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Summary. Two questions related to elastic motions are raised and addressed. First: in which theoretical

framework can the equations of motion be written for an elastic half-space put into uniform rotation? It is

seen that nonlinear finite elasticity provides such a framework for incompressible solids. Second: how can

finite amplitude exact solutions be generated? It is seen that for some finite amplitude transverse waves in

rotating incompressible elastic solids with general shear response the solutions are obtained by reduction

of the equations of motion to a system of ordinary differential equations equivalent to the system gov-

erning the central motion problem of classical mechanics. In the special case of circularly-polarized har-

monic progressive waves, the dispersion equation is solved in closed form for a variety of shear responses,

including nonlinear models for rubberlike and soft biological tissues. A fruitful analogy with the motion of

a nonlinear string is pointed out.

1 Introduction

The propagation of elastic waves in rotating media has been a subject of continuous interest in

the last three decades or so. Ever since the publication of a seminal article by Schoenberg and

Censor [1], numerous workers have studied how uniform rotation affects time-dependent

solutions to the governing equations (pointers to such studies can be found in recent articles on

waves in rotating media such as Refs. [2]–[5].) The starting point of these studies is the inclusion

of the Coriolis and centrifugal accelerations into the equations of motion:

div T ¼ q€yþ 2qX� _yþ qX� ðX� yÞ: ð1Þ

Here T is the Cauchy stress tensor, q is the mass density, y ¼ yðx; tÞ denotes the current

position of a particle in the material initially at x in the reference configuration, and X is the

constant rotation rate vector. Also, a dot denotes differentiation with respect to time t in a fixed

(non-rotating) frame; in other words, if (e1; e2; e3Þ is one such frame, then y ¼ yiei and

_y :¼ ð@yi=@tÞei.

The second term on the right-hand side of Eq. (1) is the Coriolis force and the third term is

the centrifugal force. This latter term is the source of an obvious concern in a linearly elastic

material with infinite dimension(s) because it grows linearly with the distance between the

particle and the axis of rotation. Most (and perhaps all) previous works on the subject have

dealt with this potential problem simply by focusing on the so-called ‘‘time-dependent’’ part of

the equations of motion. In this approach, the solution y is split into a ‘‘time-independent’’ part

and a ‘‘time-dependent’’ part as yðx; tÞ ¼ ysðxÞ þ uðx; tÞ (say). Then, the constitutive equation

Acta Mechanica 173, 19–31 (2004)

DOI 10.1007/s00707-004-0185-x

Acta Mechanica
Printed in Austria



of the elastic material being linear, the Cauchy stress can also be split: Tðx; tÞ ¼ TsðxÞ þ rðx; tÞ
(say) and the linearization of the equations of motion allows for the separate resolution of a

time-independent problem and of a time-dependent problem,

div TsðxÞ ¼ qX� ðX� ysðxÞÞ; ð2Þ

div rðx; tÞ ¼ q€uðx; tÞ þ 2qX� _uðx; tÞ þ qX� ðX� uðx; tÞÞ: ð3Þ

Although the resolution of Eq. (3) has generated a wealth of results in a variety of contexts, the

resolution of Eq. (2) seems to have been left aside, at least as long as potentially infinite

distances from the rotation axis are involved. This paper aims at providing a context in which

the global equations of motion in rotating elastic media, Eq. (1), possibly inclusive of finite

strain effects and of a nonlinear constitutive equation, can be posed and solved.

Because large strains might appear in a rotating elastic solid, we place ourselves in the

framework of finite nonlinear elasticity. We focus on materials subject to the internal constraint

of incompressibility, first because many actual materials with a nonlinear elastic response such

as rubber or biological soft tissue can be considered to be incompressible, and second because

the inherent introduction of an arbitrary scalar quantity (the ‘‘pressure’’) leads to an immediate

simplification of the equations of motion, Eq. (1). Indeed, as we show in the next section, the

arbitrariness of the p1 term in the constitutive equation of an incompressible body allows for

the centrifugal force to be absorbed by this pressure term. Once this manipulation is done, the

resolution of the equations of motion can be conducted quite naturally. As noted by

Schoenberg and Censor [1], two features characterize waves in rotating bodies as opposed to

waves in non-rotating bodies: a new direction of anisotropy (linked to the rotation axis) and

more dispersion (linked to the rotation frequency). To illustrate these features, we revisit some

classic results on finite amplitude elastic motion due to Carroll [6]–[9] and extend them to the

case of a body in rotation.

