate whether these sides are in tension or
compression (figures 4a and 5a).

Sectors forming the opened configuration geometry of the
pig AA sample experience different types of residual stress
state when closed into the ring (figure 4a). The outer faces of
sectors 1 and 2 are circumferentially and axially compressed,
while their inner face is under tension (figure 4a–c). We also
observe positive radial residual stress (figure 4c), as is typical
for unbent structures. Sector 3, in contrast, does not appear
as stressed as the other two sectors when closed (figure 4c).
It also experiences bending and, as a result, has the opposite
residual stress state when part of the closed ring (figure 4c).
Also, its inner side is in compression, and its outer side is in
tension (figure 4a–c).

For the human AAA sample, all three sectors experience
positive radial residual stress throughout, tension on their
outer face and compression on their inner face in the
closed-ring configuration (figure 5). However, the sub-sectors
that underwent eversion to close into the ring, i.e. sectors 1
and 3, experience much larger stresses than the sector in
between them, sector 2, which was just bent (figure 4b).
3.3. Discussion
We now compare our treatment of pig AA and human AAA
opened rings with the one that would be expected based on
the classical opening angle method.

Okamoto et al. [19] and Solkolis [18] report difficulties in
measuring opening angles for a large proportion of their
samples. In these works, the opening angle is defined as the
angle formed by two lines drawn from the tips of the inner
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circumference of the cut ring (intimal side) to its midpoint; see
angle w in figure 1a. The corresponding referential angle αr is
related to w via the formula αr = (2π− w)/2. We note that
opened rings with abruptly changed curvature were excluded
from these studies.

We measured the opening angles of our samples using
this technique: we found that w =−26.38° for the pig AA
sample (figure 4a) and w = 146.21° for the human AAA
(figure 4b). The corresponding central angles for these
openings are: αr = 193.19° and αr = 106.9°, respectively;
while αd = 180°. The corresponding residual stress state can
be easily determined using solution (2.1) for the case N = 1.

Toproperly compare residual stresses fromtheclassical open-
ing anglemethodwith the residual stresses fromourmulti-sector
method, the following precautions need to be taken. First, the
axial pre-stretch λz in the classical opening angle method
should be in line with the results of the solution for the multiple
sector approach: thus, we take λz = 0.95 for the pig AA sample;
λz = 1.08 for the human AAA sample (based on the results of
table 3). Second, as the multi-sector approach produces different
residual stresses for each sector, we compute their average to pro-
vide a meaningful comparison with the single-sector opening
angle method (the stress-based average). Figures 4c and 5c dis-
play both the averaged residual response from the multiple
sector approach and the stresses resulting from the classical
opening angle method, calculated for a single sector.

As can be seen in figure 4c, the single-sector opening
angle method approach underestimates the residual stresses
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in the pig AA ring. Indeed we expect that the opened ring has
to experience significant circumferential tension when
unfolding into a ring: here, however, the opening angle
method predicts a σθθ very close to zero throughout the thick-
ness of the arterial wall. The proposed multi-sector approach
allows for a far more pronounced variation of σθθ (and,
indeed, of σrr and σzz) in this sample.

Turning now to the human AAA sample, (figure 5c) we
again observe that the calculated residual stresses based on
the averaged response from the multi-sector approximation
method are much higher than the stress yielded by the classi-
cal opening angle method. Moreover, because of abrupt
changes in curvature, we conjecture that this sample most
likely would have been eliminated if the spirit of [18,19] had
been adhered to. Our approach clearly demonstrates that the
sample can be used.

The final point to touch upon in this discussion is how to
use and exploit the results coming from the multi-sector
approach. One intuitive route to follow is to use the averaged
response of the stress components across the thickness; see
dotted lines in figures 4 and 5. It accounts for all opening
angles in a single study, without having to eliminate any
sample that does not follow the scenario of the single-sector
opening angle method. With the averaged response, we can
solve the inverse problem and report the values of αr and
λz. For our samples, we determined the following averaged
values: �ar ¼ 252� (�w ¼ �144� and �lz ¼ 0:95 for the pig AA;
�ar ¼ �23:72� (w = 407.44°) and �lz ¼ 1:03 for the human
AAA. These are significantly different from the results of
the single opening angle experiment.

Themain purpose of deriving residual stress levels is to see
how they affect the in vivo state, i.e. the transmural stresses due
to internal pressure and axial tension. The literature shows that
residual stresses can either homogenize anddecrease them [23],
increase them [24] or simply re-distribute the stresses among
the layers in a rational way by transferring a larger portion of
the stress to the layer designated for this purpose [2]. The
specific path takendependson thematerial andmicrostructural
properties, on thematerial model and, what is more important,
on the superposition between strains due to residual stress and
strains due to in vivo forces in a cardiac cycle. Thus, even a small
difference in the kinematics of residual deformationsmayaffect
the transmural distribution greatly. In other words, when com-
puting residual stresses for specimens exhibiting a non-trivial
opening, our optimization strategy can provide a residual kine-
matical state (based on average residual stresses) that differs
significantly from that obtained from the classical opening
angle, and therefore will result in in vivo stresses that better
represent the state of that arterial segment.

Finally, another useful way to interpret these results is to
turn to a regional description of the tissues. In some pathologi-
cally affected tissues, for example in aneurysms, mechanical
and microstructural properties vary along the circumference
of the aorta. These variations can be matched with the asym-
metric residual openings revealed by our method and used
in a comprehensive finite-element analysis for advanced
physiological models.

