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Abstract

The Stroh formalism is applied to the analysis of infinitesimal surface wave propagation in a statically,
finitely and homogeneously deformed isotropic half-space. The free surface is assumed to coincide with one
of the principal planes of the primary strain, but a propagating surface wave is not restricted to a principal
direction. A variant of Taziev�s technique [R.M. Taziev, Dispersion relation for acoustic waves in an aniso-
tropic elastic half-space, Sov. Phys. Acoust. 35 (1989) 535–538] is used to obtain an explicit expression of
the secular equation for the surface wave speed, which possesses no restrictions on the form of the strain
energy function. Albeit powerful, this method does not produce a unique solution and additional checks are
necessary. However, a class of materials is presented for which an exact secular equation for the surface
wave speed can be formulated. This class includes the well-known Mooney–Rivlin model. The main results
are illustrated with several numerical examples.
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1. Introduction

The study of small-amplitude surface waves propagating in finitely and homogeneously de-
formed hyperelastic materials has quite a long history, dating back to the classical paper by Hayes
and Rivlin [1] in 1961. The interest in using the theory of small motions superimposed on a large
static deformation of a hyperelastic half-space is manifold, for once the problem is solved the re-
sults are applicable to various advanced topics. These, in particular, include the non-destructive
evaluation of solids (see Guz� and Makhort [2] for a review), the incremental stability analysis
of the loaded surface of a deformed material (see Guz� [3] for comprehensive review and bibliog-
raphy) and the acousto-elastic effect (second-order theory of linear elasticity) where the pre-defor-
mation is also considered small (see Pao et al. [4] for a review of both experimental and theoretical
results).

The results of Hayes and Rivlin, valid for a compressible hyperelastic material, have since
been extended to the case of hyperelastic materials subject to incompressibility [5] or to a generic
isotropic internal constraint [6]. However, these works are limited to the consideration of principal
surface waves, i.e., surface waves that propagate and attenuate along principal directions of pre-
strain. We note that Connor and Ogden [7] and Destrade and Ogden [8] considered two-partial
(non-principal) surface waves polarized in a principal plane of pre-strain. Nevertheless, for
three-partial non-principal surface waves very few explicit results exist and the scope of their
applicability is limited. Specifically, Flavin [9] considered the problem for a Mooney–Rivlin
material with one material parameter much smaller than the other; Willson [10,11] studied
materials subject to equi-biaxial pre-deformations; Gerard [12], Gerhart [13] and Iwashimizu
and Kobori [14] worked with the linearized theory of second-order acousto-elasticity; Chadwick
and Jarvis [15], Mase and Johnson [16] and Chadwick [17] used the Stroh–Barnett–Lothe integral
formalism; Rogerson and Sandiford [18] used numerical methods for an implicit secular equation,
etc.

This paper presents an explicit secular equation for the speed of a surface wave propagating in a
principal plane, but not in a principal direction, of a tri-axially deformed, general hyperelastic
incompressible material. This result is achieved by using methods first developed by Taziev
[19,20] for surface waves propagating in the symmetry plane of a crystal. Although similar, the
analysis presented here reveals some features particular to the context of non-linear elasticity.
In general, the surface wave consists of a linear combination of three partial modes, each propor-
tional to exp{ik(n Æ x + qam Æ x � vt)}, a = 1,2,3, where k is the wave number, v the wave speed, n
the direction of propagation, m the normal to the surface, and qa an attenuation coefficient. For a
general strain energy function, the qa are the roots of a bi-cubic equation with positive imaginary
parts. Their explicit analytical expressions are awkward and the method of Taziev proves useful
(Section 4), because it does not require such expressions. However, for a whole class of hyperelas-
tic incompressible materials, inclusive of the Mooney–Rivlin model, the coefficients of attenuation
qa are obtained analytically, for one is always equal to i ¼