The exact solutions of Carroll are versatile in their fields of application because they are valid

not only for nonlinearly elastic solids, but also for viscoelastic solids [10], Reiner-Rivlin fluids

[10], [11], Stokesian fluids [10], Rivlin-Ericksen fluids [11], liquid crystals [12], dielectrics [13],

magnetic materials [14], etc. They also come in a great variety of forms, as circularly-polarized

harmonic progressive waves, as motions with sinusoidal time dependence, as motions with

sinusoidal space dependence, etc. In our revisiting his findings, we note a striking analogy

between the equations of motion obtained for a motion general enough to include all of the

above motions, and the equations obtained in the problem of the motion of a nonlinear string,

as considered by Rosenau and Rubin [15]. Then we show how the method of [15] can be used to

derive all (and more) of the different results obtained by Carroll, which turn out to be a direct

consequence of material isotropy and of the Galilean invariance of the field equations.

The paper is organized in the following manner. In the next section, the basic equations for

motion in a rotating nonlinearly elastic incompressible solid and their specialization to finite

amplitude transverse waves are given. In Sect. 3, we recast the determining equations in a

general complex form and we show that they admit some special separable solutions. In Sect. 4,

we investigate in detail the case of circularly-polarized harmonic progressive waves. We give the

dispersion relation and solve it for Mooney-Rivlin materials and for some other strain energy

density functions relevant to the modelling of rubberlike materials (some of these results are

new even in the non-rotating case). Next we show that in rotating solids, motions with a

sinusoidal time dependence (Sect. 5) and motions with a sinusoidal spatial dependence (Sect. 6)

are determined by solving a reduced system of ordinary differential equations, equivalent to

that of a central motion problem. The main difference with Carroll’s results for the non-
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rotating case is that, for special values of the angular velocity, the central force may be

repulsive; this possibility is ruled out in the non-rotating case by the empirical inequalities [16].

2 Preliminaries

2.1 Equations of motion in a rotating elastic solid

Let the initial and current coordinates of a point of the body, referred to the same fixed

rectangular Cartesian system of axes, be denoted by xi and yi, respectively, where the indices

take the values 1, 2, 3. A motion of the body is defined by

y ¼ yðx; tÞ: ð4Þ

The response of a homogeneous isotropic incompressible elastic solid to deformations from an

undistorted reference configuration is described by the constitutive relation

T ¼ �ep1þ aB� bB�1; ð5Þ

where T is the Cauchy stress tensor, 1 is the unit tensor, and B is the left Cauchy-Green strain

tensor, defined by

B :¼ FFT ; ð6Þ

F :¼ @y=@x being the deformation gradient tensor. Also in Eq. (5), ep is an arbitrary scalar

function associated with the internal constraint of incompressibility,

det F ¼ 1; ð7Þ

to be determined from the equations of motion and eventual boundary/initial conditions. The

response parameters a and b are functions of the first and second invariants of B: a ¼ aðI; IIÞ,
b ¼ bðI; IIÞ, where

I ¼ tr B; II ¼ tr B�1: ð8Þ

For a hyperelastic material, a strain energy density per unit of volume W ¼ WðI; IIÞ is defined
and a, b are given by

a ¼ 2
@W

@I
; b ¼ 2

@W

@II
: ð9Þ

Now we consider that the elastic medium rotates with a uniform rotation vector X, about a

given axis. In the absence of body forces, the equations of motions relative to a rotating frame

(see, for instance [17, pp. 60–61]) are given by Eq. (1). Using the constitutive equation (5), we

obtain

�grad epþ div ðaB� bB�1Þ ¼ q€yþ 2qX� _yþ qX� ðX� yÞ: ð10Þ

Now write ep in the form

ep ¼ p� 1
2
q½X�ðX� yÞ��y; ð11Þ

where p ¼ pðx; tÞ is yet another arbitrary pressure scalar. Then Eq. (10) reduces to

