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Explicit secular equations for piezoacoustic surface waves:
Rayleigh modes
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The existence of a two-partial Rayleigh wave coupled to an electrical field in 2 mm piezoelectric
crystals is known but has rarely been investigated analytically. It turns out that the Z cut X
propagation problem can be fully solved, up to the derivation of the secular equation as a
polynomial in the squared wave speed. For the metallized �unmetallized� boundary condition, the
polynomial is of degree 10 �48�. The relevant root is readily identified and the full description of the
mechanical and electrical fields follows. The results are illustrated in the case of the superstrong
piezoelectric crystal, potassium niobate, for which the effective piezoelectric coupling coefficient is
calculated to be about 0.1. © 2005 American Institute of Physics. �DOI: 10.1063/1.2031948�
I. INTRODUCTION

This article prolongs and complements papers by the
present authors1 and by others2–8 where the propagation of a
Shear-Horizontal �SH� surface acoustic wave, decoupled
from a two-partial Rayleigh surface acoustic wave, was con-
sidered for piezoelectric crystals. Those papers examined
situations �cuts and propagation directions� where the inter-
action between acoustic fields and piezoelectric fields con-
cerns the SH wave exclusively and not the Rayleigh wave,
which remains purely elastic. In the present paper, the situa-
tion is reversed: the interaction occurs solely between the
electric field and the mechanical displacement lying in the
sagittal plane �the plane containing the direction of propaga-
tion and the direction of attenuation�, leading to a piezoa-
coustic two-partial �elliptically polarized� Rayleigh surface
wave.

The properties of a two-partial Rayleigh surface wave
complement those of a SH surface wave and one wave’s loss
is the other’s gain. Hence the SH surface waves are particu-
larly suited for immersed crystals �liquid sensing, biosensors,
etc.� because the mechanical displacement is polarized hori-
zontally with respect to the interface, which leads to low loss
of acoustic power in the fluid; conversely, the two-partial
Rayleigh surface waves are used extensively for nondestruc-
tive surface evaluation9 and for free-surface sensors,10 be-
cause their propagation is highly sensitive to anything
present on the interface which might perturb their vertical
displacement. To take but one example it is possible, using
Rayleigh surface waves, to design a mass microbalance with
a mass resolution of 3 pg.11

This context reveals the importance of studying the ana-
lytical properties of such waves. The cuts allowing for the
propagation of two-partial Rayleigh waves coupled to an
electric field were identified and classified by Maerfeld and
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Lardat;12 these waves were also investigated numerically13,14

and experimentally,15 as is best recalled in the textbook by
Royer and Dieulesaint16 �see also Mozhaev and Weihnacht8

for pointers to more recent contributions�. In general, the
problem treatment, however, falls short of a full analytical
resolution, and the wave speed is usually found from a trial-
and-error procedure which goes back and forth between the
propagation condition and the boundary condition, until a
certain determinant is minimized to a required degree of
accuracy17 �alternatively, Abbudi and Barnett18 proposed a
numerical scheme based on the surface-impedance matrix�.
The present paper shows that a secular equation can be de-
rived explicitly as a polynomial of which the wave speed is a
root, for the Z cut X propagation problem.

This feat is achieved by the use of some fundamental
equations �Sec. II� satisfied by the six-vector whose compo-
nents are the mechanical displacements and tractions and the
electrical potential and induction at the interface. Albeit pow-
erful, the method based on the fundamental equations has
one drawback because the polynomial secular equation pos-
sesses several spurious roots. Hence for the metallized
boundary condition �Sec. III A�, it is a polynomial of degree
10 in the squared wave speed, and for the unmetallized
boundary condition �Sec. III B�, it is a polynomial of degree
48! Nevertheless, finding the numerical roots of a polyno-
mial is almost an instantaneous process for a computer. Also,
it is expected that among all the 10 or 48 possible roots, one
gives exactly the surface wave speed. Consequently, that root
satisfies the boundary condition exactly, whereas none of the
spurious roots does. Once the relevant root is thus properly
identified, all the quantities of interest follow naturally: the
attenuation coefficients, the depth profiles, the electromag-
netic coupling coefficient, etc. Here, the method is applied to
the superstrong piezoelectric crystal, potassium niobate
�KNO3�, for which the effective electromagnetic coupling
coefficient for the piezoacoustic surface wave is found to be

about 0.1.
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II. BASIC EQUATIONS