ffiffiffiffiffiffiffi
�1

p
, and so the two others are roots of

a bi-quadratic (Section 3). This property has been touched upon by Flavin but has been only re-
cently examined in detail [21]. Here, it leads to the derivation of an exact and explicit secular equa-
tion for surface waves, which possesses no more than one root for the speed. In the general case,
the method of Taziev leads to a rationalized secular equation (a polynomial of degree 12 in the
squared wave speed), with spurious roots to be discarded.
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Before these two main results are developed, we summarize in Section 2 the basic governing
equations and present the equations of motion as a first-order linear differential system. The der-
ivation of this system is a lengthy process and is not obvious at all. Thanks to some shorthand
notations and to the Stroh formalism, the system can however be presented in quite a compact
form. Its resolution, coupled to the appropriate boundary conditions for surface waves (vanishing
of the wave away from the interface; no incremental traction on the interface), leads to an implicit
secular equation, to be made explicit in the subsequent two Sections. Section 3 is devoted to the
special class of incompressible materials which is associated with a factorized propagation condi-
tion. Numerical examples in this section involve a Mooney–Rivlin material characterized by the
same material parameters, state of tri-axial pre-strain, and normal load as the one considered by
Rogerson and Sandiford [18]. A connection is made with their numerical results for the surface
wave speed versus the angle of propagation. Some new features are highlighted; in addition,
the attenuation coefficients for the partial displacements are presented. Section 4 covers the der-
ivation of the secular equation for the general strain energy density of an incompressible material,
using a variant of Taziev�s technique. To illustrate the method, we investigate numerically the case
of a deformed Varga material where a surface wave propagates in any direction in the plane of
shear, with a view to the non-destructive acoustic evaluation of a deformed rubber insulator.
2. Preliminaries

2.1. Equations of motion

Consider a half-space, composed of a homogeneous pre-stressed hyperelastic incompressible
material with mass density q, characterized by strain energy function W. Let (O,x1,x2,x3) be a
fixed rectangular Cartesian coordinate system such that the body occupies the region x2 P 0
and that the principal stretches coincide with the Oxi directions, with corresponding stretch ratios
k1, k2, k3 (k1 5 k2 5 k3 5 k1 and k1k2k3 = 1). The half-space is maintained in the static state of
deformation by the application of the constant tractions r1, r2, r3 at infinity, given by
ri ¼ kiW i � p; ð2:1Þ

(no summation assumed here) where Wi :¼ oW/oki and p is a constant scalar, introduced by the
constraint of incompressibility.

Then consider the superposition of a small-amplitude motion u(x1,x2,x3, t) upon the primary
large deformation. The corresponding incremental nominal stress s has the following components
[22]:
sij ¼ Bijklul;k þ pui;j � p�dij; ð2:2Þ
where p* is a Lagrangemultiplier, corresponding to an increment in p, and the non-zero components
of the fourth-order elasticity tensor B are (no summation on repeated i, j indexes assumed here)
Biijj ¼ kikjW ij;

Bijij ¼ ðkiW i � kjW jÞk2
i =ðk

2
i � k2

j Þ;
Bijji ¼ Bjiij ¼ Bijij � kiW i.

ð2:3Þ
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The linearized incremental equations of motion and incompressibility condition read
sij;i ¼ quj;tt; uj;j ¼ 0. ð2:4Þ

We specialize our analysis to the consideration of a surface (Rayleigh) wave, propagating in a

principal plane but not in a principal direction, see Fig. 1. Specifically, it is assumed that the wave
is traveling with phase velocity v and wave number k over the surface x2 = 0 in a direction which
makes an angle h with Ox1; it decays exponentially away from the boundary x2 = 0, and produces
no incremental traction at the boundary.

Hence we model this motion by
fu; p�; sg ¼ fUðkx2Þ; ikPðkx2Þ; ikSðkx2Þgeikðchx1þshx3�vtÞ; ð2:5Þ

where ch :¼ cosh, sh :¼ sinh, and U, P, S are functions of kx2 alone. By substituting these forms of
the mechanical displacements and the tractions into the incremental constitutive equation (2.2)
and using (2.1), the incremental equations of motion and the incompressibility constraint (2.4)
can be cast as a homogeneous linear system of six first-order differential equations,
n0 ¼ iNn where nðkx2Þ :¼ ½U 1;U 2;U 3; S21; S22; S23�T; ð2:6Þ

within which the prime denotes differentiation with respect to the variable kx2.