�grad pþ div ðaB� bB�1Þ ¼ q€yþ 2qX� _y: ð12Þ

Hence the equations of motion can be tackled independently of the centrifugal acceleration,

which does not appear here. Once Eq. (12) is solved, the solution y will lead to a pressure field ep

given by Eq. (11) which does depend on the centrifugal force.
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2.2 Finite amplitude shearing motions

Following Carroll [6], we study for the remainder of the paper the propagation of plane

transverse waves in a bi-axially deformed incompressible material. Thus we consider the fol-

lowing class of shearing motions:

y1 ¼ lx1 þ uðz; tÞ; y2 ¼ lx2 þ vðz; tÞ; y3 ¼ kx3 ¼: z; ð13Þ

that is, a transverse wave polarized in the (x1x2) plane and propagating in the x3-direction of a

material subject to a pure homogeneous pre-stretch with constant principal stretch ratios

l; l; kðl2k ¼ 1Þ in the x1-;x2-;x3-directions, respectively. For these motions, we find

B ¼
l2 þ k2

u2
z

k2
uzvz l2 þ k2

vz

k2
uz k2

vz k2

2

6
4

3

7
5; B�1 ¼

k

0 k

�kuz �kvz kðu2
z þ v2

zÞ þ l4

2

6
4

3

7
5: ð14Þ

Here and henceforward, a subscript letter denotes partial differentiation (i.e.,

uz :¼ @u=@z; vtt :¼ @2v=@t2, etc.) It follows from Eq. (8) that

I ¼ 2l2 þ k2ð1þ u2
z þ v2

zÞ; II ¼ l4 þ kð2þ u2
z þ v2

zÞ; ð15Þ

so that both invariants, and consequently the response parameters a; b, are functions of u2
z þ v2

z

alone,

a ¼ aðu2
z þ v2

zÞ; b ¼ bðu2
z þ v2

zÞ: ð16Þ

Then the equations of motion (12) read

� py1
þ ðQuzÞz ¼ qðutt � 2X3vtÞ; ð17:1Þ

� py2
þ ðQvzÞz ¼ qðvtt þ 2X3utÞ; ð17:2Þ

� pz þ ½ak2 þ bl4 þ bkðu2
z þ v2

zÞ�z ¼ 2qðX1vt � X2utÞ; ð17:3Þ

where the function Q ¼ Qðu2
z þ v2

zÞ is defined by

Q :¼ ak2 þ bk: ð18Þ

By inspection of Eqs. (17) we find that p can be taken in the form

p ¼ pðz; tÞ ¼ ak2 þ bl4 � bkðu2
z þ v2

zÞ � 2q
Z

ðX1vt � X2utÞdz: ð19Þ

Then Eq. (17. 3) is satisfied and Eqs. (17.1,2) reduce to

ðQuzÞz ¼ qðutt � 2X3vtÞ; ðQvzÞz ¼ qðvtt þ 2X3utÞ: ð20Þ

Equations (20) form a system of two coupled nonlinear hyperbolic partial differential equa-

tions, generalizing the system derived by Carroll in [6] for a non-rotating body.

3 Separable solutions

3.1 Link with another problem (string motion)

By inspection of the system Eqs. (20), an analogy can be drawn with the system of equations

governing the motion of a nonlinear string, as treated by Rosenau and Rubin [15]. Indeed, if

the position of a particle in a string is denoted by the rectangular Cartesian coordinates
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xðn; tÞ; yðn; tÞ, where n is a curvilinear abscissa, then the equations of motion of the string can

be put in the form

ðT=aÞxn½ �n¼ q0ðxtt � f1Þ; ðT=aÞyn½ �n¼ q0ðytt � f2Þ: ð21Þ

Here, T is the internal tension in the string (acting along the tangent to the string curve), f1 and

f2 are the components of the body force per unit mass, q0 ¼ q0ðnÞ is the mass density, and a is

the metric associated with the stretch of the string: a ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

x2
n þ y2

n

q

. Finally, a constitutive

equation T ¼ TðaÞ for the internal tension characterizes the string material.

The similarity between the two systems Eqs. (20) and Eqs. (21) is striking. Accordingly we

now adapt the analysis devised by Rosenau and Rubin [15] for a nonlinear string to our system

of governing equations.

