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a b s t r a c t 

Originating in the field of biomechanics, Fung’s model of quasi-linear viscoelasticity (QLV) is one of the 

most popular constitutive theories employed to compute the time-dependent relationship between stress 

and deformation in soft solids. It is one of the simplest models of nonlinear viscoelasticity, based on 

a time-domain integral formulation. In the present study, we consider the QLV model incorporating a 

single scalar relaxation function. We provide natural internal variables of state, as well as a consistent 

expression of the free energy to illustrate the thermodynamic consistency of this version of the QLV 

model. The thermodynamic formulation highlights striking similarities between QLV and the internal- 

variable models introduced by Holzapfel and Simo. Finally, the dissipative features of compressible QLV 

materials are illustrated in simple tension. 

© 2020 The Author(s). Published by Elsevier Ltd. 
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. Introduction 

Nonlinear viscoelastic behaviour is observed in many soft solids, 

uch as elastomers, gels, and biological materials. More specif- 

cally, the nonlinear mechanical response of viscous soft solids 

xhibits relaxation and creep phenomena in large deformation 

uasi-static tests. In dynamic tests, the response of such materials 

s sensitive to strain rates. Moreover, marked hysteresis loops in 

oading-unloading experiments are evident in such media [1,2] . 

Historically, the mechanical modelling of nonlinear viscoelastic 

olids has been approached in many different ways. Fundamentally, 

owever, modelling viscoelastic effects amounts to a specification 

f the constitutive law to provide an accurate functional relation- 

hip between the instantaneous stress and the entire strain history 

3,4] . In the monograph by Truesdell and Noll [5] , this definition 

orresponds to the concept of simple materials (Sec. 29 therein), 

ee also Sec. 6.7 of the book by Malvern [6] . 

If the stress depends only on a very short interval of the re- 

ent history of the deformation, then it can be expressed as a 

unction of the time derivatives of the deformation gradient up 

o a finite order (cf. Truesdell and Noll [5] Sec. 35). Often, time 

erivatives of the strain up to first order are considered (i.e., the 
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tress is expressed in terms of strain and strain rates), which leads 

o Newtonian-type viscosity models [7,8] . Similarly to the linear 

elvin–Voigt model, nonlinear strain-rate differential models fail to 

escribe stress relaxation phenomena [9,10] . 

Differential models involving time derivatives of stress as well 

s strain provide a natural bridge to models involving longer du- 

ations of time history. Indeed, the stress can then be expressed 

ia an integral representation or via models with memory vari- 

bles. These models can be seen as more or less equivalent, with 

emory variables manifesting themselves as terms within a stress 

elaxation function that arises in integral models. There is a vast 

iterature for both integral and memory variable approaches. Re- 

iews of viscoelastic constitutive modelling contrast these different 

pproaches [1,3,4] , or introduce them in a disconnected way [2,11] . 

A popular and simple model of the integral type is Fung’s quasi- 

inear viscoelasticity (QLV) [12,13] , see Fig. 1 , which is based on a 

oltzmann superposition principle. The instantaneous stress is ex- 

ressed as a convolution product between a relaxation tensor and 

he elastic stress response. Originating in biomechanics, Fung’s QLV 

as been successfully employed in related applications, with the 

evelopment of associated experimental techniques [14–16] and 

edicated computational methods [17,18] . It has also been em- 

loyed to model polymers and rubbers [19,20] . 

The computation of the instantaneous QLV stress by means of 

he convolution product requires the storage of the whole strain 

istory, since the constitutive law is non-local in time. In computa- 

ional applications, this can be avoided by expanding the relaxation 
under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ) 
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Fig. 1. Number of QLV records by year in the Web of Science (WoS) database for 

the very specific query: AB = (visco ∗ AND quasi ∗ AND (Fung OR QLV ∗)) . 
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ensor as a Prony series, leading to the natural definition of mem- 

ry variables [17,18] . Suitable memory variables account for the de- 

ormation history in a time-local fashion [21] , allowing efficient 

valuation of the mechanical response. 

As described extensively by Maugin [22,23] , constitutive models 

ith memory variables rely on thermodynamics with internal vari- 

bles of state to ensure that the addition of new variables entails 

 dissipative contribution. Various viscoelastic constitutive models 

f the literature satisfy these principles by design [1] . In particu- 

ar, viscous strain variables may be consistently introduced within 

 multiplicative decomposition of the deformation gradient tensor, 

n combination with Maxwell-type rheologies [24,25] . 

To the present authors’ knowledge, a thermodynamically- 

onsistent expression of the energy in terms of the memory vari- 

bles of QLV is yet to be presented. In this paper, we recall 

he equations governing the motion of QLV solids with a single 

calar relaxation function ( Section 2 ). The main result is derived 

n Section 3 , namely a thermodynamically consistent expression 

f the free energy with appropriate internal variables of state. 

his way, we establish links between Fung’s QLV and the internal- 

ariable models by Simo [26] , and Holzapfel and Simo [27] . Us- 

ng a neoHookean model, the dissipative features of compressible 

LV solids are illustrated in Section 4 . The incompressible case is 

ddressed in Appendix A . 