Here the 6 · 6 real matrix N follows the usual block decomposition [23] of linear anisotropic
elasticity,
N ¼
N1 N2

N3 þ X1 NT
1

� �
; X :¼ qv2; ð2:7Þ
where N1, N2  NT
2 , and N3  NT

3 are 3 · 3 matrices. However, the components of the Ni are spe-
cific to the theory of small motions superposed on large static deformations [17]. To present them
in a compact form, we introduce the short-hand notations
cij :¼ ðkiW i � kjW jÞk2
i =ðk

2
i � k2

j Þ  cji þ kiW i � kjW j;

2bij :¼ k2
i W ii � 2kikjW ij þ k2

jW jj þ 2ðkiW j � kjW iÞkikj=ðk2
i � k2

j Þ  2bji.
ð2:8Þ
Fig. 1. A surface wave propagating in a principal plane but not in a principal direction.
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Then �N1 and N2 are given by
0 chðc21 � r2Þ=c21 0

ch 0 sh
0 shðc23 � r2Þ=c23 0

2
64

3
75;

1=c21 0 0

0 0 0

0 0 1=c23

2
64

3
75; ð2:9Þ
respectively, and
�N3 ¼
g 0 �j

0 m 0

�j 0 l

2
64

3
75; ð2:10Þ
where
g :¼ 2c2hðb12 þ c21 � r2Þ þ s2hc31;

m :¼ c2h c12 � ðc21 � r2Þ2=c21
h i

þ s2h c32 � ðc23 � r2Þ2=c23
h i

;

l :¼ c2hc13 þ 2s2hðb23 þ c23 � r2Þ;
j :¼ chshðb13 � b12 � b23 � c21 � c23 þ 2r2Þ

ð2:11Þ
(see Destrade [24] for the case r2 = 0, and Destrade and Ogden [8] for the case of a wave polarized
in the symmetry plane of a stretched and sheared material).

2.2. Propagation condition

Now the requirement of exponential decay away from the surface x2 = 0 is expressed by choos-
ing the following form for the wave,
nðkx2Þ ¼ n0eikqx2 ; IðqÞ > 0; ð2:12Þ

where n0 is a constant vector and q is an attenuation coefficient. Then the equations of motion
(2.6) become the eigenvalue problem: Nn0 = qn0. The associated characteristic equation
det(N � q1) = 0, is the propagation condition. This equation is a cubic in q2, as demonstrated
by Rogerson and Sandiford [18]
c21c23q
6 � ½ðc21 þ c23ÞX � c1�q4 þ ðX 2 � c2X þ c3Þq2 þ ðX � c4ÞðX � c5Þ ¼ 0; ð2:13Þ
with
c1 :¼ ðc21c13 þ 2b12c23Þc2h þ ðc23c31 þ 2b23c21Þs2h;

c2 :¼ ðc23 þ c13 þ 2b12Þc2h þ ðc21 þ c31 þ 2b23Þs2h;

c3 :¼ ðc12c23 þ 2b12c13Þc4h þ ðc21c32 þ 2b23c31Þs4h
þ ½c12c21 þ c13c31 þ c23c32 � ðb13 � b12 � b23Þ

2 þ 4b12b23�c2hs2h;

c4 :¼ c12c
2
h þ c32s

2
h;

c5 :¼ c13c
4
h þ 2b13c

2
hs

2
h þ c31s

4
h.

ð2:14Þ
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Note that the roots q21, q
2
2, q

2
3 of the bicubic are such that
q21 þ q22 þ q23 ¼ ½ðc21 þ c23ÞX � c1�=ðc21c23Þ;
q21q

2
2 þ q22q

2
3 þ q23q

2
1 ¼ ðX 2 � c2X þ c3Þ=ðc21c23Þ;

q21q
2
2q

2
3 ¼ �ðX � c4ÞðX � c5Þ=ðc21c23Þ.

ð2:15Þ
2.3. Implicit secular equation for surface waves

For the three roots q1, q2, q3 of the propagation condition (2.13) with positive imaginary parts,
the corresponding eigenvalue problems yield three linearly independent eigenvectors n1, n2, n3,
respectively. Then the general solution to the equations of motion (2.6) may be written as
nðkx2Þ ¼ c1e
iq1kx2n1 þ c2e

iq2kx2n2 þ c3e
iq3kx2n3; ð2:16Þ
for some constants c1, c2, c3. Explicitly, ni are given by columns of the matrix adjoint to N � qi1.
Taking, for example, the second such column gives ni in the form
ni ¼