3.2 Separation of variables

Seeking some exact solutions, we follow Rosenau’s and Rubin’s [15] steps. First we differentiate

Eqs. (20) with respect to z and obtain

½QU�zz ¼ qðUtt � 2X3VtÞ; ½QV �zz ¼ qðVtt þ 2X3UtÞ; ð22Þ

where U :¼ uz and V :¼ vz. Next, we define the complex function Z as

Zðz; tÞ ¼ gðz; tÞeinðz;tÞ :¼ U þ iV ; ð23Þ

so that

U ¼ <ðZÞ ¼ g cos n; V ¼ =ðZÞ ¼ g sin n: ð24Þ

Then, we rewrite the system Eqs. (22) as a single complex equation,

½Qðg2ÞZ�zz ¼ qðZtt þ 2iX3ZtÞ: ð25Þ

To reduce further this equation to a set of ordinary differential equations, we look for a class of

solutions admitting the separable forms:

gðz; tÞ ¼ g1ðzÞg2ðtÞ; nðz; tÞ ¼ n1ðzÞ þ n2ðtÞ; ð26Þ

where g1 and n1 (g2 and n2) are functions of space (time) only. ThenEq. (25) can be cast in the form

½Qðg2
1g

2
2Þg1ein1 �zz

g1ein1
¼ q
ðg2ein2Þ00 þ 2iX3ðg2ein2Þ0

g2ein2
; ð27Þ

where the prime denotes differentiation with respect to the argument of a single-variable

function.

Rosenau and Rubin [15] noted that a sufficient condition to ensure complete separation of

time functions from space functions in this equation is that the material response function Q be

itself separable. Indeed if

Qðg2
1g

2
2Þ ¼ Q1ðg2

1ÞQ2ðg2
2Þ; ð28Þ

(say) then we end up with the two ordinary differential equations

½Q1ðg2
1Þg1ein1 �00 ¼ hg1ein1 ;

q½ðg2ein2Þ00 þ 2iX3ðg2ein2Þ0� ¼ hQ2ðg2
2Þg2ein2 ;

ð29Þ

for some constant h.
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The separation condition Eq. (28) is however rather strong and might be fulfilled only for

very specific constitutive equations. Another possibility, not mentioned by Rosenau and Rubin,

for the separation of space functions from time functions arises when either g1ðzÞ or g2ðtÞ are
constant functions (independent of their argument). Hence, when g1 ¼ k1 (say), Eq. (27) yields

ðein1Þ00 ¼ hein1 ; q½ðg2ein2Þ00 þ 2iX3ðg2ein2Þ0� ¼ hQðk2
1g

2
2Þg2ein2 ; ð30Þ

and when g2 ¼ k2 (say), it yields

½Qðk2
2g

2
1Þg1ein1 �00 ¼ hg1ein1 ; q½ðein2Þ00 þ 2iX3ðein2Þ0� ¼ hein2 : ð31Þ

The conditions g1 ¼const. or g2 ¼const. do not impose any restriction on the strain energy

function. Thus, the solutions to Eqs. (30) or Eqs. (31) are valid for any type of material, in

contrast to the solutions to Eqs. (29), which require Eq. (28) to be satisfied.

For instance, consider the solution

Zðz; tÞ ¼ ½wðtÞ þ i/ðtÞ�keiðkzþhðtÞÞ; ð32Þ

where k is a constant and w, /, h are arbitrary real functions of time. A simple check shows that

Z is indeed of the form given by Eqs. (23) and Eqs. (26), with the following identifications:

g1ðzÞ ¼ k ¼ const., g2ðtÞ ¼ ½/2 þ w2�
1
2, n1ðzÞ ¼ kz, and n2ðtÞ ¼ hþ tan�1ð/=wÞ. Once the or-

dinary differential equations (30) are solved, the displacement field is given by

uðz; tÞ ¼ /ðtÞ cosðkzþ hðtÞÞ þ wðtÞ sinðkzþ hðtÞÞ;

vðz; tÞ ¼ /ðtÞ sinðkzþ hðtÞÞ � wðtÞ cosðkzþ hðtÞÞ:
ð33Þ

On the other hand, consider the solution

Zðz; tÞ ¼ ½ði/ðzÞ þ wðzÞÞh0ðzÞ þ ð/0ðzÞ � iw0ðzÞÞ�eiðxtþhðzÞÞ; ð34Þ

where k is a constant and w, /, h are arbitrary functions of space. Here Z is of the form given by