. Governing equations 

.1. Preliminaries 

In what follows, we present the basic equations of Lagrangian 

olid dynamics [1,28] . We consider a homogeneous and isotropic 

olid continuum on which no external volume force is applied. A 

article initially at position X in the reference configuration moves 

o position x in the current configuration. The deformation gradi- 

nt tensor is the second-order tensor 

 = 

∂ x 

∂ X 

= I + Grad u , (1) 

here u = x − X is the displacement field, I is the identity tensor, 

nd Grad denotes the gradient operator with respect to the ma- 

erial coordinates X (Lagrangian gradient). If the Euclidean space 

s described by an orthonormal basis { e 1 , e 2 , e 3 } and a Cartesian 

oordinate system, then I = [ δi j ] , where δi j is the Kronecker delta. 

he volume dilatation 

 = det F (2) 

quals the ratio ρ0 /ρ of the mass densities in the reference (unde- 

ormed) and deformed configurations. 

One can define various strain tensors as functions of F , such 

s the right Cauchy–Green deformation tensor C = F � F , and the 

reen–Lagrange strain tensor E = 

1 
2 ( C − I ) . Frequently, principal 

tretches λi are introduced, whose squares λ2 
i 

correspond to the 

igenvalues of C . Thus, the principal invariants I of C are given by 
i 

2 
 1 = tr C = λ2 
1 + λ2 

2 + λ2 
3 

 2 = 

1 

2 

(
( tr C ) 2 − tr ( C 2 ) 

)
= λ2 

1 λ
2 
2 + λ2 

2 λ
2 
3 + λ2 

1 λ
2 
3 

 3 = det C = λ2 
1 λ

2 
2 λ

2 
3 = J 2 . 

(3) 

The dynamics of the continuum in question are governed by 

onservation of momentum, which involves the divergence of a 

tress tensor. Typically, in the Lagrangian description, this equation 

f motion involves the first Piola–Kirchhoff stress tensor P , and 

he Eulerian version involves the Cauchy stress tensor σ = J −1 P F � . 
pecified by the constitutive law, these stress measures are also 

elated to the second Piola–Kirchhoff stress tensor S = F −1 P . 

.2. Fung’s quasi-linear viscoelasticity 

Fung’s quasi-linear viscoelasticity (QLV) is presented below (see 

ec. 7.13 of [12] ). This model is based on the assumption that the 

tress is linearly dependent on the history of the elastic stress 

esponse, and a Boltzmann superposition principle between both 

uantities is assumed. The second Piola–Kirchhoff stress is given 

y 

 = G ∗ ˙ S 
e = 

∫ 
R 

G (t − s ) : ˙ S 
e 
(s ) d s = 

˙ G ∗ S e , (4) 

here the elastic response [13] 

 

e = ∂ W/∂ E = 2 ∂ W/∂ C 

= 2 ( W 1 + I 1 W 2 ) I − 2 W 2 C + 2 I 3 W 3 C 
−1 (5) 

= 2 W 1 I + 2 ( I 2 W 2 + I 3 W 3 ) C 
−1 − 2 I 3 W 2 C 

−2 

s derived from a strain energy density function W (I 1 , I 2 , I 3 ) , and G

s a fourth-order relaxation tensor. Here the colon denotes the dou- 

le contraction G : ˙ S 
e = [ G i jk� ̇

 S 
e 

k� ] where Einstein notation is used 

nd the dot denotes the material time derivative. The notation W i 

s shorthand for the derivative ∂ W/∂ I i . 
Also, in a similar fashion to Taylor et al. [21] , we introduce the 

lory decomposition of the deformation into volumetric and de- 

iatoric parts (see Holzapfel [1] Sec. 6.4). Thus, we introduce the 

olume-preserving Cauchy–Green strain tensor ˜ C = J −2 / 3 C and its 

olume-changing counterpart J 2 / 3 I . We perform the change of vari- 

ble W = 

˜ W ( ̃ I 1 , ̃  I 2 , J) in the expression of the strain energy, where

˜ 
 1 = J −2 / 3 I 1 , ˜ I 2 = J −4 / 3 I 2 , J = 

√ 

I 3 . (6) 

he invariants ˜ I i in Eq. (6) describe volume-preserving deforma- 

ion, while the dilatation J describes volume-changing deformation. 

he third invariant ˜ I 3 of ˜ C is equal to one, as deduced from the 

efinitions in Eq. (3) . 

To compute the elastic response (5) in terms of the new vari- 

bles ( ̃ I 1 , ̃  I 2 , J) , let us recall expressions for the tensor derivatives

 ̃

 C /∂ C = J −2 / 3 
(
I − 1 

3 C � C −1 
)

and ∂ J/∂ C = 

1 
2 J C 

−1 , where the fourth- 

rder unit tensor is defined as I = [ δik δ j� ] . Thus, we introduce the 

ecomposition 

S e = S e D + S e H , 

 

e 
D = J −2 / 3 Dev ( ̃ S 

e 
) with 

˜ S 
e = 2 ∂ ˜ W / ∂ ̃  C , (7) 

 

e 
H = ( ∂ ˜ W / ∂ J ) J C −1 

, 

here Dev (•) = (•) − 1 
3 (• : C ) C −1 denotes the deviatoric operator 

n the Lagrangian description [1] . The expression of ˜ S 
e 

is de- 

uced from Eq. (5) with 

˜ W 3 = 0 . Converting back to the variables 

I 1 , I 2 , I 3 ) , the chain rule yields 

 

e 
D = 2(W 1 + I 1 W 2 ) I − 2 W 2 C − 2 

( I 1 W 1 + 2 I 2 W 2 ) C 
−1 
3 
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= 2 W 1 I + 

2 

3 

( I 2 W 2 − I 1 W 1 ) C 
−1 − 2 I 3 W 2 C 

−2 
, (8) 

 

e 
H = 

2 

3 

( I 1 W 1 + 2 I 2 W 2 + 3 I 3 W 3 ) C 
−1 

, 

hich are the same expressions as in De Pascalis et al. 