A. Constitutive equations and equations of motion

Consider a piezoelectric crystal with two mirror planes
�orthorhombic 2 mm, tetragonal 4 mm, or hexagonal 6 mm�.
For this type of crystal, the elastopiezo-dielectric matrix is of
the form,

�1�

Now consider the Z cut, X propagation of a surface
acoustic wave, that is, a motion with speed � and wave num-
ber k where the displacement field u and the electric poten-
tial � are of the form,

�u,���x1,x2,x3,t� = �U�kx3�,��kx3��eik�x1−�t�, �2�

say, with

U��� = 0, ���� = 0. �3�

Here the x1,x2,x3 axes are aligned with the crystallographic
axes, and the crystal occupies the x3�0 region.

It follows from the constitutive equation �Eq. �1�� that
the tractions �ij and the electric induction Di are of a similar
form:

��ij,Di��x1,x2,x3,t� = ik�tij�kx3�,di�kx3��eik�x1−�t�, �4�

say, with

t22 = − ic23U3� − ie32�� + c12U1, d2 = − ie24U2�,

t11 = − ic13U3� − ie31�� + c11U1,

t13 = − ic55U1� + c55U3 + e15� ,

t33 = − ic33U3� − ie33�� + c13U1,

t23 = − ic44U2� + c46U2, t12 = − ic46U2� + c66U2,

d1 = − ie15U1� + e11U1 + e15U3 − �11� ,

d3 = − ie33U3� + i�33�� + e31U1, �5�

where the prime denotes differentiation with respect to kx3.
Also, the surface wave vanishes away from the interface, so
that

tij��� = 0, di��� = 0. �6�

The classical equations of piezoacoustics, �ij,j =�ui,tt and

Di,i=0 �where � is the mass density of the crystal�, reduce to
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− t11 + it13� = − ��2U1, − t12 + it23� = − ��2U2,

− t13 + it33� = − ��2U3, − d1 + id3� = 0. �7�

Clearly, the second equation in Eq. �7� involves only the
function U2 and is decoupled from the three others, which
involve the functions U1, U3, and �. It reads: c44U2�− �c66

−��2�U2=0. A simple analysis shows that there are no func-
tions solution to this second-order ordinary differential equa-
tion such that U2���=0 and t23�0�=−ic44U2��0�=0, except
the trivial one. Hence, the piezoelastic equations, coupled
with free-surface boundary condition, lead to plane strain:
U2=0, which in turn leads to �generalized� plane stress: t12

= t23=d2=0 by Eqs. �5�.
Now the remaining constitutive equations and piezoa-

coustic equations can be arranged as a first-order linear dif-
ferential system. It develops as

�� = iN� , �8�

where �using the notation of Ting19�

��kx2� = �
U1

U3

�

t31

t33

d3

� ,

N = �
0 − 1 − s6 n66 0 0

− r4 0 0 0 n22 n24

− r2 0 0 0 n24 n44

X − 	 0 0 0 − r4 − r2

0 X 0 − 1 0 0

0 0 − 
 − s6 0 0

� . �9�

Lothe and Barnett20 established the explicit expressions for
the components of the real matrix N in the general case
�general anisotropy and general piezoelectricity�. In the
present context, they are given by

X = ��2, �2 = �33c33 + e33
2 ,

s6 = e15/c55, r4 = ��33c13 + e31e33�/�2,

r2 = �c13e33 − e31c33�/�2,

n66 = 1/c55, n22 = �33/�
2, n24 = e33/�

2,

n44 = − c33/�
2,

	 = c11 − �c13��33c13 + 2e31e33� − c33e31
2 �/�2, �10�


 = − ��11 + e15
2 /c55� .