a4q4i þ a2q2i þ a0
�q5i þ b3q3i þ b1qi
d4q4i þ d2q2i þ d0

h3q3i þ h1qi
ðm � X Þðq4i þ mq2i þ nÞ

g3q
3
i þ g1qi

2
666666664

3
777777775
; ð2:17Þ
where expressions for the constants ai, bi, di, hi, and gi are too lengthy to be reproduced here and
m ¼ 1

c21
þ ðc21 � r2Þ2

c221ðm� X Þ c
2
h

 !
½g� X � þ 1

c23
þ ðc23 � r2Þ2

c223ðm� X Þ s
2
h

 !
½l� X �

� 2j
ðc21 � r2Þðc23 � r2Þ

c21c23ðm� X Þ chsh;

n ¼ 1þ ðc21 � r2Þ2

c21
c2h þ

ðc23 � r2Þ2

c23
s2h

" #
ðm� X Þ�1

( )
� ½ðl� X Þðg� X Þ � j2�=ðc21c23Þ. ð2:18Þ
The boundary condition of zero incremental tractions at the plane surface x2 = 0 means that
nð0Þ ¼ ½U 1ð0Þ;U 2ð0Þ;U 3ð0Þ; 0; 0; 0�T. ð2:19Þ

By comparing this expression with (2.16) evaluated for x2 = 0, we conclude that c1, c2, c3 are solu-
tions to a homogeneous linear system of three equations. The corresponding secular equation is
given by
ðm � X Þ
h3q31 þ h1q1 h3q32 þ h1q2 h3q33 þ h1q3
q41 þ mq21 þ n q42 þ mq22 þ n q43 þ mq23 þ n

g3q
3
1 þ g1q1 g3q

3
2 þ g1q2 g3q

3
3 þ g1q3

�������
������� ¼ 0. ð2:20Þ
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As noted by Taziev [19] in the context of linear anisotropic elasticity, this determinant factorizes
greatly. By omitting the factors m � X, qi � qj and h1g3 � h3g1, we are left with
nxI ¼ xIIIðm� xIIÞ; ð2:21Þ
where
xI :¼ �ðq1 þ q2 þ q3Þ; xII :¼ q1q2 þ q2q3 þ q3q1; xIII :¼ �q1q2q3. ð2:22Þ
Eq. (2.21) is the secular equation for surface waves in deformed incompressible materials; it re-
mains implicit as long as the explicit expressions for the xa are not known.
3. Factorization of the propagation condition

Before moving on to the derivation of an explicit secular equation, a special case must be trea-
ted separately. A simple analysis shows that, for a certain class of incompressible hyperelastic
materials maintained in a state of large homogeneous deformation (strain-induced anisotropy),
the propagation condition (2.13) factorizes into the product of a term linear in q2 and a term qua-
dratic in q2, thus leading to simple explicit expressions for the qa and eventually, for the secular
equation. This class of materials includes the well-known Mooney–Rivlin model, often used to
describe finite deformations of rubber. The described factorization does not in general occur
for linear elastic materials such as crystals (intrinsic anisotropy).
3.1. Conditions on the strain energy function and explicit secular equation for surface waves

Following Pichugin [21], we seek a solution to the propagation condition (2.13) of the form
q2 = C, where C is a constant independent of v. By substituting q2 = C into (2.15), we obtain three
equations for the two quantities S and P, the respective sum and product of the remaining q2a,
namely,
S þ C ¼ ½ðc21 þ c23ÞX � c1�=ðc21c23Þ;

CS þ P ¼ ðX 2 � c2X þ c3Þ=ðc21c23Þ;
CP ¼ �ðX � c4ÞðX � c5Þ=ðc21c23Þ.

ð3:1Þ
After solving (3.1)1 for S and then (3.1)3 for P, the substitutions of S and P into (3.1)2 allow for
the identification of like-powers of X and c2h on both sides of the resulting equation. Since the iden-
tity must hold for all X and h we obtain that C = �1, provided the following relationships are
satisfied
cij þ cji ¼ 2bij. ð3:2Þ
Then the associated propagation condition factorizes into
ðq2 þ 1Þðq4 � Sq2 þ P Þ ¼ 0; ð3:3Þ
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where
S ¼ 1

c21
þ 1

c23

� �
X � c12

c21
þ c13

c23

� �
c2h �

c31
c21

þ c32
c23

� �
s2h;

P ¼ ðX � c12c
2
h � c32s

2
hÞðX � c13c

2
h � c31s

2
hÞ=ðc21c23Þ.