13] (Eqs. (3.19)-(3.20) therein). In a standard fashion [1] , Taylor 

t al. [21] assumes the separability of isochoric and volumetric de- 

ormations W = 

˜ W 

iso ( ̃ I 1 , ̃  I 2 ) + 

˜ W 

vol (J) , which is a particular case of

he present expressions. 

In a similar fashion to related works [3,21] , we assume that 

he relaxation is the same in all directions, i.e. G = G I s where 

e have defined the fourth-order symmetric identity tensor I s = 

1 
2 [ δik δ j� + δi� δ jk ] , and G is a scalar function. Thus, the constitutive 

aw (4) yields 

 = G ∗ ˙ S 
e = 

˙ G ∗ S e . (9) 

ung [12] initially proposed an integral expression of G with a con- 

inuous spectrum of relaxation. This expression leads to high com- 

utational costs as it requires the storage of the whole deformation 

istory [9] . This drawback can be avoided by approximating G as 

n exponential series [17,18] 1 of the form 

 (t) = 

(
1 −

n ∑ 

k =1 

g k (1 − e −t/τk ) 
)

H (t) , (10) 

ith an arbitrary number n of relaxation mechanisms [15,21] . The 

eaviside step function H is included in Eq. (10) for convenience. 

uch a Prony series with magnitudes g k > 0 and characteristic re- 

axation times τk > 0 can be linked to generalised Maxwell-type 

heologies. 

. Thermodynamics 

.1. Generalities 

The consequences of the first and second principles of thermo- 

ynamics are summarized below. We consider deformable solids 

hose associated constitutive law involves n second-order tenso- 

ial internal variables of state α1 , . . . , αn [22,23] . 

Isentropic modelling. We consider the set of variables of state 

 η, E , α1 , . . . , αn } , where η denotes the entropy per unit mass. The

tate is assumed local in time, i.e., only its instantaneous value 

s considered. The first principle of thermodynamics is reflected 

n the conservation of energy ρ ˙ e = σ : D , where ˙ e is the material 

ime-derivative of the internal energy e per unit mass, and D = 

 

−� ˙ E F −1 denotes the strain-rate tensor (i.e., the symmetric part of 

he Eulerian velocity gradient ˙ F F −1 ). The second principle of ther- 

odynamics imposes the increase of entropy ρ ˙ η ≥ 0 . Assuming 

n adiabatic process, the dissipation per unit of reference volume 

eads D = ρ0 T ˙ η (W/m 

3 ), where T > 0 is the absolute temperature.

hus, combining the local equations of thermodynamics with the 

ibbs identity, the Clausius–Duhem inequality is obtained: 

 = ρ0 

(
T − ∂e 

∂η

)
˙ η + J σ : D − ∂U 

∂ E 

: ˙ E −
n ∑ 

k =1 

∂U 

∂ αk 

: ˙ αk 

≥ 0 . (11) 

ere, U = ρ0 e is the internal energy per unit reference volume. 

ince the inequality (11) must be satisfied for all states and all 

volutions, the coefficient T − ∂ e/∂ η must equal zero. Using the 

dentity J σ : D = S : ˙ E , see e.g. Ref. [29] , the Clausius–Duhem 

nequality (11) is rewritten as 

 = 

(
S − ∂U 

∂ E 

)
: ˙ E −

n ∑ 

k =1 

∂U 

∂ αk 

: ˙ αk ≥ 0 . (12) 
1 The increasing exponentials in cited literature indicate a potential error. 

T

w

3 
e call this framework isentropic because the partial derivatives 

 / ∂ E , ∂ / ∂ αk are evaluated at constant entropy [1] . 

Isothermal modelling. This approach involves the variables of 

tate { T , E , α1 , . . . , αn } . It is linked to the above expressions by in-

roducing the partial Legendre transform ψ = e − T η of e, which is 

elmholtz’ free energy per unit mass. We have 

= −∂ψ 

∂T 
, 

∂U 

∂ E 

= 

∂


∂ E 

, 
∂U 

∂ αk 

= 

∂


∂ αk 

, (13) 

here 
 = ρ0 ψ is the Helmholtz free energy per unit of reference 

olume. The Clausius–Duhem inequality (12) is re-expressed as 

 = 

(
S − ∂


∂ E 

)
: ˙ E −

n ∑ 

k =1 

∂


∂ αk 

: ˙ αk ≥ 0 . (14) 

e observe that thermodynamic restrictions have the same form 

n the isentropic and in the isothermal frameworks. In the isother- 

al framework described here, proving thermodynamic consis- 

ency of Fung’s QLV (9) amounts to finding 
, αk such that the 

lausius–Duhem inequality (14) is always satisfied. 

.2. Fung’s quasi-linear viscoelasticity 

Memory variables. Using the expression of the relaxation func- 

ion (10) , the constitutive law (9) is rewritten as [21] 

 = S e −
n ∑ 

k =1 

S v k (15) 

here the viscous stress 

 

v 
k = g k 

∫ t 

0 

(
1 − e −(t−s ) /τk 

)
˙ S 
e 
(s ) d s (16) 

an thus be interpreted as a memory variable. Computing its mate- 

ial time-derivative, one shows that S v k satisfies the linear evolution 

quation [21] 

k ̇
 S 
v 

k = g k S 
e − S v k . (17) 

hus, the convolution product (9) is replaced by a sum of n mem- 

ry variables, which satisfy a linear differential equation. 