B. General solution

The solution to the linear system with constant coeffi-

cients in Eq. �8� is of exponential form. Indeed, taking � as
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�eikqx3, where � is a constant vector and q is a decay coeffi-
cient, leads to the eigenvalue problem, �N−qI6��=0 where
I6 is the 6�6 identity matrix. Hence, q is a root �with posi-
tive imaginary part to ensure decay� to the propagation con-
dition: det�N−qI6�=0, which is a cubic for q2,

q6 − 4q4 + 2q2 − 0 = 0, �11�

where

4 = n22X + n66�X − 	� − n44
 + 2r2s6 + 2r4,

2 = ��X − c55���33�X − c11� − e31
2 � − �11�X�c33 + c55�

− c11c33 + c13�c13 + 2c55��

− e15�X�e15 + 2e31 + 2e33� − 2e33c11 + 2�e15

+ e31�c13��/�c55��33c33 + e33
2 �� ,

0 = − �X − c11��X�11 − e15
2 − �11c55�/�c55��33c33 + e33

2 �� .

�12�

Here of course, it must be realized that the propagation
condition in Eq. �11� can be solved for q only once the speed
of the surface wave �and hence X=��2� is known. Sections
II C and III show how X can be found as a root of the secular
equation. Once X is known, the propagation condition gives
six roots, out of which only three are kept: q1, q2, and q3 say,
the three roots with positive imaginary roots ensuring expo-
nential decay �if for a given X, the propagation condition
fails to deliver three such roots, then no surface wave can
propagate at speed 	X /�.�

Let �1, �2, and �3 be the corresponding eigenvectors:
N�i=qi�

i �i=1, 2, and 3�, obtained, for example, as the third
column of the matrix adjoint to N−qiI6. Explicitly they are
of the form,

�i = 
ai,bi,
e15

�33
ci,c55f i,c55gi,�0

e15

�33
hi�T

, �13�

where the nondimensional quantities ai, gi, and hi contain
only even powers of q, and the nondimensional quantities ci,
f i, and gi contain only odd powers of q:

�33c33ai = − ��33c33 + e33
2 �q4 + ��33�X − c55� − �11c33

− 2e15e33�q2 + �11�X − c55� − e15
2 ,

�33c33bi = ��c13 + c55��33 + e33�e15 + e31��q3

+ ��c13 + c55��11 + e15�e15 + e31��q ,

e15c33ci = − �c33�e15 + e31� + e33�c13 + c55��q3

+ �e15�X + c13� + e31�X − c55��q ,

�33c33c55f i = − c55��33c33 + e33
2 �q5 + ��33c55�X + c13�

− c33��11c55 + e15
2 + e15e31�

+ e33�e15c13 + e31c55��q3

+ ���11c55 + e2 ��X + c13� + Xe15e31�q ,
15
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�33c33c55gi = − c55��33c33 + e33
2 �q4 + ���33c13 + e33e31�

��X − c55� + e15e33�X − c13�

+ c33��11c55 + e15
2 + e15e31��q2

+ c13��11�X − c55� − e15
2 � ,

e15�0c33hi = e15��33c33 + e33
2 �q4 − ��33e15�X + c13�

− e33��11c55 + e15
2 − e15e31�

+ �11�e31c33 − e33c13��q2

+ e31��11�X − c55� − e15
2 � . �14�

Then the general solution to the equations of motion of Eq.
�8� is

��kx3� = �1�1eikq1x3 + �2�2eikq2x3 + �3�3eikq3x3, �15�

where �1, �2, and �3, are constants.
Depending on the type of boundary conditions, a given

homogeneous system of three linear equations for �1, �2, and
�3 is derived. The corresponding determinantal equation is
the boundary condition. In general for surface waves, the
interface x3=0 remains free of tractions: t31�0�= t33�0�=0.
From these two equations, �2 and �3 can be expressed in
terms of �1 as

�2

�1
=

f3g1 − f1g3

f2g3 − f3g2
,

�3

�1
=

f1g2 − f2g1

f2g3 − f3g2
. �16�

To sum up: First the speed of the surface wave must be
computed as a root of the secular equation �Sec. III� obtained
thanks to the fundamental equations presented below �Sec.
II C�. Next the appropriate decay coefficients are computed
as the roots with positive imaginary parts from the propaga-
tion condition of Eq. �11�. Then it must be checked that the
boundary condition �Sec. III� is indeed satisfied. If it is, then
the complete solution is given by Eqs. �2�, �15�, and �16�.

