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1. Introduction

Scholte waves are acoustic waves propagating at a fluid/solid interface. They are localized in the
neighborhood of the phase boundary in the sense that they decay exponentially in both directions
along the normal to the interface. Johnson [1] established the explicit secular equation for Scholte
waves over an orthorhombic crystal. In his case, the crystal is cut along a plane x2 ¼ 0 containing
two crystallographic axes Ox1 and Ox3; the wave propagates with speed v in the x1 direction; the
solid is characterized by a mass density rs and relevant elastic stiffnesses C11; C12; C22 and C66; the
fluid by a mass density rf and speed of sound c: The secular equation is
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For instance, consider a frozen lake with a layer of ice assumed thick enough to be considered as a
semi-infinite body. At 0:01�C under 1 bar; the density of water is [2]: rf ¼ 999:84 kg=m3 and
sound propagates at c ¼ 1402:4 m=s; the second line of Table 1 lists the elastic stiffnesses and
density of ice [3]; according to Eq. (1.1), Scholte waves propagate for this model at speed vS ¼
1237:6 m=s: Ice however has the special property of being transversally isotropic, which means
that any plane containing the x3-axis is a symmetry plane and so the speed vS is the same for any
orientation of the water/ice interface plane containing the x3-axis.
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The aim of this Letter to the Editor is to derive explicitly the secular equation for Scholte waves
at the interface between a fluid and an anisotropic crystal cut along a plane containing the normal
to a single symmetry plane, that is containing only one crystallographic axis. In effect, the crystal
may be a monoclinic crystal with symmetry plane at x3 ¼ 0; or a rhombic, tetragonal or cubic
crystal cut along a plane containing x3 and making an angle ya0 with the other crystallographic
planes; the higher symmetry cases (y ¼ 0 or transversally isotropic and isotropic crystals) are
covered by Eq. (1.1). For cases with less symmetries, one can turn to approximate solutions [4] as
long as the anisotropy is weak.

2. Equations of motion and boundary conditions

Consider two half-spaces delimited by the plane x2 ¼ 0; the upper one x2o0 is filled with an
inviscid fluid, the lower one x2 > 0 is made of a monoclinic crystal with symmetry plane at x3 ¼ 0
whose relevant non-zero reduced compliances are s011; s022; s012; s016; s026 and s066: At the interface, an
inhomogeneous plane wave travels with speed v and wave number k in the x1 direction, and
decays rapidly in the x2-7N directions.

In the solid, the corresponding equations of motion are written as a first-order differential
system for the 4-component displacement-traction vector,

n0 ¼ iNn; nðkx2Þ ¼ ½U1ðkx2Þ;U2ðkx2Þ; t12ðkx2Þ; t22ðkx2Þ	T; ð2:1Þ

where the functions Ui and ti2 are related to the in-plane mechanical displacements u1; u2 and
in-plane tractions s12; s22 through

uiðx1; x2;x3; tÞ ¼ Uiðkx2Þeikðx1�vtÞ; si2ðx1;x2; x3; tÞ ¼ ikti2ðkx2Þeikðx1�vtÞ: ð2:2Þ

In Eq. (2.1), the ð4
 4Þ matrix N is given by [5,6]
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Table 1

Values of the elastic stiffnesses (1010 N=m2), density (kg/m3), and surface (Rayleigh) wave speed (m/s) for three crystals

Crystal C11 C22 C12 C16 C26 C66 rs vR

Ice ð�5�CÞ 1.38 1.38 0.707 0 0 0.3365 940 1766

Gypsum 50.2 94.5 28.2 �7.5 �11.0 32.4 2310 3011

Terpine 1.25 0.99 0.38 0 0 0.346 1110 1644

Germanium 12.92 12.92 4.79 0 0 6.70 5320 2936
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These equations also cover the case of a wave (2.2) travelling in a crystal of rhombic, tetragonal or
cubic symmetry, with acoustic axes XYx3 and reduced compliances S0

ij; cut along the plane x2 ¼ 0
containing the x3-axis and making an angle y with the crystallographic XY plane (see Fig. 1). In
that case, the reduced compliances s0ij along the xi-axis are given in terms of those along the
crystallographic axes XYx3 by (see [7]),

s011 ¼ S0
11 cos4 yþ ð2S0

12 þ S0
66Þ cos

2 y sin2 yþ S0
22 sin4 y;

s022 ¼ S0
22 cos4 yþ ð2S0
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11 sin4 y;
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12 þ ðS0
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22 � 2S0

12 � S0
66Þ cos

2 y sin2 y;
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66 þ 4ðS0
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12 � S0
66Þ cos

2 y sin2 y:

s016 ¼ ½2S0
22 sin2 y� 2S0

11 cos2 yþ ð2S0
12 þ S0

66Þðcos
2 y� sin2 yÞ	cos y sin y;

s026 ¼ ½2S0
22 cos2 y� 2S0

11 sin2 y� ð2S0
12 þ S0

66Þðcos
2 y� sin2 yÞ	cos y sin y: ð2:5Þ

Note that for transversally isotropic crystals, the following relationships hold, S0
11 ¼ S0