Eqs. (23) and Eqs. (26), with the identifications g1ðzÞ ¼ ½ð/0 þ wh0Þ2 þ ð/h0 � w0Þ2�
1
2,

g2ðtÞ ¼ 1 ¼ const., n1ðzÞ ¼ hþ tan�1½ð/h0 � w0Þ=ðwh0 þ /0Þ�, and n2ðtÞ ¼ xt. Once the ordinary

differential equations (31) are solved, the displacement field is given by

uðz; tÞ ¼ /ðzÞ cosðxtþ hðzÞÞ þ wðzÞ sinðxtþ hðzÞÞ;

vðz; tÞ ¼ /ðzÞ sinðxtþ hðzÞÞ � wðzÞ cosðxtþ hðzÞÞ:
ð35Þ

The two sets of displacement fields Eqs. (33) and Eqs. (35) provide a great variety of possible

finite amplitude motions, valid in every deformed incompressible nonlinearly elastic solid. They

are inclusive of the solutions discovered and analyzed by Carroll over the years. Thus the

motion Eqs. (33) written at wðtÞ ¼ 0 corresponds to the ‘‘oscillatory shearing motions’’ treated

in [7]; the motion Eqs. (35) written at wðzÞ ¼ 0 corresponds to the ‘‘motions with time-inde-

pendent invariants’’ treated in [7]; the motion Eqs. (35) written at hðzÞ ¼ 0 corresponds to the

‘‘motions with sinusoidal time dependence’’ or ‘‘finite amplitude circularly-polarized standing

waves’’ treated in [8], [9]; the motion Eqs. (33) written at /ðzÞ ¼const., wðzÞ ¼ 0, hðzÞ ¼ �kz,

or equivalently the motion Eqs. (35) written at /ðtÞ ¼const., wðtÞ ¼ 0, hðtÞ ¼ �xt, corresponds

to the celebrated finite-amplitude circularly-polarized harmonic progressive waves of [6].

Before we consider in turn each of these finite-amplitude motions for a rotating body, we sum

up the main results established in this section. We used a formalism proposed by Rosenau and

Rubin [15] for the plane motion of a nonlinear string to derive separable solutions to the

equations of motion of a deformed rotating solid in which finite-amplitude shearing motions

might propagate. In the process, we noticed that two classes of solutions, not considered by

Rosenau and Rubin, were valid for any form of the strain energy function. Each class provided

24 M. Destrade and G. Saccomandi



solutions which generalize those proposed by Carroll [6]–[14] and which put them into a wider

context. On the other hand, the complex formalism makes it clear that the solutions considered

here are related to natural symmetry properties of the coupled wave equations, Eqs. (22). These

properties are natural because they come out from material symmetries and frame indifference

requirements [16]. We refer to the works of Olver [18], and of Vassiliou [19] for further

information on the application of group analysis to coupled wave equations.

4 Circularly-polarized harmonic waves

First we consider a finite amplitude circularly-polarized harmonic progressive wave propa-

gating in the z-direction,

uðz; tÞ ¼ A cosðkz� xtÞ; vðz; tÞ ¼ �A sinðkz� xtÞ; ð36Þ

which is a subcase of Eqs. (33) or of Eqs. (35). Here the amplitude A, the wave number k, and

the frequency x are real positive constants, and the plus (minus) sign for vðz; tÞ corresponds to
a left (right) circularly-polarized wave. For the choice of motion Eqs. (36), we have

u2
z þ v2

z ¼ A2k2; ð37Þ

and Eqs. (20) reduce to the following dispersion equation:

k2QðA2k2Þ ¼ qðx2 � 2X3xÞ: ð38Þ

The actual explicit form of the dispersion depends on a given constitutive equation. However

we recall that, according to considerations by Carroll [6] pertaining to the non-rotating case,

k2QðA2k2Þ must be a positive, monotonically increasing function tending to infinity with k2. It

follows from the dispersion equation (38), that for a given left circularly-polarized wave the

rotation rate X3 has a cut-off frequency of x=2 and the wave does not exist for rotation rates X3

beyond that cut-off frequency.