C. Fundamental equations

Now some fundamental equations are presented, from
which the secular equation is found. Their derivation is short
and is given in Refs. 21–23; they represent a generalization
to interface waves of works by Currie24 and by Taziev25 for
elastic surface waves �see also Ting19 for a review.� They
read

�̄�0� · M„n…��0� = 0, where M„n… = 
 0 I3

I3 0
�Nn, �17�

and n is any positive or negative integer. By computing the
integer powers Nn of N �at n=−2, −1,1,2,3, say�, it is a
simple matter to check that the 6�6 matrix M(n) is symmet-
ric and that its form depends on the parity of n. Hence M(n)
is of the forms,
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�
0 � � � 0 0

� 0 0 0 � �

� 0 0 0 � �

� 0 0 0 � �

0 � � � 0 0

0 � � � 0 0

�, �
� 0 0 0 � �

0 � � � 0 0

0 � � � 0 0

0 � � � 0 0

� 0 0 0 � �

� 0 0 0 � �

� , �18�

when n=−2, 2, and when n=−1, 1, 3, respectively.

III. Z CUT, X PROPAGATION

A. Metallized boundary condition

For metallized �short circuit� boundary conditions, the
mechanically free interface x3=0 is covered with a thin me-
tallic film, grounded to potential zero, and so

��0� = �1�
a1

b1

e15

�33
c1

c55f1

c55g1

�0
e15

�33
h1

� + �2�
a2

b2

e15

�33
c2

c55f2

c55g2

�0
e15

�33
h2

� + �3�
a3

b3

e15

�33
c3

c55f3

c55g3

�0
e15

�33
h3

�
= �

U1�0�
U3�0�

0

0

0

d3�0�
� . �19�

Two possibilities arise for the roots with positive imagi-
nary part of the bicubic in Eq. �11�. Either �a� qi= iq̂i �q̂i

�0� or �b� q1=−q2, q3= iq̂3 �q̂3�0�. In case �a�, it is clear
from Eqs. �14� that ai, gi, and hi, are real numbers and that bi,
ci, and f i are pure imaginary numbers. Then, separating the
real part from the imaginary part in the third, fourth, and fifth
lines in Eq. �19�, it is found that ��1 ,�2 ,�3�T is parallel to a
real vector. It follows from Eq. �19� that ��0� is of the form:

��0� = U1�0��1,i�2,0,0,0,�1�T, �20�

where i�2=U3�0� /U1�0� is pure imaginary ��2 is real� and
�1=d3�0� /U1�0� is real. In case �b� a slightly lengthier study
shows that ��0� is also of this form �see Ting19 and
Destrade23 for proofs in different, but easily transposed, con-
texts�.

Now substituting this expression for ��0� into the funda-
mental equations in Eq. �17� leads to a trivial identity when
n=−2,2, and to the following set of three equations when n

=−1,1,3:
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�M22
�−1� M16

�−1� M66
�−1�

M22
�1� M16

�1� M66
�1�

M22
�3� M16

�3� M66
�3� ��

�2
2

2�1

�1
2 � = �− M11

�−1�

− M11
�1�

− M11
�3� � . �21�

Note that the components of the 3�3 matrix and of the
right-hand side column vector above are easily computed
from their definition in Eq. �17�; for instance, M22

�1�=X,
M16

�1�=−r6, M66
�1�=n44, and M11

�1�=X−	.
Cramer’s rule applied to the system above reveals that

2�1=�2 /�, �1
2=�3 /� �where � is the determinant of the 3

�3 matrix in Eq. �21� and �2 and �3 are the determinants of
the matrix obtained from this matrix by replacing the second
and third columns by the right-hand side column in Eq. �21�,
respectively� and so, that

�2
2 − 4��3 = 0. �22�

This is the explicit secular equation for the speed of a two-
partial Rayleigh piezoacoustic surface wave propagating in a
metallized 2 mm �or 4 mm, or 6 mm� crystal.

Its expression is too lengthy to reproduce here but has
been obtained using MAPLE. It turns out that the secular
equation is a polynomial of degree 10 in X. Note also that the
solution to the system in Eq. �21� for the unknown �2

2 plays
no role in the final expression of the secular equation. Hence
the equation is only valid in the presence of piezoelectric
coupling through the solutions of Eq. �21� for
2�1�=2d3�0� /U1�0�� and for �1

2, and it does not cover the
Rayleigh cubic function for purely elastic surface waves in
orthorhombic crystals. Moreover, in the present context the
in-plane piezoacoustic surface wave is entirely decoupled
from its antiplane counterpart �which does not exist, as seen
in Sec. II A�, and so the secular equation in Eq. �22� cannot
cover the case of a Bleustein-Gulyaev SH wave. Hence in
many respects, this secular equation is unique and stands
alone, with no link whatsoever with the previously estab-
lished secular equations.

