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Attention is given to surface waves of shear-horizontal modes in piezoelectric crystals permitting
the decoupling between an elastic in-plane Rayleigh wave and a piezoacoustic antiplane Bleustein–
Gulyaev wave. Specifically, the crystals possess 4¯ symmetry ~inclusive of 4̄2m, 4̄3m, and 23
classes! and the boundary is any plane containing the normal to a symmetry plane~rotatedY cuts
about theZ axis!. The secular equation is obtained explicitly as a polynomial not only for the
metallized boundary condition but, in contrast to previous studies on the subject, also for other types
of boundary conditions. For the metallized surface problem, the secular equation is a quadratic in the
squared wave speed; for the unmetallized surface problem, it is a sextic in the squared wave speed;
for the thin conducting boundary problem, it is of degree 16 in the speed. The relevant root of the
secular equation can be identified and the complete solution is then found~attenuation factors, field
profiles, etc.!. The influences of the cut angle and of the conductance of the adjoining medium are
illustrated numerically for AlAs (4̄3m), BaLaGa3O7 (4̄2m), and Bi12GeO20 ~23!. Indications are
given on how to apply the method to crystals with 222 symmetry. ©2004 Acoustical Society of
America. @DOI: 10.1121/1.1819503#
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I. INTRODUCTION

The nature and properties of a piezoacoustic surf
wave depend heavily on the crystallographic and anisotro
properties of the piezoelectric substrate, on the direction
propagation, and on the orientation of the cut~boundary!
plane. For certain choices, the in-plane components of
mechanical displacement decouple from the antiplane c
ponent, leading to two different types of surface wav
namely, the Rayleigh wave, elliptically polarized in the pla
containing the direction of propagation and the normal to
substrate surface, and the shear-horizontal~SH! wave, lin-
early polarized in the direction normal to the direction
propagation and parallel to the free surface. Moreover, ei
wave or both waves may be coupled to the electromagn
fields. Of special interest are the configurations allowing
a piezoacoustic SH wave, decoupled from a purely ela
Rayleigh wave. Indeed, the former type of wave, also kno
as Bleustein–Gulyaev1,2 wave, penetrates more deeply in
the substrate than the latter type; consequently, the aco
energy is less localized and the power can be increased
nificantly before damage occurs~Tseng3! although, as
pointed out by a referee, there are exceptions to
behavior.4 Moreover, an SH wave-based resonator is sma
than a resonator based on the propagation of a sagittally
larized surface wave~see Kadota and collaborators5,6!; this
feature results in a downsizing of design, an attractive po
for the miniaturization of mobile phones for instance, whe
SAW devices are used as filters. Koerber and Vogel7,8 iden-
tified all the cuts and rotations of axes leading to piezoaco
tic SH modes; they exist for some suitable cuts and trans
mations in the following crystal classes: 2, 23, 43̄m, 222,
2mm, 4, 4̄, 6, 4mm, 6mm, 32, 4̄2m, 6̄m2, 422, and 622. The
3432 J. Acoust. Soc. Am. 116 (6), December 2004 0001-4966/2004/1
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main purpose of this paper is to derive explicitly the secu
equation for piezoacoustic SH surface waves uncoupled f
purely elastic Rayleigh waves polarized in a plane of sy

metry, for a crystal in the 4¯symmetry class~and thus for the

4̄2m, 4̄3m, and 23 classes!.
Several workers addressed this topic in the wake of

seminal papers by Bleustein and by Gulyaev, but expl
results remained limited either to propagation in special
rections for which one of the piezoelectric constant
zero3,9–13 or to the case where the free surface of the s
strate is metallized,9 or in the weak piezoelectric couplin
approximation.9,14 Here, the crystal is cut along a plane co
taining theZ axis and makingany angle with theXY crys-
tallographic plane. Moreover, the surface may be metalliz
or in contact with the vacuum, or in contact with a th
conducting layer with arbitrary finite conductance. Also,
approximation is made about the strength of the piezoelec
effect. Attention is, however, limited to crystals with tetra

onal 4̄ symmetry ~inclusive of the tetragonal 42̄m, cubic

4̄3m, and cubic 23 symmetries!. This limitation is not essen-
tial but simplifies the notation to a certain extent; it is ne
ertheless possible to extrapolate the method presented
after to crystals with lower symmetries such as orthorhom
222, as pointed out at the end of the paper. Note that
study of piezoacoustic SH surface waves in potassium
bate~2-mm symmetry! was recently undertaken by Mozhae
and Weihnacht,15 who showed that for that class, the secu
equation is a cubic in the squared wave speed.

The constitutive equations and the piezoacoustic eq
tions for the class of crystals listed above are recalled
Secs. II A and II B, respectively, and some fundamental eq
tions, which encapsulate the whole boundary value prob
16(6)/3432/11/$20.00 © 2004 Acoustical Society of America
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and its resolution, are quickly derived in Sec. II C.
These fundamental equations are applied in Sec. II

the consideration of a piezoacoustic SH surface wave
method based on the resolution of the propagation condi
for partial modes first, and the resolution of the bound
value conditions next, would lead to quite an involved ana
sis, including the analytical examination of a quartic polyn
mial for the coefficients of attenuation. The method based
the fundamental equations derived in Sec. II C circumve
the stage of the quartic and delivers directly the secular eq
tion in polynomial form. In particular it is seen that for me
allized ~also known as short-circuit! boundary conditions
~Sec. III A!, this equation is just a quadratic in the squar
wave speed whose relevant root is readily identified.
open-circuit boundary conditions~Sec. III B!, the secular
equation is also a quadratic in the squared wave speed, b
is not valid ~the corresponding solution does not satisfy t
boundary conditions.! For the free-~nonmetallized! boundary
condition ~Sec. III C!, the secular equation is a sextic in th
squared wave speed. For the conductive thin layer boun
condition~Sec. III D!, the secular equation is a polynomial
degree 16 in the wave speed.