We now treat in turn three types of constitutive equations, which have proved useful for the

modelling of some incompressible rubberlike and soft biological materials.

4.1 Waves in deformed Mooney-Rivlin materials

As a first illustration we consider a Mooney-Rivlin hyperelastic material, with strain energy

density

WMR ¼ CðI � 3Þ=2þ DðII � 3Þ=2; ð39Þ

where C and D are constants, satisfying [20] C > 0, D � 0 or C � 0, D > 0. It follows at once

from Eqs. (9) that a ¼ C, b ¼ D, and by Eq. (18) that Q is also independent of z. Introducing

the speed c of circularly-polarized waves in a bi-axially deformed, non-rotating Mooney-Rivlin

material [6], [20],

qc2 :¼ Q ¼ Ck2 þ Dk; ð40Þ

we find that the dispersion equation Eq. (38) reads here

c2k2 ¼ x2 � 2X3x: ð41Þ

From this equation, we easily deduce the phase speed vu :¼ x=k and the group speed

vg :¼ @x=@k, as well as their Taylor expansion to third-order for small ratios of the rotation
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rate X3 with respect to the wave frequency x. Introducing d, the ratio of these two frequencies,

d :¼ X3=x, we find

vu

c
¼ 1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2d
p � 1� dþ 3

2
d2 þ Oðd3Þ;

vg

c
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2d
p

1� d
� 1þ 1

2
d2 þ Oðd3Þ:

ð42Þ

Clearly, the right circularly-polarized wave is defined for any value of the rotation rate whereas

the left circularly-polarized wave only exists for a limited range of X3, with x=2 as a cut-off

frequency. Note also that a left circularly-polarized wave is accelerated when the Mooney-

Rivlin material is put into rotation and that a right circularly-polarized wave is slowed down.

To investigate further nonlinear stress-strain responses, we consider two types of incom-

pressible materials belonging to the class of ‘‘neo-Hookean generalized materials’’. These are

materials whose strain-energy function depends only on the first invariant: W ¼ WðIÞ. For
simplicity, we consider that the solids are not prestressed (k ¼ l ¼ 1) prior to the rotation and

wave propagation although this assumption is not essential.

4.2 Waves in undeformed Gent materials

Consider the following strain energy density:

WG ¼ �
CJm

2
ln 1� I � 3

Jm

� �

; ð43Þ

where Cð> 0Þ is the infinitesimal shear modulus and Jm is a material parameter. Gent [49]

introduced the strain energy function WG to take into account the effect of the finite chain

length for the macromolecular chains composing elastomeric materials (see also [22]). Hence,

the parameter Jm has a physical interpretation: it is the constant limiting value for I � 3, and it

reflects the mesoscopic finite chain length limiting effect. As Jm !1, the limiting effect van-

ishes and the strain energy density Eq. (43) tends to that of a neo-Hookean solid (Eq. (39) with

D ¼ 0.)

For the motion considered in this section, I ¼ 3þ A2k2 and so, the limiting chain condition

imposes A2k2 < Jm. From the strain energy density Eq. (43) we find that the response

parameters a and b defined in Eqs. (9) are:

a ¼ C
Jm

Jm � A2k2
; b ¼ 0: ð44Þ

It follows from the definition Eq. (18) of Q, written at k ¼ 1, that the dispersion equation Eq.

(38) reads, for finite-amplitude circularly-polarized harmonic waves in a rotating undeformed

Gent material,

C
Jm

Jm � A2k2
k2 ¼ qðx2 � 2X3xÞ: ð45Þ

Introducing d :¼ X3=x, we find that the phase velocity vu :¼ x=k is given by

qv2
u ¼

CJm þ qx2A2ð1� 2dÞ
Jmð1� 2dÞ ð46Þ
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and is defined everywhere for the right wave and only below the cut-off frequency for the right

wave. The group velocity, vg :¼ @x=@k, is found as

vg ¼
qv3

u

C

ð1� 2dÞ2

1� d
: ð47Þ

In contrast to the case of a Mooney-Rivlin material, the waves are also dispersive when the

body is not rotating; then X3 ¼ 0 and

vu ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

CJm þ qx2A2

qJm

s

; vg ¼
qv3

u

C
: ð48Þ

These latter results are worth mentioning because in [6] Carroll treated explicitly only the case

of Mooney-Rivlin materials. Moreover they may be used as benchmarks for an acoustical

determination of the limiting chain parameter Jm. Acoustical evaluation is non-invasive and

non-destructive, and is therefore appropriate for an estimation in vivo of Jm, whose numerical

value can be linked to the ageing and stiffening of a soft biological tissue such as an arterial wall

[22].