ð3:4Þ
To sum up, if the conditions (3.2) on the strain energy function are satisfied, then the bi-cubic
(2.13) factorizes into the product of a term linear in q2 and a term quadratic in q2. It follows that
the roots qa with positive imaginary parts and hence the corresponding xI, xII, and xIII defined in

(2.22), can be found explicitly: q1 = i, q2q3 ¼ �
ffiffiffi
P

p
, q2 þ q3 ¼ i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
P

p
� S

p
, so that
xI ¼ �i 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
P

p
� S

q� �
; �xII ¼

ffiffiffi
P

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
P

p
� S

q
; xIII ¼ i

ffiffiffi
P

p
. ð3:5Þ
The end result is that Eq. (2.21) is now an explicit secular equation for surface waves in deformed
incompressible materials satisfying (3.2), namely
n 1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
P

p
� S

q� �
þ

ffiffiffi
P

p
mþ

ffiffiffi
P

p
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2
ffiffiffi
P

p
� S

q� �
¼ 0. ð3:6Þ
Note that the conditions (3.2) impose restrictions upon the strain energy function of the incom-
pressible material. Explicitly, they read (i5 j)
ðk2
i þ 3k2

j ÞkiW i � ð3k2
i þ k2

j ÞkjW j � ðk2
i � k2

j Þðk
2
i W ii � 2kikjW ij þ k2

jW jjÞ ¼ 0. ð3:7Þ
For example, the Mooney–Rivlin strain energy function,
W ¼ D1ðk2
1 þ k2

2 þ k2
3 � 3Þ=2þD2ðk2

1k
2
2 þ k2

2k
2
3 þ k2

3k
2
1 � 3Þ=2; ð3:8Þ
where D1 and D2 are constants, satisfies this condition. This case is treated in the following
subsection.

Note also that Pichugin [21] finds conditions under which the propagation condition (2.13) ad-
mits roots of the form q2 = CX + D, where C, D are constants. It turns out this possibility arises
when the half-space is subject to an equi-biaxial pre-deformation, whatever the strain energy func-
tion may be. Another simplification occurs when the bi-quadratic in (3.3) admits a double root
(then S2 = 4P); such is the case for the neo-Hookean form of strain energy function (D2 ¼ 0 in
(3.8)). The secular equations for surface waves in bi-axially deformed generic incompressible
materials and in tri-axially deformed neo-Hookean materials were established by Willson [10]
and Flavin [9], respectively, and are not investigated further here.

3.2. Example: Mooney–Rivlin materials

Now the case of Mooney–Rivlin materials is dealt with in such a way that a connection is made
with the numerical results of Rogerson and Sandiford [18]. For the Mooney–Rivlin strain energy
function (3.8) the quantities cij, bij, defined in (2.8), yield the following forms:
cij ¼ ðD1 þD2k
2
kÞk

2
i ; 2bij ¼ ðD1 þD2k

2
kÞðk

2
i þ k2

j Þ ¼ cij þ cji; ð3:9Þ
where k 5 i, j.
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Using these expressions, together with the material parameters [18] D1 ¼ 2, D2 ¼ 0:8, the
stretch ratios given by k2

1 ¼ 3:695, k2
2 ¼ 0:7, k2

3 ¼ 0:387, and the normal load r2 = 0.8, the secular
equation (3.6) is solved numerically to give the variation of the surface wave speed with h, and the
graph of Rogerson and Sandiford [18] is reproduced with little effort. We take this opportunity to
comment on their statement that ‘‘the surface wave degenerates into a shear wave as h approaches
0 and p/2’’.