Once the secular equation is solved for the speed,
complete description of the wave follows naturally~Sec.
IV A !, including the attenuation coefficients and the profi
for the mechanical displacement, electric potential, tracti
and electrical induction. A simple check for the validity
the solution is proposed in Sec. IV B.

The results are illustrated numerically and graphica
using experimental data available for AlAs~cubic 4̄3m),
BaLaGa3O7 ~tetragonal 4̄2m), and Bi12GeO20 ~cubic 23! in
Sec. V. The range of existence of the free-SH wave w
respect to the angle of cut, the speeds of propagation,
amplitude of the profiles, etc. are all quantities which can
obtained numerically with as high a degree of numerical
curacy as is needed.
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. Collet an
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The paper concludes with a discussion of the merits
possible applications of the method presented, and wit
chronological account of the several advances in the fi
without which the results of this paper could not have be
established.

II. PRELIMINARIES

A. Constitutive equations

Consider a piezoelectric crystal with mass densityr,
possessing at most the tetragonal 4¯symmetry~this symmetry
includes the tetragonal 42̄m, cubic 4̄3m, and cubic 23
cases.! Let ĉi jkl , êi jk , andê i j be its respective elastic, piezo
electric, and dielectric constants with respect to the coo
nate systemXYZ along the crystallographic axes. Now, c
the crystal by a plane containing theZ axis and making an
angle u with the XY plane. The new coordinate syste
x1x2x3 ~say!, obtained after rotation ofXYZ about Z, is
defined by

F x1

x2

x3

G5F cosu sinu 0

2sinu cosu 0

0 0 1
G FX

Y
Z
G , ~1!

and so, the plane of cut is defined byx250, as shown in Fig.
1.

In the new coordinate system, under the electrostatic
proximation for the electrical field, the stress tensor com
nentss i j and the electric induction componentsDi are re-
lated to the gradients of the mechanical displacementu and
of the electrical potentialf by the constitutive relations

s i j 5ci jkl ul ,k1ei jkf ,k , Di5eiklul ,k2e ikf ,k , ~2!

where the comma denotes partial differentiation~here, with
respect to thexk coordinates!. Using the Voigt contracted
notation for thec, e, and e, these relations are written in
matrix form as
3
s11

s22

s33

s23

s31

s12

D1

D2

D3

4 53
c11 c12 c13 0 0 c16 0 0 e31

c12 c11 c13 0 0 2c16 0 0 2e31

c13 c13 c33 0 0 0 0 0 0

0 0 0 c44 0 0 e14 2e15 0

0 0 0 0 c44 0 e15 e14 0

c16 2c16 0 0 0 c66 0 0 e36

0 0 0 e14 e15 0 2e11 0 0

0 0 0 2e15 e14 0 0 2e11 0

e31 2e31 0 0 0 e36 0 0 2e33

4 3
u1,1

u2,2

u3,3

u2,31u3,2

u3,11u1,3

u1,21u2,1

f ,1

f ,2

f ,3

4 . ~3!
Explicitly, the ci j andei j are deduced from theĉi j and
êi j in XYZ by well-known relationships. In particular

c445 ĉ44, e115 ê11, e145ê14cos 2u2ê15sin 2u,

e155ê15cos 2u1ê14sin 2u. ~4!
B. Piezoacoustic equations

Now, consider the propagation of an antiplane~SH! in-
homogeneous wave in the half-spacex2>0, traveling with
speedv and wave numberk in thex1 direction, with attenu-
ation in thex2 direction. It is known16 that for the crystals
3433d M. Destrade: Shear-horizontal piezoacoustic surface waves
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under consideration this wave decouples entirely from
in-plane counterpart, a purely elastic two-component R
leigh wave. Thus, the wave is modeled asu15u250, and

$u3 ,f%5$U3~kx2!,w~kx2!%eik(x12vt), ~5!

for some yet unknown functionsU3 andw of kx2 . Accord-
ingly, the constitutive equations Eq.~2! lead to similar forms
for the stress and electrical components

$s i j ,Di%5 ik$t i j ~kx2!,di~kx2!%eik(x12vt), ~6!

wheret115t225t125d350, and

t335c13U12 ic11U28 , t3252 ic44U381e14w1 ie15w8,

t315c44U31e15w2 ie14w8, d15e15U32 ie14U382e11w,
~7!

d25e14U31 ie15U381 i e11w8.

Here and hereafter, the prime denotes differentiation w
respect to the variablekx2 .

Using the above-introduced functionsU3 , w, t i j , di , the
classical equations of piezoacoustics

s i j , j5rui ,tt , Di ,i50, ~8!

reduce to

2t131 i t 328 52XU3 , 2d11 id2850, ~9!

whereXªrv2.
When the regionx2,0 above the crystal is the vacuu

~permeability: e0) and the surfacex250 remains free of
tractions, then the boundary value problem correspondin
Eq. ~9! is that of piezoacoustic~Bleustein–Gulyaev! SH sur-
face waves.