By construction, Fung’s QLV model reduces to hyperelasticity for 

articular relaxation functions involving certain limits of relaxation 

imes: 

• Relaxed elastic solid. The relaxed elastic limit corresponds to in- 

finite durations, i.e. to short relaxation times τk → 0 . Hence, the 

evolution Eq. (17) produces S v k = g k S 
e . If the motion is causal, 

the convolution product (9) reduces to S = (1 − ∑ 

k g k ) S 
e where 

the coefficient 1 − ∑ 

k g k defines the relaxed elastic modulus. 
• Unrelaxed elastic solid. The unrelaxed elastic limit corresponds 

to infinitesimal durations, i.e. to long relaxation times τk → 

+ ∞ . Hence, the evolution Eq. (17) gives S v k = 0 for causal signal. 

The convolution product (9) reduces to S = S e . With respect to 

the relaxed elastic solid, the effective elastic moduli differ by a 

scalar coefficient. 

hese elastic limits correspond to zero dissipation [30] . 

Dissipation. Consider a (presumably convex) strain energy func- 

ion W from which the elastic response S e is obtained by differen- 

iation. We define the free energy in such a way that S = ∂ 
/∂ E 

s satisfied: 

= W ( E ) −
n ∑ 

k =1 

(
S v k : E − �k ( S 

v 
k ) 

)
. (18) 

he arbitrary functions �k are (presumably convex) potentials 

hose dependency on the variables S v of Eq. (16) needs to be 
k 
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pecified. If the viscous stresses S v k governed by Eq. (17) are in- 

ernal variables of state αk , then the dissipation (14) reads 

 = −
n ∑ 

k =1 

∂


∂ S v k 

: ˙ S 
v 

k 

= 

n ∑ 

k =1 

1 

τk 

(
E − ∂�k 

∂ S v k 

)
: 
(
g k S 

e − S v k 

)
. 

(19) 

et us introduce the Legendre transform W k ( E 

v 
k ) = S v k : E 

v 
k − �k ( S 

v 
k ) 

f �k such that E 

v 
k = ∂�k / ∂ S 

v 
k is the conjugate variable of S v k = 

 W k /∂ E 

v 
k . The free energy (18) and the dissipation (19) become 

= W ( E ) −
n ∑ 

k =1 

(
W k ( E 

v 
k ) + 

∂W k 

∂ E 

v 
k 

: ( E − E 

v 
k ) 

)
, 

D = 

n ∑ 

k =1 

1 

τk 

(
E − E 

v 
k 

)
: 

(
g k 

∂W 

∂ E 

− ∂W k 

∂ E 

v 
k 

)
. 

(20) 

o ensure the positivity of the dissipation, a compatible choice 

f potentials is W k (·) = g k W (·) pointwise. Consequently, the scal- 

ng property of the Legendre transformation imposes �k (·) = 

 k �(·/g k ) pointwise, where the potential � known as complemen- 

ary energy density defines the Legendre transform S e : E − W ( E ) of 

, with E = ∂ �/∂ S e [28,31] . Finally, we have 

= W ( E ) −
n ∑ 

k =1 

g k 

(
W ( E 

v 
k ) + 

∂W ( E 

v 
k ) 

∂ E 

v 
k 

: ( E − E 

v 
k ) 

)
, 

D = 

n ∑ 

k =1 

g k 
τk 

(
E − E 

v 
k 

)
: 

(
∂W ( E ) 

∂ E 

− ∂W ( E 

v 
k ) 

∂ E 

v 
k 

)
. 

(21) 

y virtue of the convexity inequality [28] , the dissipation D is non- 

egative for any convex strain energy density function W of E . 

herefore, the present compressible QLV model is thermodynam- 

cally admissible. 

Connections with other models. The derivation of the model in- 

roduced by Simo [26] is very similar. In fact, this model is based 

n the free energy 

= W ( E ) −
n ∑ 

k =1 

(
S v k : ˜ E − �k ( S 

v 
k ) 

)
, (22) 

here the separability of isochoric and volumetric deformations 

 = 

˜ W 

iso ( ̃ I 1 , ̃  I 2 ) + 

˜ W 

vol (J) is assumed. Similarly to Eq. (17) , a con-

istent linear evolution equation for the viscous stresses is pro- 

osed. Thus, the main difference between Eqs. (22) and (18) lies 

n the presence of the volume-preserving version 

˜ E = 

1 
2 ( ̃

 C − I ) of 

 . Note that the “Simo” model described in the MSC Nastran Im- 

licit Nonlinear user guide is actually a QLV model (Ref. [32] , 

hap. 10, Eq. (10–88)). Nevertheless, that implementation assumes 

that the viscoelastic behavior …acts only on the deviatoric behav- 

or”. While it remains unclear how this is done, the implemen- 

ation may therefore be consistent with the original Simo model 

26] . 

The free energy (18) of Fung’s QLV can be rewritten as 
 = 

∞ + 

∑ 

k ϒk with 

∞ = 

(
1 −

n ∑ 

k =1 

g k 

)
W ( E ) , 

ϒk = g k W ( E ) −
(
S v k : E − �k ( S 

v 
k ) 

)
. 

(23) 

he symbol 
∞ denotes the free energy of the relaxed elastic 

olid, such that S ∞ = ∂ 
∞ /∂ E is the corresponding Piola–Kirchhoff

tress. Introducing the variable 

 k = ∂ϒk / ∂ E = g k S 
e − S v k 

= g k 

∫ t 

e −(t−s ) /τk ˙ S 
e 
(s ) d s 

(24) 
0 

4 
ields the constitutive law S = S ∞ + 

∑ 

k Q k and the rate equation 

˙ 
 k = g k ̇ S 

e − Q k /τk . These expressions are very similar to Sec. 6.10 

f the monograph by Holzapfel [1] . Indeed, the latter follow from 

he works of Simo [26] and Holzapfel and Simo [27] , as well as

ovindjee and Simo [33] . Thus, the above nonlinear viscoelasticity 

heories are strongly related to QLV. Moreover, they are equivalent 

n the incompressible limit (see Appendix A ), as observed in previ- 

us work [20,34] . 