4. Conclusion and limitations
This study proposes, demonstrates and discusses an effective
way to approximate residual stresses in circumferential rings
that do not open in a trivial and symmetric way; we call it the
‘multi-sector approximation method’. The asymmetric shape
of the cut configuration is viewed as being composed of
several sectors, each with their individual residual stress
states. Two examples of such openings are harvested in the
laboratory and presented here (pig AA and human AAA),
and their residual stresses are derived using both the
proposed multi-sector approach and the classical opening
angle method.

For both samples, the pig AA and human AAA, the
multi-sector approximation method predicts higher residual
stresses than the classical opening angle method. Moreover,
for the human AAA, it eliminates the uncertainty related to
the validity of the sample. In practice, because each sector
now has its own residual stress state, the problem can be trea-
ted finely using finite-element analysis. Alternatively, for
analytical problems and statistical studies, either the aver-
aged response or the peak residual stresses can be used as
metrics of overall residual stress levels.

Some limitations apply. In the current approach, the
mechanical effect of one sector onto the adjacent sectors is
not fully taken into account in either the opened or closed
configurations. Basically, the suggested approach treats the
opened ring as a number of separate sectors deforming into
a number of separate sectors with the same curvature and
certain arc-lengths (so that equation (2.4) holds). As a
result, there is a stress jump between the sectors, especially
when the adjacent sectors undergo different kinds of plane-
strain bending (in terms of the bending moment direction),
i.e. bending versus unbending.

One way to respect the continuity condition between sec-
tors could be to increase the number of sectors until the jump
in stresses becomes negligible. This approach is proposed, for
instance, by Matsumoto et al. [25], who considered asym-
metric residual openings of atherosclerotic thoracic aorta in
rabbits, but only in the context of residual strains, not stres-
ses. Their opened rings were split into 32 segments and
then the residual strains were derived from the deformations
of individual segments. However, this idea cannot be
adopted for our approach as these segments stop behaving
as sectors owing to an arclength dimension being comparable
to the segment’s height and thickness.

Another way is to notice that sectors in the opened
configuration often exhibit large regions where the curvature
is approximately constant and transition regions where the
curvature changes rapidly; see figure 2. We could thus opti-
mize our approach by keeping a few large sectors exhibiting
constant curvature while splitting transition regions into a
large number of segments to approximate continuity, and
then computing a weighted average to estimate the residual
stress. This approach would solve the continuity issue, but
it would be less practical to implement than the simplified
solution proposed here, because of its complexity.

The transition regions where the curvature changes
abruptly have a more complicated stress state than can be
captured by a classical plane-strain bending universal
solution that depends on the radial coordinate only. Given
that there is geometrical congruence when the ring is closed
or residually stressed (and that we cannot predict where the
discontinuity in curvature might appear in the opened con-
figuration), we assume that the equilibrium at the edges (or
continuity) is achieved by redistribution and concentration
of the residual stress originating from microstructural hetero-
geneity [25]. For example, the mathematical discontinuity
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may co-localize with areas that have undergone extensive
remodelling with dramatic loss or gain of constituents as is
the case for calcification or elastin fragmentation. Our
method extracts the residual bending effects from the regions
of constant curvature and ignores the vicinities of transition
zones instead of speculating on the residual stress state
there. This stress state is worthy of further examination, for
example by means of experiments which couple microscopy
and local strain measurements [26], but this is beyond the
scope of this paper.

It is clear from the experiments that the deformed or
closed configuration is not exactly circular. Accounting for a
non-circular deformed configuration would require digital
image splitting of the closed configuration into individual
sectors, but this would complicate the analytical solution of
the problem and the experiment itself even further.

Also, the way rings open depends on where they are cut.
But owing to variation of the circumferential residual defor-
mations along the central line of the aorta, this effect is
hard to study experimentally. Moreover, when the opened
rings are cut again, they deform even further. This proves
that they are still under some level of residual stress, while
in our model the cut configuration is split into separate
stress-free sectors and, thus, the coupling between them is
ignored. Using our approach for newly cut sub-sectors
would make sense physically, but would introduce the
uncertainty on where to make a cut.

It is well known that if you cut an axial strip from the
aorta, it might experience even more notable residual bend-
ing deformations than those of a circumferential ring. Our
multi-sector approach can be adopted for the determination
of residual stresses from these experiments using a block
configuration as the deformed one.

Next, our numerical results do not account for the layered
structure of blood vessels, but the method can be easily
extended to this case.

Also, the residual stresses obtained from our numerical
analysis do not account for the material’s actual mechanical
and microstructural properties, including anisotropy. This
choice was made for the sake of simplicity, but the procedure
is valid for virtually any strain energy density and more
advanced constitutive models can be used, including properties
that vary along the circumference.

Finally, we assumed that the residual deformations
originated from a stress-free configuration. If information
on the residual deformations is not available, then the
strain energy density function can be taken to be a function
of not only the deformation gradient F, but also the residual
stress tensor τ, which makes the reference configuration
stressed [27,28]. Alternatively, the residual stress can be
assumed to arise from differential growth [29] and can then
be included into the model using the growth tensor and the
multiplicative decomposition rule [30]. Both approaches can
be combined as well [31].

The main message of this work is that residual stresses are
vital in understanding the development, normal functioning
and pathology of biological tissues. Therefore, it is important
to have a convenient tool at hand to account for the wide
range of sample geometries found in practice, and for the
range of tissues that do not deform in a trivial manner
when residual stresses are released. This work proposes
such a tool as a natural extension of the classical opening
angle method. It is capable of dealing with a good number
of samples that would have been otherwise eliminated from
the analysis.
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