C. Fundamental equations for the resolution

The method of resolution rests on the property that
piezoacoustic equations~9! can be written in the form,

j85 iNj, where j~kx2!5@U3 ,w,t32,d2#T, ~10!

andN is a real 434 matrix which, brought up to any pos
tive or negative integer powern, has the following block
structure:

Nn5F N1
(n) N2

(n)

K (n) ~N1
(n)!TG , with K (n)5~K (n)!T,

FIG. 1. RotatedY cut about theZ axis.
3434 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. C
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(n)5~N2

(n)!T, ~11!

whereT denotes the transpose, and where the submatrice
Nn are 232 matrices. As kindly pointed out by a referee, t
first-order differential form Eq.~10! of the piezoacoustic
equations dates back to Kraut,17 and before that, to Stroh18

and others~see Fahmy and Adler19 for references! for the
purely elastic case. The subsequent analysis below bu
upon several crucial contributions, which are listed and
into context at the end of this article.

Now, because the wave amplitude must vanish aw
from x250, j(kx2) is such that

j~`!50. ~12!

Clearly, premultiplication ofNn by Î defined as

Î5F0 1

1 0G , where 15F1 0

0 1G , ~13!

produces a symmetric matrix,

ÎNn5FK (n) ~N1
(n)!T

N1
(n) N2

(n) G5~ ÎNn!T, ~14!

so that taking the scalar product on both sides of Eq.~10! by
ÎNnj̄, where the overbar denotes the complex conjug
leads toj̄"ÎNnj85 i j̄"ÎNn11j, the right-hand side of which is
purely imaginary. Taking the real part and integrating yie
j̄"ÎNnj5const.50 @by Eq. ~12!#, and in particular

j̄~0!• ÎNnj~0!50. ~15!

These fundamental equations20–22 allow for a completely
analytical derivation of the secular equation, for a great
riety of boundary conditions. Note that becauseN is a 4
34 matrix, there are at most three independent fundame
equations according to the Cayley–Hamilton theorem. A
choice of three different integersn is legitimate, although the
choicen521,1,2 seems to yield the most compact expr
sions for the components ofNn.

III. SECULAR EQUATIONS

For the piezoacoustic~Bleustein–Gulyaev! shear-
horizontal wave, the matrixN in Eq. ~10! is written in com-
pact form using the following quantity:

k25
e14

2

e11c441e15
2 , ~16!

as
ollet and M. Destrade: Shear-horizontal piezoacoustic surface waves



N53
e15

e14
k2 2

e11

e14
k2

e11

e14
2 k2 2

e15

e14
2 k2

c44

e14
k2

e15

e14
k2 2

e15

e14
2 k2 2

c44

e14
2 k2

X2c44~11k2! 2e15~11k2!
e15

e14
k2

c44

e14
k2 4 . ~17!
2e15~11k2! e11~11k2! 2
e11

e14
k2

e15

e14
k2
e

a-

m

in
.

in
to
tial.
ee

s-
rs,
Note thatN is indeed of the form Eq.~11!. To express
explicitly integer powers ofN, it proves convenient to us
scalar multiples of the matrixÎNn, for which the fundamen-
tal equations Eq.~15! are also valid. For instance, the fund
mental equations~15! also hold atn52,21 when ÎNn is
replaced withM (2), M (21) respectively, defined by

M (2)5
e14

e15k
2 ÎN2, M (21)5S e11c44

e14
2 k2X21D ÎN21.

~18!

These symmetric matrices are given explicitly by their co
ponents,

M11
(2)52@X22c44~11k2!#,

M12
(2)52

e11

e15
X12

e11c442e15
2

e15
~11k2!,

M22
(2)54e11~11k2!,

M13
(2)5

e11

e14e15
X2

e11c442e15
2

e14e15
~112k2!,

~19!

M23
(2)522

e11

e14
~112k2!, M33

(2)54
e11

e14
2 k2,

M14
(2)52

1

e14
X12

c44

e14
~112k2!,

M24
(2)52

e11c442e15
2

e14e15
~112k2!,

M34
(2)52

e11c442e15
2

e14
2 e15

k2, M44
(2)524

c44

e14
2 k2,

and

M11
(21)5S 11

e11c44

e14
2 Dk2X2c44~11k2!,
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. Collet an
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M12
(21)52

e11e15

e14
2 k2X1e15~11k2!,

M22
(21)52

e11
2

e14
2 k2X1e11~11k2!, M13

(21)5
e15

e14
k2,

M23
(21)5

e11

e14
k2, M33

(21)5
e11

e14
2 k2, M14

(21)5
X2c44

e14
k2,

~20!

M24
(21)5

e15

e14
k2, M34

(21)5
e15

e14
2 k2, M44

(21)5
X2c44

e14
2 k2.

Now all the required equations and quantities are
place to treat various electrical boundary value problems

A. Metallized „short-circuit … boundary condition

Here, the surface of the crystal is coated with a th
metallic film, with thickness negligible when compared
the wavelength, and brought to a zero electrical poten
Moreover, the coating still allows the surface to remain fr
of mechanical tractions. Then

s2350, f50, at x250, so that

j~0!5@U3~0!,0,0,d2~0!#T. ~21!