The expression of the free energy may also be rewritten as 

 hereditary integral. Miller and Chinzei [35] and related studies 

11,21] introduce the convolution product 
∗ = G ∗ ˙ W from which 

he stress S = G ∗ ˙ S 
e 

is derived. While the final expression of the 

tress can easily be related to the present study ( Eq. (9) ), it is not

s straightforward to explain the form of the free energy 
∗. This 

ay be a consequence of a daring differentiation of the free energy 

ith respect to the instantaneous strain inside the convolution in- 

egral (see Ref. [21] Eq. (8)). Note that in the infinitesimal strain 

imit, the consistent potential energy reads as a double convolu- 

ion of the relaxation function with the strain rates (see e.g. Car- 

ione [10] Chap. 2). This remark further questions the expression 

∗ of the free energy as a single convolution product. 

. Illustrations 

The theoretical analysis of Section 3 is now illustrated by means 

f simple deformations. We consider compressible neoHookean 

LV solids described by the strain energy [28] 

 = 

1 

2 

μ (I 1 − 3 − 2 ln J) + 

1 

2 

μ′ (J − 1) 2 , (25) 

here the Lamé parameters μ′ , μ are positive. The correspond- 

ng bulk modulus reads μ′ + 

2 
3 μ. The elastic response S e = ∂ W/∂ E 

educed from Eqs. (7) and (8) reads 

 

e = μ ( I − C −1 ) + μ′ J(J − 1) C −1 
. (26) 

ue to consistency with linear elasticity in the infinitesimal strain 

imit, this constitutive law is at least locally invertible. Thus, we 

ntroduce the complementary energy density �( S e ) such that E = 

 �/∂ S e . 
The components of F and C for uniform extension along the X- 

irection are of the form [28] 

 = 

⎡ 

⎣ 

λ 0 0 

0 

√ 

J/λ 0 

0 0 

√ 

J/λ

⎤ 

⎦ , C = 

[ 

λ2 0 0 

0 J/λ 0 

0 0 J/λ

] 

, (27) 

here λ > 0 is the tensile stretch. In simple tension , the tractions 

ransverse to the X-direction vanish, so that 

 = 

1 

2 

(
1 − ϑ/λ + 

√ 

(1 − ϑ/λ) 2 + 4 ϑ 

)
(28) 

ith ϑ = μ/μ′ . The elastic response of Eq. (26) becomes 

 

e = s e e 1 � e 1 with s e = μ
(
1 − J/λ3 

)
. (29) 

ig. 2 a shows the evolution of s e with respect to the stretch λ, 

s well as the evolution of the Cauchy stress component λ2 s e /J. 

ere, we have chosen ϑ = 

1 
3 × 10 −3 , which is a typical value for 

early-incompressible rubber-like soft solids. One observes that the 

tress-stretch relationship is one-to-one over the range displayed 

n the figure. Within this range, we can deduce the stretch λ > 0 

rom s e using Eqs. (28) and (29) , e.g. by means of a root-finding

lgorithm. Thus, we can retrieve the deformation in Eq. (27) from 

he stress. 

The viscoelastic stress S is given by the convolution product in 

q. (9) . This constitutive law is rewritten as S = S e − ∑ 

k S 
v 
k in terms 

f the memory variables S v , which depend on the whole history 
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Fig. 2. (a) Tensile stress of neoHookean elastic material with moduli μ = 1 . 0 kPa 

and μ′ = 3 0 0 0 μ. (b) Dissipation term of Eq. (31) . The black line marks the locus 

λ = λv 
k 

of the relaxed elastic solid limit. 
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 �→ S e (t) of the elastic stress. Here, the viscous stresses are of the 

orm S v k = s v 
k 

e 1 � e 1 for all times, where 

 

v 
k = g k 

∫ t 

0 

(
1 − e −(t−s ) /τk 

)
˙ s e (s ) d s (30) 

s obtained by componentwise integration of Eq. (16) . 

The viscous strains E 

v 
k are deduced from the viscous stresses, 

s specified in Section 3 . Thus, these memory variables are also 

unctions of the entire stress history. In fact, one shows that E 

v 
k = 

 �( S v k /g k ) /∂ ( S 
v 
k /g k ) by using the definition of �k with respect to

. In other words, the mappings E �→ S e and E 

v 
k �→ S v k /g k based 

n the strain energy W are the same, and they admit the same 

nverse based on the complementary energy �. In the present 

ne-dimensional case, it suffices to replace s e , λ by s v 
k 
/g k , λ

v 
k 

in 

qs. (28) and (29) to retrieve the stretches λv 
k 

from the viscous 

tresses s v 
k 
. This way, the corresponding deformations E 

v 
k are ob- 

ained. Note in passing that besides being quite involved, the com- 

utation of E 

v 
k is not needed in most practical applications. 

The dissipation D of Eq. (21) involves the sum of terms of the 

orm 

 k = 

(
E − E 

v 
k 

)
: 
(
S e − S v k / g k 

)
= 

1 

2 

(
λ2 − (λv 

k ) 
2 
)(

s e − s v k /g k 
) (31) 

hose evaluation follows from Eqs. (28) and (29) in the present 

ne-dimensional case. The positivity of D k for all deformations 

nd all evolutions is illustrated in Fig. 2 b. The black line marks 

he locus E = E 

v 
k of the relaxed elastic solid limit where D k van- 

shes. Finally, the compressible neoHookean QLV solid model is 

hermodynamically admissible in simple tension over the range of 

tretches considered here. 