Firstly, we find that at, and close to, the direction Ox1 (also the direction of greatest stretch), the
surface wave speed v ¼

ffiffiffiffiffiffiffiffiffi
X=q

p
is distinct from the bulk shear wave

ffiffiffiffiffiffiffiffiffi
c4=q

p
, i.e., c5 > c4 in the

neighborhood of h = 0. For instance, at h = 0 the principal surface wave propagation speedffiffiffiffiffiffiffiffiffiffiffi
X 0=q

p
, where

ffiffiffiffiffiffi
X 0

p
¼ 2:917, is found from Dowaikh and Ogden�s [5] formula X0 = c12 � c21f

2,
where
Fig.
f3 þ f2 þ 2ðb12 þ c21 � r2Þ � c12
c21

f � ðc21 � r2Þ2

c21
¼ 0; ð3:10Þ
(or equivalently, is found from (3.6)), while the bulk shear waves propagate at speeds
ffiffiffiffiffiffiffiffiffi
c5=q

p
andffiffiffiffiffiffiffiffiffi

c4=q
p

where
ffiffiffiffi
c5

p ¼ ffiffiffiffiffiffi
c13

p ¼ 3:076 and
ffiffiffiffi
c5

p ¼ ffiffiffiffiffiffi
c12

p ¼ 2:921. Fig. 2 shows the variations of these
speeds in the (0–20�) range. The top (dashed) curve is the graph of

ffiffiffiffi
c5

p
, the middle (dotted) curve

is the graph of
ffiffiffiffi
c4

p
, and the bottom (solid) curve is the graph of

ffiffiffiffi
X

p
.

Secondly, we find that, as the direction of propagation approaches the Ox3 direction (direction
of least stretch, h = 90� here), the surface wave speed v ¼

ffiffiffiffiffiffiffiffiffi
X=q

p
is indeed tending to the bulk

shear wave speed
ffiffiffiffiffiffiffiffiffi
c5=q

p
, so that the corresponding graphs are indistinguishable one from another

in the approximative range (82–90�). However, at h = 90� exactly, there exists a two-partial prin-
cipal surface wave whose speed is intermediate between the bulk shear wave speeds

ffiffiffiffiffiffiffiffiffi
c5=q

p
andffiffiffiffiffiffiffiffiffi

c4=q
p

. Numerically, when h = 90�, ffiffiffiffi
c5

p ¼ 0:995,
ffiffiffiffi
c4

p ¼ 1:384, and this two-partial principal sur-
2. Scaled speeds of bulk and surface waves near the direction of greatest stretch in a Mooney–Rivlin material.
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face wave propagates with speed
ffiffiffiffiffiffiffiffiffiffiffiffi
X 90=q

p
say, where

ffiffiffiffiffiffiffi
X 90

p
¼ 1:327, the value found from Dow-

aikh and Ogden�s [5] formula X90 = c32 � c23f
2, in which
Fig.
f3 þ f2 þ 2ðb23 þ c23 � r2Þ � c32
c23

f � ðc23 � r2Þ2

c23
¼ 0. ð3:11Þ
This peculiar situation is also encountered in cubic crystals with strong anisotropy, such as nickel
[25]. In short, the subsonic two-partial surface wave must be slower than any in-plane bulk wave
(such as the one propagating with speed

ffiffiffiffiffiffiffiffiffi
c5=q

p
), but is indifferent to the anti-plane wave

propagating with speed
ffiffiffiffiffiffiffiffiffi
c4=q

p
. This principal two-partial surface wave is singular because it ex-

ists only in the direction h = 90�, although ‘‘pseudo-surface waves’’ may be found in its
neighborhood.

Once X = qv2 is known, the attenuation coefficients qi are computed from (3.3) and the depth
profiles follow naturally from (2.16). Fig. 3 displays the imaginary part of the qi, indicative of the
penetration depth, as a function of h. The horizontal straight top (dashed) line is for q1 = i. The
two other curves (dotted and solid) are for the imaginary parts of q2 and q3. At h = 0, there are
only two partial modes, one corresponding to q1 = i, the other corresponding to q3 = 0.119i. At
h J 0, a third partial mode appears, corresponding to a q2 of the form q2 = ib2, b2 [ 0.52. In the
approximate ranges (0–23�) and (68–90�), the attenuation factors are of the form q1 = i, q2 = ib2,
q3 = ib3 with b2 > 0, b3 > 0. In the approximate range (23–68�), they are of the form q1 = i,
q2 = a + ib, q3 = �a + ib with b > 0. As h approaches 90�, and X approaches c5, the imaginary
part of the attenuation factor q3 tends to zero, indicating a deeply penetrating quasi-bulk surface
wave [26]. Finally at h = 90�, a singular two-partial principal surface wave exists, with one mode
corresponding to q1 = i and the other corresponding to q2 = 0.212i (this latter value corresponds
to a discontinuity in the representation of q2 as a function of h and cannot be represented on the
graph).
3. Imaginary part of the attenuation coefficients for a surface wave in a deformed Mooney–Rivlin material.
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4. General case