Writing j(0)5U3(0)@1,0,0,a#, where a5d2(0)/U3(0) is
complex, the fundamental equations~15! for ÎN (n51),
M (2) (n52), andM (21) (n521) lead to the following ho-
mogeneous system of equations:

F N31 N21 N24

M11
(2) M14

(2) M44
(2)

M11
(21) M14

(21) M44
(21)

G F 1
a1ā
aā

G5F 0
0
0
G . ~22!

For a nontrivial solution to exist, the determinant of the sy
tem’s matrix must be zero. Factoring out common facto
this condition reads
U X2c44~11k2! c44k
2 2c44

2@X22c44~11k2!# 2X12c44~112k2! 24c44

S 11
e11c44

e14
2 Dk2X2c44~11k2! ~X2c44!k

2 X2c44
U50. ~23!
3435d M. Destrade: Shear-horizontal piezoacoustic surface waves
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When X50, the first column in the determinant becom
proportional to the third, and the determinant is zero. Hen
X is a factor of the determinant; the remaining factor is
quadratic inX

X22c44S 3e11c4414e14
2 14e15

2

e11c441e15
2 DX

12c44
2 S e11c4412e14

2 12e15
2

e11c441e15
2 D 50, ~24!

that is, the explicit secular equation for piezoacoust
(Bleustein–Gulyaev) antiplane surface waves on a met

lized tetragonal4̄ (or tetragonal 4̄2m, or cubic 4̄3m, 23)
crystal, cut along any plane containing the Z axis.

This equation being a quadratic inX, it is solved explic-
itly and it yieldsa priori two roots. The selection is made b
tri

ys
Eq

nt

3436 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. C
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considering the known speed of a Bleustein–Gulyaev surf
wave in a cubic 4̄3m or 23 crystal whenu545°. Then, the
root of the quadratic corresponding to the plus sign isX
5rv252c44, and the root corresponding to the minus si
is

rv25c44S 11
e15

2

c44e111e15
2 D 5c44S 11

ê14
2

c44e111ê14
2 D ,

~25!

in accordance with Tseng3 ~see also Koerber and Vogel,7 Al-
burque and Chao,10 Velasco,11 Bright and Hunt13!. By conti-
nuity with the other cases (4,̄ 4̄2m, 4̄3m, 23,uÞ45°), the
speed of the generic Bleustein–Gulyaev wavefound from the
secular equation~24! is vBGm, given by
rvBGm
2

c44
5

3e11c4414e14
2 14e15

2 2@~e11c4414e14
2 !21~4e14e15!

2#1/2

2~e11c441e15
2 !

. ~26!

For tetragonal 4̄2m, cubic 4̄3m, or cubic 23 crystals,ê1550 and by Eq.~4!, this expression reduces to

rvBGm
2

c44
5

314x̂22@~114x̂2 cos2 2u!214x̂4 sin2 4u#1/2

2~11x̂2 sin2 2u!
, ~27!
l-
rst
ro-
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as proved by Braginski� and Gilinski�9 using a different
method. In Eq.~27!, x̂25ê14

2 /(e11c44) is the ‘‘piezoelectric
coupling coefficient’’ for bulk waves.

B. Electrically open boundary condition

The substrate is said to be ‘‘mechanically free, elec
cally open’’ ~Ingebrigsten,23 Lothe and Barnett24! when

s3250, D250, at x250, so that j~0!

5@U3~0!,w~0!,0,0#T. ~28!

Writing j(0)5U3(0)@1,a,0,0#, where a5w(0)/
U3(0) is complex, the fundamental equations~15! for ÎN
(n51), M (2) (n52), andM (21) (n521) lead to the fol-
lowing homogeneous system of equations:

F N31 N32 N42

M11
(2) M12

(2) M22
(2)

M11
(21) M12

(21) M22
(21)

G F 1
a1ā
aā

G5F 0
0
0
G . ~29!

For a nontrivial solution to exist, the determinant of the s
tem’s matrix must be zero. Its components are given in
~17!, Eq. ~19!, and Eq.~20!. As in the short-circuit configu-
ration, atX50 the first and third columns in the determina
both become proportional to@1,4,1#T and soX is a factor of
the determinant; the remaining factor is a quadratic inX
-

-
.

e11
2

e14
2 k2X22e11~11k2!F32S 114

e15
2

e14
2 D k2GX

12~11k2!2~e11c442e14
2 2e15

2 !50. ~30!

At this stage, an important point must be raised. A
though this secular equation might seem legitimate at fi
sight, it must be recalled that it was obtained through a p
cess based on the fundamental equations~15! which, due to
the involvement of integer powers of the matrixN, might
generate spurious secular equations. In fact, it has b
proved9,24 that the Bleustein–Gulyaev wavedoes not exist
for open-circuit boundary conditions. Hence, the secula
equation Eq.~30! is not valid. It is given here for complete
ness and to illustrate one limitation of the fundamental eq
tions approach. However, as is seen in Sec. IV B, a sim
check can be done to realize whether the speed given b
explicit secular equation is valid or not.