. Conclusion 

In the framework of Fung’s quasi-linear viscoelasticity model, 

he reinterpretation of the natural memory variables as internal 

ariables of state provides an expression of the free energy. The 

issipation is shown to be positive provided that the strain energy 

unction is convex. We note that the model equations so-obtained 

an be linked to other models in the literature. 
5 
We should be aware of the limitations of the QLV model, 

hich is known to hardly capture the discrepancy between creep 

nd relaxation time scales [18] and which in general does not 

xhibit strain-dependent relaxation effects. Moreover, QLV may 

nly be valid at moderate deformations [11] . However, its strong 

imilarities to other models mean that its regimes of validity 

re more-or-less equivalent. The above results could be extended 

nd employed in the modelling of anisotropic materials [34] and 

hermoelastic materials [1] . The results may also be extended to 

ompressible materials with distinct relaxation functions in shear 

nd in compression [13] . More general results could be obtained 

y exploiting the notion of fading memory, and the similarity 

etween QLV and the linear viscoelasticity formalism [36,37] . 
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ppendix A. Incompressible case 

In the case of incompressible materials, the volume dilatation 

 ≡ 1 is prescribed at all times, and the mass density ρ = ρ0 is con-

tant. The deformation E is equal to its volume-preserving coun- 

erpart ˜ E = 

1 
2 ( ̃

 C − I ) . Moreover, the third invariant I 3 ≡ 1 is pre- 

cribed too, so that the strain energy can be reduced to a function 

 (I 1 , I 2 ) . The constitutive law (9) becomes 

 = −p C −1 + G ∗ ˙ S 
e = −p C −1 + 

˙ G ∗ S e , (A.1) 

here S e = ∂ W/∂ E is deduced from Eq. (8) with W 3 = 0 , and p is

n indeterminate Lagrange multiplier due to the incompressibility 

onstraint. 

In a similar fashion to the compressible case (15) , the constitu- 

ive law (A.1) is expressed as 

 = −p C −1 + S e −
n ∑ 

k =1 

S v k , (A.2) 

here the viscous stresses S v k are governed by the linear evolution 

q. (17) . We define the free energy 
 using the same expression 

s in Eq. (18) . This way, the Piola–Kirchhoff stress of Eq. (A.1) sat- 

sfies S = −p C −1 + ∂ 
/∂ E . The incompressibility constraint is in- 

luded in the Clausius–Duhem inequality (14) by introducing the 

agrange multiplier p as follows: 

 = 

(
S − ∂


∂ E 

+ p C −1 

)
: ˙ E −

n ∑ 

k =1 

∂


∂ S v k 

: ˙ S 
v 

k ≥ 0 , (A.3) 

ee Holzapfel [1] Sec. 6.3. The next steps of the derivation are anal- 

gous to the compressible case, and finally, we obtain the same ex- 

ression of the dissipation as in Eq. (21) . Therefore, the positivity 

f the dissipation is guaranteed for convex strain energy functions 

 . 

emark. In Eq. (A.1) , the elastic stress S e may include hydro- 

tatic stress contributions — in other words, we have S e : C 
≡ 0 . 

ssuming the elastic stress S e purely deviatoric is rather restric- 

ive. Indeed, the corresponding Lagrange–Charpit equations yield 

https://doi.org/10.13039/501100002081
https://doi.org/10.13039/501100000266
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 = f (I 1 / 
√ 

I 2 ) where f is an arbitrary function. Sometimes, incom- 

ressible QLV is formulated as follows [13] 

 = −p C −1 + G ∗ ˙ S 
e 

D = −p C −1 + 

˙ G ∗ S e D , (A.4) 

here S e D = Dev ( S e ) is purely deviatoric. To proceed as above, one 

ay replace the strain energy W by the strain energy 

 

� = W (I 1 , I 2 ) − 1 

6 

( S e : C )(I 3 − 1) (A.5) 

n Eq. (18) , which is defined in such a way that S e D = ∂ W 

� /∂ E 

nder the incompressibility constraint. Alternatively, one may ex- 

end 

˜ W ( ̃ I 1 , ̃  I 2 ) to non-unimodular deformation gradients, such that 

 

e 
D = ∂ ˜ W /∂ E is satisfied when incompressibility is assumed [38] . 

hus, the analysis of the dissipation’s sign for Eq. (A.4) seems more 

ntricate. 

eferences 

[1] G.A. Holzapfel , Nonlinear Solid Mechanics: A Continuum Approach for Engi- 

neering, John Wiley & Sons Ltd., 20 0 0 . 
[2] J. Lemaitre , J.-L. Chaboche , A. Benallal , R. Desmorat , M ̧E canique des mat ̧E riaux

solides, 3, Dunod, 2009 . 

[3] C.S. Drapaca, S. Sivaloganathan, G. Tenti, Nonlinear constitutive laws in 
viscoelasticity, Math. Mech. Solids 12 (5) (2007) 475–501, doi: 10.1177/ 

1081286506062450 . 
[4] A. Wineman, Nonlinear viscoelastic solids—a review, Math. Mech. Solids 14 (3) 

(20 09) 30 0–366, doi: 10.1177/1081286509103660 . 
[5] C. Truesdell, W. Noll, The Non-Linear Field Theories of Mechanics, 3, Springer- 

Verlag, 2004, doi: 10.1007/978- 3- 662- 10388- 3 . 