Selecting the correct root or roots out of the ten possible
given by the secular equation is quite a simple matter. First
the root X must be real and positive; then it must be such that
the propagation condition in Eq. �11� written at X yields
three roots q1, q2, and q3 with a positive imaginary part;
finally it must be such that the boundary conditions in Eqs.
�19� are satisfied, that is

1

�q1 − q2��q2 − q3��q3 − q4��c1 c2 c3

f1 f2 f3

g1 g2 g3
� = 0. �23�

For potassium niobate26 �KNbO3, 2 mm�, the relevant
constants are the following. Elastic constants
�1011 N m−2� :c11=2.26, c13=0.68, c33=1.86, and c55=0.25;
piezoelectric constants �C m−2� :e15=5.16, e31=2.46, and
e33=4.4; dielectric constants �10−12 F m−1� :�11=34�0, �33

=24�0, and �0=8.85416; and mass density �kg m−3� :�
=4630. The secular equation has six complex roots and four
real positive roots in X; out of these four, only two are such
that the propagation condition yields suitable attenuation co-
efficients; out of these two, only one is such that the bound-

ary condition is verified. The numerical values for the wave
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speed Vm �say� and for the attenuation coefficients are listed
on the second line of Table I. An eight digit precision is
given, although the calculations were conducted with a 30
digit precision; the left-hand side in Eq. �23� was found to be
smaller than 5�10−22. The complete solution is found by
taking the real part of the right-hand side in Eqs. �2� and �4�.
Specifically, the mechanical displacement u1 is in phase
quadrature with the mechanical displacement u3 and the elec-
tric potential,

u1 = Û1�kx3�cos k�x1 − �t� ,

u3 = Û3�kx3�sin k�x1 − �t� ,

� = �̂�kx3�sin k�x1 − �t� , �24�

where Û1=R�U1�, Û3=I�U3�, and �̂=I��� are the ampli-
tude functions. Figure 1 shows their variations with the
scaled depth x3 /�, where �=2� /k is the wavelength. The
vertical scaling is such that U1�0�=1 Å. The axes of the
polarization ellipse are along the x1 and x3 axes. At the in-

terface, Û1�0��0, Û3�0��0, and Û3�0�� Û1�0�, so that
the major axis of the ellipse is along x3 and the minor axis is
along x1; there, the ellipse is spanned in the retrograde sense

TABLE I. Wave speed �m s−1� and attenuation coefficients for a two-partial
piezoacoustic surface wave in KNbO3.

V q1,2 q3

Metallized 3762.509 53 ±0.391 912 49+ i0.499 918 30 i3.106 918 26
Unmetallized 3968.286 24 ±0.398 404 75+ i0.456 289 05 i3.070 088 06

FIG. 1. Depth profiles of the mechanical displacements �Å� and the electric
potential �V� for the piezoelectric Rayleigh wave in KNbO3, Z cut X propa-

gation with the metallized boundary conditions.
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with time. The ellipse becomes more and more oblong with
depth, and is linearly polarized at a depth of about 0.174�.
Further down the substrate, it becomes elliptically polarized
again, but is now spanned in the direct sense. It is again
linearly polarized at a depth of about 0.987�, and then cir-
cularly polarized at a depth of about 1.183�.

B. Unmetallized boundary condition

For the unmetallized �free� boundary condition, the free
surface is in contact with the vacuum �permeability: �0�, and
so1

��0� = �1�
a1

b1

e15

�33
c1

c55f1

c55g1

�0
e15

�33
h1

� + �2�
a2

b2

e15

�33
c2

c55f2

c55g2

�0
e15

�33
h2

� + �3�
a3

b3

e15

�33
c3

c55f3

c55g3

�0
e15

�33
h3

�
= �

U1�0�
U3�0�
��0�

0

0

i�0��0�
� . �25�

Similarly to the previous case, the form of ��0� can be
found, whatever the form of the qi is. Namely,