C. Free-boundary condition

In the general case of a nonmetallized, mechanically f
boundary, the tangential component of the electric field a
the normal component of the electric induction are contin
ous across the substrate/vacuum interface. These continu
lead to the relationship~e.g., Dieulesaint and Royer,25 p.288!,

d2~0!5 i e0w~0!, so that j~0!5w~0!@a,1,0,i eo#T,
~31!

wherea5a11 ia25U3(0)/w(0) is complex. Now, the fun-
damental equations~15! for ÎN (n51), M (2) (n52), and
ollet and M. Destrade: Shear-horizontal piezoacoustic surface waves
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M (21) (n521) lead to a nonhomogeneous linear system
equations

F N32 e0N21 N31

M12
(2) e0M14

(2) M11
(2)

M12
(21) e0M14

(21) M11
(21)

G F 2a1

2a2

a1
21a2

2
G

5F 2N422e0
2N24

2M22
(2)2e0

2M44
(2)

2M22
(21)2e0

2M44
(21)

G . ~32!

By Cramer’s rule, the unique solution to this system is

2a15D1 /D, 2a25D2 /D, a1
21a2

25D3 /D, ~33!

whereD is the determinant of the 333 matrix in Eq.~32!,
with components given in Eq.~17!, Eq. ~19!, and Eq.~20!,
and theDk are the determinants obtained by replacing t
matrix’s kth column with the vector on the right-hand side
Eq. ~32!. It follows from Eq. ~33! that

D1
21D2

224DD350, ~34!

which is the explicit secular equation for piezoacoust
(Bleustein–Gulyaev) antiplane surface waves on a nonm

allized, mechanically free4̄ (or 4̄2m, 4̄3m, 23) crystal, cut
along any plane containing the Z axis.

The expansions of the determinantsD,..,D3 are lengthy
and are not displayed here, but they are easily compute
using the components Eq.~17!, Eq. ~19!, and Eq.~20!. It
turns out thatD factorizes into the product ofe0 and a cubic
in X which is independent ofe0 , while D1 ~respectively,D2 ,
D3) factorizes into the product ofe0X ~respectively,X, e0)
and a polynomial which is quadratic inX and linear ine0

2.
The resulting secular equation~34! is a sextic inX and a
cubic in e0

2, with the coefficient of thee0
6 term proportional

to the ‘‘metallized secular equation’’~24! and the coefficient
of the e0

0 term proportional to the~nonvalid! ‘‘open-circuit
secular equation’’~30!.

It is emphasized again that, as in Sec. III B, great c
must be taken to ensure that the speed given by the se
equation Eq.~34! leads to a valid solution. This point i
discussed in Sec. IV B.

D. Thin conducting layer boundary condition

As a final type of boundary condition, consider that t
semi-infinite substrate is covered with a metallic film wi
thicknessh and conductanceg, whereh is assumed to be s
small with respect to the acoustic wavelength that the effe
of mechanical loading can be neglected. Then, the per
ability of the regionx2,0 close to the interface is change
from e0 ~see the previous subsection! to e02 i e ~see Royer
and Dieulesaint,26 p. 301!, with e5gh/v. Replacing the
former quantity with the latter in the previous subsecti
leads to similar results as above, except that the 333 matrix
and the right-hand side of Eq.~32! are now replaced with

F N321eN21 e0N21 N31

M12
(2)1eM14

(2) e0M14
(2) M11

(2)

M12
(21)1eM14

(21) e0M14
(21) M11

(21)
G , and
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F 2N4222eN222~e0
21e2!N24

2M22
(2)22eM24

(2)2~e0
21e2!M44

(2)

2M22
(21)22eM24

(21)2~e0
21e2!M44

(21)
G , ~35!

respectively. Then, the secular equation is Eq.~34!, where
D,...,D3 are appropriately changed. Because here the qu
tity e depends uponv, the secular equation is a polynomi
in the speed of degree higher than in the previous subsec
namely it is a polynomial of degree 16 inv.

IV. CONSTRUCTION OF THE SOLUTIONS

A. Description of the wave

Once a wave speed is determined from the secular e
tion, it is a rather straightforward matter to construct t
corresponding complete solution. Indeed, the antiplane
chanical displacementu3 , the electrical potentialf, the
shear stresss32, and the electric inductionD2 are given by

@u3 ,f,s32,D2#~x1 ,x2 ,t !

5R$@U3 ,w,ikt32,ikd2#~kx2!eik(x12vt)%. ~36!

Here, U3 , w, t32, d2 are the components ofj, solution to
j85 iNj. Takingj in exponential form leads to the following
decaying solution:

j5b1j1eikq1x21b2j2eikq2x2, ~37!

whereb1 , b2 are constants,q1 , q2 are the two roots with
positive imaginary part to theinhomogeneous wave propa
gation condition: det (N2q1)50, and thej i satisfy: Nj i

5qij
i.

Explicitly, the qi are roots of the quartic

~e11c441e15
2 !q424e14e15q

32@e11~X22c44!24e14
2

12e15
2 #q214e14e15q1e15

2 2e11~X2c44!50, ~38!

and thej i are proportional to any column vector of the m
trix adjoint to N2qi1, the third one say. Hence

j i5Fe14

c44
ai ,bi ,e14

2 f i ,
e14

2

c44
gi GT

, ~39!

where the nondimensional real quantitiesai , bi , f i , gi ( i
51,2) are given by

ai52
e11c44

e14
2 ~qi

211!, bi5
e15

e14
~qi

221!22qi ,

f i5
e15

e14
~3qi

221!2
e15

2

e14
2 qi~qi

221!2
e11c44

e14
2 qi~qi

211!22qi ,

~40!

gi5
e11c44

e14
2 S qi

212
e15

e14
qi21D .