[6] L.E. Malvern , Introduction to the Continuum Mechanics of a Continuous 
Medium, Prentice-Hall, Inc., 1969 . 

[7] M. Destrade, G. Saccomandi, M. Vianello, Proper formulation of viscous dissi- 
pation for nonlinear waves in solids, J. Acoust. Soc. Am. 133 (3) (2013) 1255–

1259, doi: 10.1121/1.4776178 . 
[8] M.H.B.M. Shariff, R. Bustamante, J. Merodio, Rate type constitutive equations 

for fiber reinforced nonlinearly vicoelastic solids using spectral invariants, 
Mech. Res. Commun. 84 (2017) 60–64, doi: 10.1016/j.mechrescom.2017.06.010 . 

[9] H.T. Banks, S. Hu, Z.R. Kenz, A brief review of elasticity and viscoelasticity for 

solids, Adv. Appl. Math. Mech. 3 (1) (2011) 1–51, doi: 10.4208/aamm.10-m1030 . 
[10] J.M. Carcione, Wave Fields in Real Media, 3, Elsevier Science, 2015, doi: 10.1016/ 

C2013- 0- 18893- 9 . 
[11] R. de Rooij, E. Kuhl, Constitutive modeling of brain tissue: current perspectives, 

Appl. Mech. Rev. 68 (1) (2016), doi: 10.1115/1.4032436 . 
12] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 2, Springer, 

1993, doi: 10.1007/978- 1- 4757- 2257- 4 . 

[13] R. De Pascalis, I.D. Abrahams, W.J. Parnell, On nonlinear viscoelastic deforma- 
tions: a reappraisal of Fung’s quasi-linear viscoelastic model, Proc. R. Soc. A 

470 (2014) 20140058, doi: 10.1098/rspa.2014.0058 . 
[14] J.J. Sarver, P.S. Robinson, D.M. Elliott, Methods for quasi-linear viscoelastic 

modeling of soft tissue: application to incremental stress-relaxation experi- 
ments, J. Biomech. Eng. 125 (5) (2003) 754–758, doi: 10.1115/1.1615247 . 

[15] B. Rashid, M. Destrade, M.D. Gilchrist, Mechanical characterization of brain tis- 

sue in simple shear at dynamic strain rates, J. Mech. Behav. Biomed. Mater. 28 
(2013) 71–85, doi: 10.1016/j.jmbbm.2013.07.017 . 

[16] B. Babaei, S.D. Abramowitch, E.L. Elson, S. Thomopoulos, G.M. Genin, A discrete 
spectral analysis for determining quasi-linear viscoelastic properties of biolog- 

ical materials, J. R. Soc. Interface 12 (113) (2015) 20150707, doi: 10.1098/rsif. 
2015.0707 . 
6 
[17] M.A . Puso, J.A . Weiss, Finite element implementation of anisotropic quasi- 
linear viscoelasticity using a discrete spectrum approximation, J. Biomech. Eng. 

120 (1) (1998) 62–70, doi: 10.1115/1.2834308 . 
[18] G.A. Holzapfel, Computational biomechanics of soft biological tissues: arterial 

walls, hearts walls, and ligaments, in: E. Stein, R. de Borst, T.J.R. Hughes (Eds.), 
Encyclopedia of Computational Mechanics Second Edition, John Wiley & Sons, 

Ltd, 2017, doi: 10.1002/9781119176817.ecm2041 . 
[19] M. Asif, M. Ramezani, K.A. Khan, M.A. Khan, K.C. Aw, Investigation of the 

strain-rate-dependent mechanical behavior of a photopolymer matrix compos- 

ite with fumed nano-silica filler, Polym. Eng. Sci. 59 (8) (2019) 1695–1700, 
doi: 10.1002/pen.25168 . 

20] N. Jridi, M. Arfaoui, A. Hamdi, M. Salvia, O. Bareille, M. Ichdou, J. Ben Abdallah,
Separable finite viscoelasticity: integral-based models vs. experiments, Mech. 

Time-Depend. Mater. 23 (2019) 295–325, doi: 10.1007/s11043- 018- 9383- 2 . 
21] Z.A. Taylor, O. Comas, M. Cheng, J. Passenger, D.J. Hawkes, D. Atkinson, 

S. Ourselin, On modelling of anisotropic viscoelasticity for soft tissue simu- 

lation: numerical solution and GPU execution, Med. Image Anal. 13 (2) (2009) 
234–244, doi: 10.1016/j.media.2008.10.001 . 

22] G.A. Maugin, The Thermomechanics of Nonlinear Irreversible Behaviors, World 
Scientific Publishing, 1999, doi: 10.1142/3700 . 

23] G.A. Maugin, The saga of internal variables of state in continuum thermo- 
mechanics (1893–2013), Mech. Res. Commun. 69 (2015) 79–86, doi: 10.1016/j. 

mechrescom.2015.06.009 . 

24] J. Lubliner, A model of rubber viscoelasticity, Mech. Res. Commun. 12 (2) 
(1985) 93–99, doi: 10.1016/0 093-6413(85)90 075-8 . 

25] S. Lejeunes, A. Boukamel, S. Meo, Finite element implementation of nearly- 
incompressible rheological models based on multiplicative decompositions, 

Comput. Struct. 89 (3–4) (2011) 411–421, doi: 10.1016/j.compstruc.2010.11.013 . 
26] J.C. Simo, On a fully three-dimensional finite-strain viscoelastic damage model: 

formulation and computational aspects, Comput. Methods Appl. Mech. Eng. 60 

(2) (1987) 153–173, doi: 10.1016/0045-7825(87)90107-1 . 
27] G.A. Holzapfel, J.C. Simo, A new viscoelastic constitutive model for continu- 

ous media at finite thermomechanical changes, Int. J. Solids Struct. 33 (20–22) 
(1996) 3019–3034, doi: 10.1016/0 020-7683(95)0 0263-4 . 