22; S0
66 ¼

2ðS0
11 � S0

12Þ; and the rotation does not affect the values of the compliances (s0ij ¼ S0
ij). Destrade [8]

recently showed that for waves vanishing with increasing distance from the plane x2 ¼ 0; the
following fundamental relationships hold for any positive or negative integer power n of the
matrix N:

%nð0Þ � #INnnð0Þ ¼ 0; where #I ¼

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

2
6664

3
7775: ð2:6Þ

Because of the Cayley–Hamilton theorem, only three consecutive powers of N are linearly
independent so that Eq. (2.6) reduces to only three linearly independent equations.
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Fig. 1. Fluid/solid interface.
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In the fluid, the normal displacement and the normal stress component are connected, as
recalled by Barnett et al. [9], by the (real) normal impedance Z defined in Eq. (1.2)2;

s22 ¼ kZu2: ð2:7Þ

At the solid/fluid interface, the normal displacement and the normal stress component are
continuous, and the shear stress component is zero. It follows from these boundary conditions
and from Eqs. (2.1)2; (2.2) and (2.7), that the displacement-traction vector at the interface x2 ¼ 0þ

is of the form

nð0þÞ ¼ U2ð0Þ½a; 1; 0;�iZ	T; ð2:8Þ

where a ¼ U1ð0þÞ=U2ð0Þ:
Now the fundamental equations (2.6) read

ðNnÞ32ðaþ %aÞ þ iZðNnÞ21ða� %aÞ þ ðNnÞ31a%a ¼ �ðNnÞ42 � Z2ðNnÞ24: ð2:9Þ

Writing a as a ¼ a1 þ ia2 and taking in turn n ¼ �1; 1; 2; a non-homogeneous linear system of
equations follows:
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where N� denotes the adjoint of N: The unique solutions to the system are bk ¼ Dk=D; where
D ¼ detA and Dk is the determinant of the matrix derived from A by replacing the kth column
with d: However, the bk are linked by b2

1 þ b2
2 ¼ 4b3; which is the explicit secular equation for

Scholte wave over a monoclinic crystal with symmetry plane at x3 ¼ 0;

D2
1 þ D2

2 ¼ 4DD3: ð2:11Þ

As a check, the limit case of a solid/vacuum interface is examined. When the density of the fluid
rf is taken as zero, then by (1.2)2 Z ¼ 0; and so D ¼ D1 ¼ D3 ¼ 0: The secular equation reduces to
D2 ¼ 0 (written at Z ¼ 0), that is the following quartic in X ¼ rsv

2 [10,5,6],

X ½r2r6 � n26ðX � ZÞ	 ðX � ZÞð1 þ n66X Þ þ r26X X ½r22 � n66ðX � ZÞ	

0 X X � Z

ð1 þ r2ÞX � Z 0 2r6ðX � ZÞ

�������

�������
¼ 0: ð2:12Þ

3. Examples

Calculations for usual combinations of a solid and a fluid show that in general the speed of a
Scholte wave is very close to the speed of sound in the fluid. Hence, consider water
(rf ¼ 1025 kg=m3; c ¼ 1531 m=s at 25�C [11]) over gypsum (monoclinic, rs and Cij in Table 1
[12]): the secular equation (2.11) yields a Scholte wave speed within the interval (1519 and
1526 m=s) (depending on the orientation of the cut plane), which is within less than 0.8% of the
speed of sound in the water.
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Yet for certain choices, the Scholte wave speed moves away from the speed of sound in the
fluid. One example is the combination ice/water presented in the Introduction. A second example
is the combination of pure water (rf ¼ 998 kg=m3; c ¼ 1498 m=s at 25�C [11]) and Terpine
Monohydride (orthorhombic, rs and Cij in Table 1 [3]): at y ¼ 0� and 90� (crystal cut along a
plane containing two crystallographic axes) the wave propagates at 1228.3 and 1249:5 m=s;
respectively; Fig. 2(a) shows how the Scholte wave speed varies between these two extremes as a
function of y: Another way of separating distinctly the Scholte wave speed from the sound speed is
to increase the pressure, and hence the speed of sound, in the fluid. Crowhurst et al. [13] recently
measured the Scholte wave speed for Methanol over Germanium in a diamond anvil cell: as the
pressure increases from 0.56 to 2:2 GPa; so does the speed of sound in Methanol, from about 2500
to 3500 m=s: In Table 1, the stiffnesses and density of Germanium (cubic) at 20� are recalled [3];
the density of Methanol is 791:4 kg=m3 at 20� [11]. Fig. 2(b) shows, in agreement with their
results, the combined influence of orientation and speed of sound on Scholte wave propagation;
each curve corresponds to a different speed of sound in Methanol, from c=2000 (bottom curve)
to 4000 m=s (top curve) by 500 m=s increments.
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Fig. 2. Scholte wave speeds for (a) Water/Terpine interface and (b) Methanol/Germanium interface, where the speed of

sound in the fluid is (m/s): 2000 (bottom curve), 2500, 3000, 3500 and 4000 (top curve).
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