Finally, the ratiob2 /b1 comes from the condition that th
third component ofj~0!, proportional to t23(0), must be
zero, so thatb2 /b152 f 1 / f 2 .
3437d M. Destrade: Shear-horizontal piezoacoustic surface waves
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B. Validity of the solution

Once a wave solution has been constructed, its vali
must be checked, that is, it must satisfy the boundary co
tions.

Thus, for a solution to theshort-circuit problem ~Sec.
III A !, it must be checked thatw(0)5b1b11b2b2 and
t32(0)5b1e14f 11b2e14f 2 are indeed equal to zero. Thes
conditions are equivalent to checking that

Ub1 b2

f 1 f 2
U50. ~41!

For a solution to theopen-circuitproblem~Sec. III B!, it
must be checked thatt32(0)5b1e14f 11b2e14f 2 and d2(0)
5b1(e14

2 /c44)g11b2(e14
2 /c44)g2 are equal to zero. Thes

conditions are equivalent to checking that

U f 1 f 2

g1 g2
U50.

As expected,9,24 this condition is never satisfied.
For a solution to thefree-boundaryproblem~Sec. III C!,

it must be checked thatt32(0)5b1e14f 11b2e14f 250 and
that d2(0)5 i e0w(0), that is, b1(e14

2 /c44)g1

1b2(e14
2 /c44)g25 i e0(b1b11b2b2). These conditions are

equivalent to checking that

U f 1 f 2

e14
2

c44e0
g12 ib1

e14
2

c44e0
g22 ib2

U50. ~42!

In general, this condition is met only for a limited range
the cut angleu.

Finally, for a solution to thethin conducting layer
boundary problem ~Sec. III D!, it must be checked tha
t32(0)50 and thatd2(0)5(e1 i e0)w(0). These conditions
are equivalent to checking that

U f 1 f 2

e14
2

c44~e02 i e!
g12 ib1

e14
2

c44~e02 i e!
g22 ib2

U50. ~43!

V. EXAMPLES

In this section, the secular equations derived in Sec
and the tests presented in Sec. IV are employed to find
merically the wave speed and its range of existence for th
crystals, one with cubic 43̄m symmetry, one with tetragona
4̄2m symmetry, and one with cubic 23 symmetry. Data c
lected from the specialized literature are used for the va
of the mass densities, of the stiffnesses, and of the piezoe
tric and dielectric constants. In order to graph the depth p
files, a frequency of 100 MHz and a mechanical displa
ment of 10213 m at x250 are picked to fix the ideas. Not
that at a 45° angle of cut, the profiles present pure~nonoscil-
lating! exponential decay, because the propagation condi
~38! is a biquadratic and the corresponding roots are pu
imaginary; they are essentially similar to those displayed
Bright and Hunt.13 Here, the profiles are computed at ang
Þ45°.
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A. AlAs

For aluminum arsenide (43̄m symmetry! the physical
quantities of interest are27 r53760 kg•m23, c44558.9
3109 N•m22, ê14520.225 C•m22, ande11510.06e0 .

Using the results of Secs. III and IV, it is found that th
speeds of the piezoacoustic SH surface wave with metall
~Sec. III A! and with free~Sec. III C! boundary conditions
are almost indistinguishable on a graph from the speed of
bulk shear wave. For instance at 45°, these speeds
(m•s21): 3976.784, 3976.965, and 3976.966, respective
Note however that the SH surface wave for the metalliz
~‘‘shorted’’! boundary condition exists for all values ofu
~within the range delimited above by the speed at 45° a
below by the speed at 0° and at 90°, which
3957.890 m•s21), whereas the SH surface wave for the u
metallized~‘‘free’’ ! boundary condition exists only within a
limited range, delimited above by the speed at 45° and be
by the speed at 45.0°68.51°, which is 3975.276 m•s21.

Figure 2 displays the variations of the three speeds a
function of u. The speed of the bulk shear wave is alwa
above the speed of the SH surface wave for the metalli
boundary condition; they are both defined everywhere. T
speed of the SH surface wave for the unmetallized bound
condition is intermediate between these two speeds, but
ists only in the range@36.49°,53.51°#. A zoom is provided
for this range. In that zoom, the curve for the bulk she
wave almost coincides with the curve for the SH surfa
wave corresponding to the unmetallized boundary conditi
together, they form the upper curve while the lower cur
represents the variations of the SH surface wave speed
responding to the metallized boundary condition.

Note that the simple test for the solution’s validity pr
sented in Sec. IV B works perfectly here and hence forwa

FIG. 2. Speeds of piezoacoustic waves in a AlAs (43̄m symmetry! crystal,
as a function of the cut angle: bulk shear wave~upper curve!, SH surface
wave for free-~unmetallized! boundary conditions~intermediate curve!, and
SH surface wave for metallized boundary conditions~lower curve!.
ollet and M. Destrade: Shear-horizontal piezoacoustic surface waves
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Thus, using a 40-digit precision underMAPLE for AlAs, the
modulus of the determinant in~42! is found to be less than
10219 at 45.0°68.5125° and more than 0.2 at 45.0
68.5129°.

Figure 3 shows the variations with depth of the fields
interest~mechanical displacement, shear stress, electrical
tential, electric induction! for the SH surface wave corre
sponding to the metallized boundary condition atu
522°308. The variations of the fields are presented over 2
wavelengths, and zooms are provided for the@0, 5# wave-
lengths range, wheref, s32, andD2 undergo rapid changes

B. BLGO

Soluchet al.28 measured experimentally the elastic, p
ezoelectric, and dielectric properties of BaLaGa3O7 (4̄2m
symmetry, mass density:r55450 kg•m23) as: c44539
3109 N•m22, ê1450.29 C•m22, ande11512.4e0 .