28] R.W. Ogden , Non-Linear elastic deformations, Ellis Horwood Ltd., 1984 . 
29] H. Berjamin, N. Favrie, B. Lombard, G. Chiavassa, Nonlinear waves in solids 

with slow dynamics: an internal-variable model, Proc. R. Soc. A 473 (2201) 

(2017) 20170024, doi: 10.1098/rspa.2017.0024 . 
30] W.J. Parnell, R. De Pascalis, Soft metamaterials with dynamic viscoelastic func- 

tionality tuned by pre-deformation, Phil. Trans. R. Soc. A 377 (2144) (2019) 
20180072, doi: 10.1098/rsta.2018.0072 . 

31] Y.C. Fung, Inversion of a class of nonlinear stress-strain relationships of biolog- 
ical soft tissues, J. Biomech. Eng. 101 (1) (1979) 23–27, doi: 10.1115/1.3426219 . 

32] MSC. Software Corporation, MSC Nastran 20 07, Implicit Nonlinear (SOL 60 0) 

User’s Guide, Newport Beach, CA, 2007. https://simcompanion.mscsoftware. 
com/infocenter/index?page=content&id=DOC9178 . (Accessed 8/12/2020). 

33] S. Govindjee, J.C. Simo, Mullins’ Effect and the strain amplitude dependence of 
the storage modulus, Int. J. Solids Struct. 29 (14–15) (1992) 1737–1751, doi: 10. 

1016/0020-7683(92)90167-R . 
34] V. Balbi, T. Shearer, W.J. Parnell, A modified formulation of quasi-linear vis- 

coelasticity for transversely isotropic materials under finite deformation, Proc. 
R. Soc. A 474 (2217) (2018) 20180231, doi: 10.1098/rspa.2018.0231 . 

35] K. Miller, K. Chinzei, Mechanical properties of brain tissue in tension, J. 

Biomech. 35 (4) (2002) 4 83–4 90, doi: 10.1016/S0021-9290(01)00234-2 . 
36] M. Fabrizio, A. Morro, Thermodynamic restrictions on relaxation functions in 

linear viscoelasticity, Mech. Res. Commun. 12 (2) (1985) 101–105, doi: 10.1016/ 
0 093-6413(85)90 077-1 . 

37] M. Fabrizio, A. Morro, Mathematical Problems in Linear Viscoelasticity, SIAM, 
1992, doi: 10.1137/1.9781611970807 . 

38] T.J. Pence, Distortion of anisotropic hyperelastic solids under pure pressure 

loading: compressibility, incompressibility and near-incompressibility, J. Elast. 
114 (2) (2014) 251–273, doi: 10.1007/s10659- 013- 9438- 1 . 

http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0001
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0002
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0002
https://doi.org/10.1177/1081286506062450
https://doi.org/10.1177/1081286509103660
https://doi.org/10.1007/978-3-662-10388-3
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0006
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0006
https://doi.org/10.1121/1.4776178
https://doi.org/10.1016/j.mechrescom.2017.06.010
https://doi.org/10.4208/aamm.10-m1030
https://doi.org/10.1016/C2013-0-18893-9
https://doi.org/10.1115/1.4032436
https://doi.org/10.1007/978-1-4757-2257-4
https://doi.org/10.1098/rspa.2014.0058
https://doi.org/10.1115/1.1615247
https://doi.org/10.1016/j.jmbbm.2013.07.017
https://doi.org/10.1098/rsif.2015.0707
https://doi.org/10.1115/1.2834308
https://doi.org/10.1002/9781119176817.ecm2041
https://doi.org/10.1002/pen.25168
https://doi.org/10.1007/s11043-018-9383-2
https://doi.org/10.1016/j.media.2008.10.001
https://doi.org/10.1142/3700
https://doi.org/10.1016/j.mechrescom.2015.06.009
https://doi.org/10.1016/0093-6413(85)90075-8
https://doi.org/10.1016/j.compstruc.2010.11.013
https://doi.org/10.1016/0045-7825(87)90107-1
https://doi.org/10.1016/0020-7683(95)00263-4
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0028
http://refhub.elsevier.com/S0093-6413(20)30176-2/sbref0028
https://doi.org/10.1098/rspa.2017.0024
https://doi.org/10.1098/rsta.2018.0072
https://doi.org/10.1115/1.3426219
https://simcompanion.mscsoftware.com/infocenter/index?page=content&id=DOC9178
https://doi.org/10.1016/0020-7683(92)90167-R
https://doi.org/10.1098/rspa.2018.0231
https://doi.org/10.1016/S0021-9290(01)00234-2
https://doi.org/10.1016/0093-6413(85)90077-1
https://doi.org/10.1137/1.9781611970807
https://doi.org/10.1007/s10659-013-9438-1

	On the thermodynamic consistency of Quasi-linear viscoelastic models for soft solids
	1 Introduction
	2 Governing equations
	2.1 Preliminaries
	2.2 Fung’s quasi-linear viscoelasticity

	3 Thermodynamics
	3.1 Generalities
	3.2 Fung’s quasi-linear viscoelasticity

	4 Illustrations
	5 Conclusion
	Declaration of Competing Interest
	Acknowledgment
	Appendix A Incompressible case
	References