4.1. Explicit secular equation for surface waves

In the general case, where no factorization of the propagation condition occurs, a different
treatment is required. The ‘‘method of the polarization vector’’, introduced by Currie [27], refined
by Taziev [20], and recently revisited by Ting [28], proves to be a most effective mean for deriving
the secular equation as a polynomial in X = qv2. It relies on the equations
Uð0Þ � K ðnÞUð0Þ ¼ 0; ð4:1Þ

where K(n) is the symmetric 3 · 3 lower left submatrix of the Nn matrix and n is an integer. Hence
K(1) = N3 + X1, K ð2Þ ¼ Kð1ÞN1 þNT

1K
ð1Þ, etc.

Also, for a wave propagating in the symmetry plane of a monoclinic crystal, Ting [28] showed
that U(0) is of the form
Uð0Þ ¼ U 1ð0Þ½1; ia2; b1�
T
; ð4:2Þ
where a2, b1 are real numbers. We checked that U(0) is also of this form in the present case of a
surface wave propagating in a principal plane of a deformed material.

Computing N�1 and N3, we find that KðnÞ
12 ¼ KðnÞ

23 ¼ 0, for n = �1,1,3. It follows that the Eq.
(4.1) written for n = �1,1,3 reduce to the non-homogeneous system
Kð�1Þ
13 Kð�1Þ

33 Kð�1Þ
22

Kð1Þ
13 Kð1Þ

33 Kð1Þ
22

Kð3Þ
13 Kð3Þ

33 Kð3Þ
22

2
64

3
75 2b1

b2
1

a2
2

2
4

3
5 ¼

�Kð�1Þ
11

�Kð1Þ
11

�Kð3Þ
11

2
64

3
75. ð4:3Þ
By Cramer�s rule, we find 2b1 = D1/D, b2
1 ¼ D2=D where
D ¼
Kð�1Þ

13 Kð�1Þ
33 Kð�1Þ

22

Kð1Þ
13 Kð1Þ

33 Kð1Þ
22

Kð3Þ
13 Kð3Þ

33 Kð3Þ
22

2
664

3
775; D1 ¼

�Kð�1Þ
11 Kð�1Þ

33 Kð�1Þ
22

�Kð1Þ
11 Kð1Þ

33 Kð1Þ
22

�Kð3Þ
11 Kð3Þ

33 Kð3Þ
22

2
664

3
775; D2 ¼

Kð�1Þ
13 �Kð�1Þ

11 Kð�1Þ
22

Kð1Þ
13 �Kð1Þ

11 Kð1Þ
22

Kð3Þ
13 �Kð3Þ

11 Kð3Þ
22

2
664

3
775;

ð4:4Þ

so that
D2
1 � 4DD2 ¼ 0; ð4:5Þ
which is the explicit secular equation for non-principal surface waves in deformed incompressible
materials.

Upon inspection of (2.7) and (2.10), we find that Kð1Þ
13 ¼ j, Kð1Þ

33 ¼ X � l, Kð1Þ
22 ¼ X � m,

Kð1Þ
11 ¼ X � g. Computing N�1, we find that up to a common disposable factor, Kð�1Þ

13 , Kð�1Þ
33 ,

Kð�1Þ
22 , Kð�1Þ

11 are proportional to polynomials of degree 1, 2, 3, 2 in X, respectively. Similarly, com-
puting N3, we find that Kð3Þ

13 , K
ð3Þ
33 , K

ð3Þ
22 , K

ð3Þ
11 are polynomials of degree 1, 2, 1, 2, respectively. We

conclude from the definitions (4.4) of D, D1, D2 that the secular equation (4.5) is a polynomial of
degree 12 in X = qv2, just as for monoclinic crystals in linear anisotropic elasticity [19]. It is too
long to reproduce here but it was obtained in a formal manner with Maple and with Mathematica.
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The numerical resolution of the polynomial (4.5) yields a priori 12 roots for X. From these, we
discard at once the complex roots, the negative real roots, and the roots corresponding to super-
sonic surface waves (faster than bulk waves). Out of the remaining roots, at most one will yield
attenuation coefficients q1, q2, q3 (with a positive imaginary part) from the propagation condition
(2.13), such that the exact secular equation (2.21) is satisfied.