Here, the speeds of the piezoacoustic SH surface w
with metallized~Sec. III A! and with free-~Sec. III C! bound-
ary conditions differ more notably than in the previous e
ample from the speed of the bulk shear wave. For instanc
45°, these speeds are (m•s21): 2700.739, 2701.239, an
2701.242, respectively. The range of values for the w
speedvBGm of the metallized shorted boundary condition
delimited above by the speed at 45° and below by the sp
at 0° and at 90°, which is 2675.063 m•s21. For the un-
metallized free-boundary condition, the corresponding~lim-
ited! range for the wave speedvBGf is bounded above by th
speed at 45° and below by the speed at 45.0°67.485°,
which is 2699.369 m•s21. The difference between the tw
speeds is the largest atu545°; there, the ratio 2(vBGf

2vBGm)/vBGf is equal to 3.7031024.
Figure 4 displays the variations withu of the speeds for

the bulk shear wave, for the SH surface wave correspond

FIG. 3. Depth profiles of the SH surface wave for metallized bound
conditions in a AlAs crystal cut at 22°308: mechanical displacement, she
stress, electrical potential, electric induction.
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. Collet an
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to the unmetallized boundary condition, and for the SH s
face wave corresponding to the metallized boundary con
tion. Figure 5 shows the variations with depth of the fields
interest~mechanical displacement, shear stress, electrical
tential, electric induction! for the SH surface wave corre
sponding to the metallized boundary condition atu
522°308. Similar comments to those made for Fig. 3 app

y
FIG. 4. Speeds of piezoacoustic waves in a BaLaGa3O7 (4̄2m symmetry!
crystal, as a function of the cut angle: bulk shear wave~upper curve!, SH
surface wave for free~unmetallized! boundary conditions~intermediate
curve!, and SH surface wave for metallized boundary conditions~lower
curve!.

FIG. 5. Depth profiles of the piezoacoustic SH surface wave for metalli
boundary conditions in a BaLaGa3O7 crystal cut at 22°308: mechanical
displacement, shear stress, electrical potential, electric induction.
3439d M. Destrade: Shear-horizontal piezoacoustic surface waves
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C. BGO

The relevant physical quantities of bismuth germani
oxide (Bi12GeO20, 23 symmetry! are29 r59200 kg•m23,
c44525.523109 N•m22, ê1450.983 C•m22, and e11

538.0e0 .
Here, the differences between the speeds of the b

shear wave, of the SH surface wave corresponding to
metallized boundary condition, and of the SH surface wa
corresponding to the unmetallized boundary condition
more marked than in the previous example. At 45°, th
speeds are (m•s21) 1747.812, 1756.836, and 1756.846, r
spectively. At 0° and at 90°, the speeds of the bulk sh
wave and of the SH surface wave corresponding to the m
allized boundary condition are both equal
1665.507 m•s21. The SH surface wave for the unmetallize
boundary condition exists only in the range 45.0063.149°,
and at the extremities of this range, its speed
1755.068 m•s21.

Figure 6 displays the variations of the three wave spe
as a function ofu. Figure 7 shows the variations of the qua
tity 2(vBGf2vBGm)/vBGf with the angle of cut; its larges
~smallest! value is 1.02731022 at 45.00° (0.97531022 at
48.149°).

Figure 8 shows the variations with depth of the fields
interest~mechanical displacement, shear stress, electrical
tential, electric induction! for the SH surface wave corre
sponding to the metallized boundary condition atu
522°308. Similar comments to those made for Figs. 3 an
apply.

Figure 9 shows the variations with depth of the sa
fields for the SH surface wave corresponding to the unm
allized boundary condition atu542°308. By comparison
with the previous figure, it can be seen that the SH surf

FIG. 6. Speeds of piezoacoustic waves in a Bi12GeO20 ~23 symmetry! crys-
tal, as a function of the cut angle: bulk shear wave~upper curve!, SH surface
wave for free~unmetallized! boundary conditions~intermediate curve!, and
SH surface wave for metallized boundary conditions~lower curve!.
3440 J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. C
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wave for the unmetallized boundary condition penetrates
more deeply than the SH surface wave for the metalliz
boundary condition. The electrical potential and the elec
induction are plotted inside the crystal for the range@0, 500#
wavelengths, and also in the vacuum over the crystal for
range @210,0# wavelengths; the continuity of these field
across the interface is made apparent with a zoom for
range@25,5# wavelengths.

VI. CONCLUDING REMARKS

The method of resolution for the title problem of th
paper is based on the fundamental equations~15!. This

FIG. 7. Variations of 2(vBGf2vBGm)/vBGf with u in a Bi12GeO20 ~23 sym-
metry! crystal.