4.3 Waves in undeformed power-law materials

Now consider the following strain energy density:

WK ¼
C

b
1þ b

n
I � 3ð Þ

� �n

�1

� �

; ð49Þ

where Cð> 0Þ, b, and n are constitutive parameters. Knowles [23] proposed that this strain

energy could account for strain softening when n < 1 and for strain hardening when n > 1.

These effects have been observed for many real materials.

Here we find that the dispersion equation (38) is given by

C 1þ b

n
A2k2

� �n�1

k2 ¼ qðx2 � 2X3xÞ: ð50Þ

Taking n ¼ 2 in Eq. (49) as an example of strain energy for a hardening material, we find that

the corresponding phase and group velocities are given by

qv2
u ¼

C

2ð1� 2dÞ 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
qx2

C
bA2ð1� 2dÞ

r" #

;

vg ¼
C

qvuð1� dÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2
qx2

C
bA2ð1� 2dÞ

r

:

ð51Þ

The choice n ¼ 1
2
in Eq. (49) provides an example of strain energy for a softening material. As

pointed out by Knowles [23], this choice is a borderline value for n, as the material is elliptic but

not uniformly elliptic in antiplane shear deformations. We compute the corresponding phase

speed as

qv2
u ¼

C

1� 2d

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ qx2

C
bA2ð1� 2dÞ

� �2
s

� qx2bA2; ð52Þ

and we omit to display the group speed because its expression is too cumbersome.
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5 Motions with sinusoidal time dependence

In this section, we consider finite-amplitude shearing motions with a sinusoidal time-inde-

pendence,

uðz; tÞ ¼ /ðzÞ cosðxtÞ þ wðzÞ sinðxtÞ; vðz; tÞ ¼ /ðzÞ sinðxtÞ � wðzÞ cosðxtÞ; ð53Þ

which are a subcase of Eqs. (35). For these solutions we have

u2
z þ v2

z ¼ /
02 þ w

02; ð54Þ

and so the strain invariants Eq. (15) are spatially nonuniform and constant in time [7]. The

governing equations (20) reduce to

ðQ/0Þ0 ¼ �qðx2 þ 2X3xÞ/; ðQw0Þ0 ¼ �qðx2 þ 2X3xÞw: ð55Þ

These equations are consistent at X3 ¼ 0 with those derived by Carroll [8] . Following his lead,

we reduce them to a problem in central force motion.

We introduce the functions UðzÞ and WðzÞ defined by

U :¼ Q/0; W :¼ Qw0: ð56Þ

We assume that these latter equalities are invertible as

/0 ¼ mU; w0 ¼ mW; ð57Þ

where [8],[9] the generalized shear compliance m (> 0) is a function of the shear stress r, itself
given by r2 ¼ U2 þW2. For example, in the case of a bi-axially deformed Mooney-Rivlin

material with strain energy Eq. (39), m is constant: mMR ¼ 1=ðCk2 þ DkÞ; in the case of an

undeformed Gent material with strain energy Eq. (43), we find that m is given by

mG ¼ ðCJm=2r2Þð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ð4r2Þ=ðC2JmÞ

p
� 1Þ. Note that Carroll [9] proposed expressions for m

when the strain-energy density is expanded up to sixth-order in the invariants (I � 3) and