To conclude this Section, we check that the rationalized secular equation (4.5) is consistent with
the known secular equation for principal surface waves. When h = 0, it is easy to see that
Kð�1Þ

13 ¼ Kð1Þ
13 ¼ Kð3Þ

13 ¼ 0, therefore D = D2 = 0. Thus, (4.5) reduces to D1 = 0. By substituting
X = c12 � c21f

2, we find that D1 factorizes into the product of a quadratic in f2 and two cubics
in f, one of which is indeed Dowaikh and Ogden�s [5] Eq. (3.10).
4.2. Example: Varga materials

The standard Varga strain energy function [29,30] is defined as
W ¼ Cðk1 þ k2 þ k3 � 3Þ; ð4:6Þ
where the material parameter C is constant. This strain energy function has been introduced to
describe natural rubber vulcanizates. It leads to the following expressions for the quantities cij
and bij, defined in (2.8):
cij ¼ Ck2
i =ðki þ kjÞ; bij ¼ Ckikj=ðki þ kjÞ. ð4:7Þ
Simple shear plays an important role in the experimental determination of a strain energy func-
tion [22]. Consider now a half-space made of Varga material, subject to an amount of shear c
along X3, see Fig. 4. With a view to the possible non-destructive evaluation of sheared rubber,
we are interested in the propagation of a surface wave in any direction in the plane of shear
OX 1X 3. We assume that this plane is free of normal load, thus r2 = 0.

The principal stretches associated with the amount of shear c may be determined using the fol-
lowing equations [7]:
Fig. 4. An elastic material under simple shear; the dashed lines represent the body at rest.
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k1 � k�1
1 ¼ c; k1 > 1; k2 ¼ 1; k3 ¼ k�1

1 k�1
2 . ð4:8Þ
We substitute the parameters (4.7) into the secular equation (4.5), and then solve that equation
numerically for the amounts of shear: c = 0.5,1.0,1.5, corresponding to the angles of shear:
tan�1c = 26.56�, 45�, 56.31�, respectively. We obtain the velocity of the surface wave propagating
in a direction making an angle h + w with OX 1, where w = (1/2) tan�1 (2/c) = 37.98�, 31.72�,
26.56�, respectively. Note that here OX 1 is not a principal axis, for the two principal axes Ox1
and Ox3 in the plane of shear are at an angle w with OX 1 and with OX 3, respectively.

For the selection of the relevant root of the secular equation out of the 12 possible ones, we
followed the checking procedure described at the end of the previous Section. For example, at
c = 1 and h + w = 0, the rationalized secular equation (4.5) has only 2 real roots, givingffiffiffiffiffiffiffiffiffiffiffiffiffi

qv2=C
p

¼ 0:848 or
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qv2=C

p
¼ 0:884. Both roots yield three attenuation factors with a positive

imaginary part from the propagation condition (2.13). However, the exact secular equation
(2.21) is satisfied only with the first root. Hence, with a 32 digit precision, Maple finds that
jnxI/[xIII(m � xII)] � 1j < 10�22 when

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qv2=C

p
¼ 0:848, indicating that (2.21) is satisfied; on

the other hand, jnxI/[xIII(m � xII)] � 1j > 1.96 when
ffiffiffiffiffiffiffiffiffiffiffiffiffi
qv2=C

p
¼ 0:884, indicating that (2.21) is

not satisfied then.
Fig. 5 displays the dependence of

ffiffiffiffiffiffiffiffiffiffiffiffiffi
qv2=C

p
on the angle h + w over the range [0–180�]. The solid,

dot, and dash-dot curves correspond to an amount of shear of 0.5, 1.0, 1.5, respectively. The figure
confirms what is to be expected intuitively: as the half-space is more and more sheared, the strain-
induced anisotropy increases, and its influence on the surface wave speed is more and more
marked. It also shows that the surface wave travels at its fastest (slowest) speed along the direction
of greatest (least) stretch, thus allowing for an acoustic determination of the directions of the prin-
cipal stretches in sheared rubber.
. Scaled surface wave speed as a function of h + w for a Varga material subjected to simple shear deformations.
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