FIG. 8. Depth profiles of the piezoacoustic SH surface wave for metalli
boundary conditions in a Bi12GeO20 crystal cut at 22°308: mechanical dis-
placement, shear stress, electrical potential, electric induction.
ollet and M. Destrade: Shear-horizontal piezoacoustic surface waves
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method has proved itself to be very effective and versa
The end result is the complete analytical elucidation of
problem, for a great variety of surface impedance proble
in a piezoelectric half-space, i.e., problems where the elec
induction is proportional to the electrical potential:kF
5 ivZD2 ~say! at the boundary plane. The method can
followed through when the impedanceZ is zero ~short-
circuit!, infinite ~open-circuit!, pure imaginary ~free-
boundary!, or complex~thin conducting layer!. It has already
been used for other types of surface impedance problem
elastic interface waves~Stoneley waves,20,22 Scholte
waves21! and could be adapted to configurations30 with a
resistance force proportional to the normal velocity, a m
concentrated in a thin surface layer, a system of elastic
cillators resting on an elastic half-space, a thin elastic la
longitudinally deformable, etc. The method can also acco
modate a coupling between elastic and piezoelectric field
situations such as the one treated here or for instance
case of interface acoustic waves at a domain boundary.31

Here, attention was restricted to Bleustein–Gulya
waves in tetragonal 4¯piezoelectric crystals. The extension
the classes of orthorhombic 222 or monoclinic 2 crystals
straightforward and only requires the computation of the

FIG. 9. Depth profiles of the piezoacoustic SH surface wave for free~un-
metallized! boundary conditions in a Bi12GeO20 crystal cut at 42°308: me-
chanical displacement, shear stress, electrical potential, electric induct
J. Acoust. Soc. Am., Vol. 116, No. 6, December 2004 B. Collet an
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ements of the matrixN in Eq. ~10!. Their general expression
is given for instance by Abbudi and Barnett.32 As an illustra-
tion, they are now presented for rhombic 222 crystals.

For such a crystal, the relevant nonzero piezoacou
constants in the crystallographic coordinate system areĉ44,
ĉ55, ê14, ê25, ê11, and ê22. In the coordinate system ob
tained after the rotation Eq.~1!, they are

c445 ĉ44cos2 u1 ĉ55sin2 u, c455~ ĉ442 ĉ55!cosu sinu,

c555 ĉ55cos2 u1 ĉ44sin2 u, e125~ ê222 ê11!cosu sinu,

e115 ê11cos2 u1 ê22sin2 u, e225 ê22cos2 u1 ê11sin2 u,
~44!

e145ê14cos2 u2ê25sin2 u, e155~ ê141ê25!cosu sinu,

e255ê25cos2 u2ê14sin2 u, e2452ê15.

The equations of motion can be cast in the form Eq.~10!,
where the matrixN is defined by its 232 blocksN1

(1) , N2
(1) ,

K (1) in Eq. ~11!. The components of2N1
(1) and N2

(1) are
given here by

F S e22c45

e14e15
2

e25

e14
Dk2 S e22

e15
1

e12

e14
Dk2

2S c44e25

e14e15
1

c45

e14
Dk2 S e12c44

e14e15
21Dk2

G ,

F e22

e14e15
k2 2

1

e14
k2

2
1

e14
k2 2

c44

e14e15
k2
G , ~45!

respectively, and those ofK (1) are

K11
(1)5X2c552S c44

e25
2

e14e15
12c45

e25

e14
2c45

e22c45

e14e15
Dk2,

K12
(1)52e151Fc44e12

e14
1

c45e22

e15
1e25S e12c44

e14e15
21D Gk2,

K22
(1)52e111Fe12S e12c44

e14e15
22D2e22

e14

e15
Gk2. ~46!

Here, the quantityk2 is defined by

k25
e14e15

e11c441e15
2 . ~47!

Finally, in the guise of a conclusion, the main releva
advances toward the full resolution of the problem presen
in the paper are recapitulated. In the purely elastic case,
secular equation for Rayleigh waves polarized in a plane
symmetry was derived by Currie33 who, using an algebraic
approach based on the Stroh formalism, obtained the e
tions

Ū~0!•K (n)U~0!50, ~48!

whereU~0! is the mechanical displacement on the free s
face. Although these equations are also valid in gener
anisotropic crystals, his derivation of the secular equation
triclinic ~no symmetry! crystals apparently leads to a trivia
identity. This problem was later corrected by Taylor a

.

3441d M. Destrade: Shear-horizontal piezoacoustic surface waves
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Currie34 and by Taziev35 ~see also Ting36!. In contrast to
these approaches based on the formulation of the equa
of motion as a first-order differential system for th
displacement-traction vector, Mozhaev37 wrote the equations
of motion as a second-order differential system for the d
placement vector

aU92 ibU81gU50, ~49!

wherea, b, g, are real symmetric matrices. Then, using fi
integrals, he quickly derived the secular equation for ort
rhombic crystals. Destrade38 rewrote the equations of mo
tion, this time in the form

ât92 i b̂t81ĝt50, ~50!

for the tractions, whereâ, b̂, ĝ, are real symmetric matri
ces. Adapting Mozhaev’s first integrals, he rederived~un-
aware of Currie’s result! the secular equation for Rayleig
waves polarized in a symmetry plane. He also mentio
~and the proof was later given in the review article by Ting39!
that the method of first integrals could not be used for a
trary anisotropy when the equations of motion are written
Eq. ~49! or Eq. ~50!. Recently20–22 he made the connectio
between Currie’s and Taziev’s use of integer powers of
Stroh matrixN and Mozhaev’s first integrals, as shown he
also in Sec. II C. Note that Mozhaev and Weihnacht15 were
able to solve the problem of SH surface modes of a 2-m
crystal using first integrals of the piezoacoustic equati
written as a second-order differential system.
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