��0� = ��0��i�2,�1,1,0,0,i�0�T, �26�

where i�2=U1�0� /��0� is pure imaginary ��2 is real� and
�1=U3�0� /��0� is real. Substitution into the fundamental
equations in Eqs. �17� at n=−2 and 2 leads to the trivial
identity. At n=−1, 1, and 3 it leads to

M33
�n� + �0

2M66
�n� + 2�0M16

�n��2 + 2M23
�n��1 + M11

�n��2
2 + M22

�n��1
2

= 0, �27�

which are three equations for two unknowns �2 and �1. For-
mally, solving the two equations and substituting the result
into the third equation yields the secular equation. Note,
however, that these equations in Eq. �27� are nonlinear �qua-
dratic� in the unknowns. Their resolution is somewhat
lengthy, although possible as is now seen.

First take advantage of the identity M23
�1��N56=0 to

solve Eq. �27� at n=1 for �1
2,

�1
2 = − �M33

�1� + �0
2M66

�1� + 2�0M16
�1��2 + M11

�1��2
2�/M22

�1�

= �
 − n44�0
2 + 2r2�0�2 + �	 − X��2

2�/X . �28�

Next, solve Eq. �27� at n=−1 and 3 for �1,

− 2�1 = �M33
�n� + �0

2M66
�n� + 2�0M16

�n��2 + M11
�n��2

2

+ M22
�n��1

2�/M23
�n�, �29�
where n=−1 and 3. Now square both sides and substitute the
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expression for �1
2 just obtained to derive two polynomials of

fourth degree in �2. Having �2 as a common root, these two
polynomials have a resultant equal to zero, a condition which
is the explicit secular equation for the speed of a two-partial
Rayleigh piezoacoustic surface wave propagating in an un-
metallized 2 mm �or 4 mm, or 6 mm� crystal.

Of course, the resulting polynomial is rather formidable,
here of degree 48 in X according to MAPLE. Nevertheless,
finding numerically the roots of a polynomial is a quasi-
instantaneous task for a computer. For instance in the case of
KNbO3, it is found that there are ten positive real roots in X
to the polynomial, out of which six yield three attenuation
factors with positive imaginary part. Out of these six, only
one satisfies the boundary conditions of Eqs. �25�, that is

1

�q1 − q2��q2 − q3��q3 − q4�� f1 f2 f3

g1 g2 g3

h1 − ic1 h2 − ic2 h3 − ic3
�

= 0. �30�

Hence, at the speed Vu �say� and attenuation factors listed on
the third line of Table I �obtained with a 40 digits precision�,
the determinant in Eq. �30� was found to be smaller than 5
�10−23. Note by comparison of the second line and the third
line of Table I that when the free surface is metallized, the
wave propagates at a slower speed, and is slightly more lo-
calized, than when the surface is unmetallized. Figure 2
shows the variations of the amplitude functions with the

FIG. 2. Depth profiles of the mechanical displacements �Å� and the electric
potential �V� for the piezoelectric Rayleigh wave in KNbO3, Z cut X propa-
gation with the unmetallized boundary conditions.
Downloaded 12 Sep 2005 to 134.157.34.161. Redistribution subject to
scaled depth x3 /� in the unmetallized boundary conditions
case. The depth curves are similar to those in the metallized
case, with the differences that the boundary condition forces
the electrical potential to be about 0.596 V at the interface,
and that the nature of the polarization ellipse changes at
depths which are slightly less than the corresponding depths
with the metallized boundary conditions.

Finally, recall that it is usual to take the quantity 2�Vu

−Vm� /Vu as a measure of the crystal’s ability to transform an
electric signal into an elastic surface wave by means of in-
terdigital electrode transducers although, as proved by Royer
and Dieulesaint,16 the demonstration is far from obvious.
This quantity is often referred to as the effective piezoacous-
tic coupling coefficient for surface waves and is expected to
be positive. In the present example of KNbO3, the speeds of
the second column in Table I give a value of 0.1037, far
greater than the corresponding values13 for GaAS,
Bi12GeO20, ZnO, and CdS, and more than twice that27 for
LiNbO3. Note that Mozhaev and Weihnacht28 reported the
negative values for this quantity corresponding to special
cuts and propagation direction in KNbO3.
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