ðII � 3Þ.
Substitution of Eq. (57) into the derivative with respect to z of Eqs. (55) leads to the system

of coupled ordinary differential equations,

U00 þ qðx2 þ 2X3xÞmU ¼ 0; W00 þ qðx2 þ 2X3xÞmW ¼ 0: ð58Þ

This system is formally equivalent to the one governing the motion of a particle in a plane

under a field of central forces, after identification of U and W with the rectangular Cartesian

coordinates and of z with time. The usual change of variables from rectangular Cartesian to

polar coordinates,

U ¼ r cos h; W ¼ r sin h ð59Þ

leads to

r00 � rh
02 ¼ �qðx2 þ 2X3xÞmðr2Þr; rh00 þ 2r0h0 ¼ 0: ð60:1; 2Þ

These equations coincide at X3 ¼ 0 with those of Carroll [8]. Equation (60.2) is integrated as

r2h0 ¼ A, a constant. Substituting this new equation into Eq. (60.1), multiplying across by r0,

and integrating yields

r
02 þ Ar�2 þ qðx2 þ 2X3xÞ

R
mðsÞds ¼ B; ð61Þ

another constant. For a further treatment and discussions on the interpretation of the solution

to this equation, we refer to the papers by Carroll [7]–[11], at least as long as X3 > �x=2. We

note that the nature of this equation and of its solutions is dramatically altered as X3 tends to

�x=2 and beyond, where it is reasonable to expect that (for example) what was a periodic
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solution to Eq. (61) for X3 > �x=2 has turned into an unbounded solution for X3 < �x=2

because then the central force of Eq. (60.1) is repulsive instead of attractive.

6 Motions with sinusoidal spatial dependence

Finally, we consider a plane wave motion with sinusoidal spatial variations,

uðz; tÞ ¼ /ðtÞ cosðkzÞ þ wðtÞ sinðkzÞ; vðz; tÞ ¼ /ðtÞ sinðkzÞ � wðtÞ sinðkzÞ: ð62Þ

This standing wave [8], [9] generalizes the superposition of two circularly-polarized waves

propagating in opposite directions. It is a subcase of Eqs. (33).

Here,

u2
z þ v2

z ¼ k2ð/2 þ w2Þ; ð63Þ

so that I, II, a, b, and Q are independent of z. The governing equations Eqs. (20) reduce to the

system of ordinary differential equations

q/00 þ 2qX3w
0 þ k2Q/ ¼ 0; qw00 � 2qX3/

0 þ k2Qw ¼ 0: ð64Þ

This system coincides at X3 ¼ 0 with the system established by Carroll [8]. It is worth noting

that the change of variables

k/ðzÞ ¼ rðzÞ cosðhðzÞ þ X3zÞ; kwðzÞ ¼ rðzÞ sinðhðzÞ þ X3zÞ ð65Þ

leads to a modified central field problem,

r00 � rh
02 þ ½ðk2=qÞQðr2Þ þ X2

3�r ¼ 0; rh00 þ 2r0h0 ¼ 0: ð66:1; 2Þ

Again, integration of Eq. (66.2) leads to r2h0 ¼ A, a constant. Then, substitution into Eq.

(66.1), multiplication and integration leads to

r
02 þ Ar�2 þ ðk2=qÞ

R
QðsÞdsþ X3r2 ¼ B; ð67Þ

another constant. Here the presence of rotation X3 6¼ 0 always alters the nature of the solution

with respect to the non-rotating case.

7 Conclusions

Incompressible nonlinear elasticity provided a coherent framework where the equations of

motion could be written in full, and possibly solved, for a rotating elastic body, without having

to be split into a ‘‘time-dependent’’ solution and a hypothetical ‘‘time-independent’’ solution.

The internal constraint of incompressibility played a crucial role in the writing of these

equations, because the arbitrary pressure term can englobe the possibly troublesome centrifugal

force.

As an illustration, the equations of motion were solved using the finite amplitude motions

introduced and developed by Carroll in non-rotating elastic bodies. Because his solutions

constitute one of the few examples of finite amplitude exact solutions, much emphasis was

placed on how to derive them. In particular, it was shown how the search for separable

solutions could recover and extend Carroll’s results. For circularly polarized harmonic waves,

the dispersion equation was derived explicitly and solved for the Mooney-Rivlin, Gent, and

power-law strain energy functions. For motions with sinusoidal time dependence and for
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motions with sinusoidal space dependence, the procedure of reduction to a set of ordinary

differential equations was outlined. Their eventual resolution can be adapted from Carroll’s

works, but is beyond the scope of this contribution.

The resolution of the full equations of motion in a rotating hyperelastic compressible material

is also left open.
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