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Piezoelectric Love Waves on Rotated Y -cut
mm2 Substrates
Bernard Collet and Michel Destrade

Abstract—Consider a layer consisting of a m3m dielec-
tric crystal, with faces cut parallel to a symmetry plane.
Then bond it onto a semi-infinite mm2 piezoelectric sub-
strate. For a X- or Y -cut of the substrate, a Love wave can
propagate in the resulting structure and the corresponding
dispersion equation is derived analytically. It turns out that
when the upper (free) face of the layer is metalized, a fully
explicit treatment can also be conducted in the case of a
Y -cut rotated about Z. In the case of a germanium layer
over a potassium niobate substrate, the wave exists at any
wavelength for X-and Y -cuts but this ceases to be the case
for rotated cuts, with the appearance of forbidden ranges.
By playing on the cut angle, the Love wave can be made
to travel faster than, or slower than, or at the same speed
as, the shear bulk wave of the layer. A by-product of the
analysis is the derivation of the explicit secular equation for
the Bleustein-Gulyaev wave in the substrate alone, which
corresponds to an asymptotic behavior of the Love wave.
The results are valid for other choices for the layer and
for the substrate, provided they have the same, or more,
symmetries.

I. Introduction

Layered structures, especially film/coating substrate
systems, play an important role in microelectrome-

chanical systems (MEMS) and in microelectronics pack-
ages. In order to achieve high performance, many surface
acoustic wave (SAW) devices/sensors are designed as lay-
ered architectures such as, for instance, a dielectric, or
piezoelectric, or a non-piezoelectric semiconductor (finite-
thickness) layer deposited onto a (semi-infinite) piezoelec-
tric substrate. For certain configurations, it is possible to
have a one-component wave travel in the structure, in the
direction of the interface; as this guided (shear-horizontal)
Love wave leaves the upper face of the layer free of mechan-
ical tractions, its amplitude varies sinusoidally through the
thickness of the layer and then decays rapidly with depth
in the substrate, and it is such that all fields are continuous
at the layer/substrate interface.

Love waves in piezoelectric layered acoustic devices are
most suitable for high-frequency filters because of their
high phase velocity, and they also show great promise in
biosensor applications with liquid environments because
of their high sensitivity. Consequently, they have received
much attention over the years. For example, Lardat et
al. [1] found under which conditions a piezoelectrically
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stiffened Love wave exists and they presented experimen-
tal and analytical results on surface wave delay lines.
Kessenikh et al. [2] investigated surface Love waves in
piezoelectric substrates of classes 6, 4, 6mm, 4mm, 622,
and 422 with an isotropic dielectric layer. Hanhua and
Xingjiao [3] studied Love waves for a structure formed by a
6mm piezoelectric layer and a 6mm piezoelectric substrate,
with a common symmetry axis in the plane of the interface;
Darinskii and Weihnacht [4] had a similar structure, of a
mm2 piezoelectric layer and a mm2 piezoelectric substrate
with common symmetry axes, one of which is aligned
with the propagation direction and another is aligned with
the normal to the interface. Jakoby and Vellekoop [5] re-
viewed the properties of Love waves and associated numer-
ical methods for a piezoelectric/piezoelectric layered struc-
ture, when the substrate is a ST-cut quartz crystal; so did
Ogilvy [6], with special emphasis on the mass-sensitivity
loading of biosensors. The reader can find additional point-
ers to the literature on Love waves for piezoelectric sensors
in those articles and in the references therein, as well as in
the reviews by Farnell and Adler [7] or by Gulyaev [8].

The present work is concerned with the propagation
of Love waves in a composite structure of a m3m cubic
dielectric (non-piezoelectric semiconductor) layer of finite
thickness h, bonded onto a Y -cut rotated about Z, mm2
orthorhombic, piezoelectric substrate; see Fig. 1. The up-
per, mechanically free face of the layer is metalized and
brought to zero electric potential (short-circuit). It turns
out that, with this structure, the problem can be solved
entirely by a direct analytic method which takes advan-
tage of some “fundamental equations” derived elsewhere
[9]–[11].

The dispersion relation can then be solved numerically
for each mode and the solutions for the mechanical dis-
placements, shear stresses, electric potentials, and electric
inductions can be deduced explicitly. In passing, the ex-
plicit secular equations for the Bleustein-Gulyaev wave
speed and for the limiting wave speed (substrate only,
no overlayer) are found as a cubic and as a sextic in the
squared wave speed, respectively, for rotated cuts. The spe-
cial cases of a X-cut or Y -cut are treated separately. The
effects of the angle of the cut on the phase velocity of the
first modes are illustrated numerically for a specific lay-
ered structure, namely, a germanium layer over a potas-
sium niobate substrate, and the appearance of a forbidden
band of frequency is uncovered for a rotated cut, in sharp
contrast with the non-rotated cuts where the waves exist
for all frequencies.
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Fig. 1. Geometry of the layered structure.

II. The Layer

First, consider the upper layer, which consists of a cu-
bic, m3m non-piezoelectric (semiconductor) crystal, with
mass density ρ̂. Let its symmetry axes be aligned with the
axes x1, x2, and x3 of a rectangular Cartesian coordinate
system. For two-dimensional motions (independent of x3),
the out-of-plane equation of motion decouples from its in-
plane counterpart and reads (≤ x2 ≤ h)

ĉ44 (û3,11 + û3,22) = ρ̂û3,tt, (1)

where û3 is the out-of-plane mechanical displacement, ĉ44
is the transverse stiffness, and the comma denotes partial
differentiation. For a solution in the form of an inhomoge-
neous wave traveling with speed v and wave number k in
the x1 direction, such as, say,

û3 = Û3 (kx2) eik(x1−vt), (2)

the equation of motion (1) reduces to

Û ′′
3 +

(
v2

v̂2 − 1
)

Û3 = 0, where v̂ =
√

ĉ44/ρ̂, (3)

and the prime denotes differentiation with respect to kx2.
The general solution to this second-order differential equa-
tion is either Case (i):

Û3 (kx2) = Û3(0)

(
cos

√
v2

v̂2 − 1kx2

+ A sin

√
v2

v̂2 − 1kx2

)
, when v > v̂,

(4)

or Case (ii):

Û3 (kx2) = Û3(0)

(
cosh

√
1 − v2

v̂2 kx2

+ A sinh

√
1 − v2

v̂2 kx2

)
, when v < v̂,

(5)

where the constant A can be determined from the bound-
ary condition at x2 = h. This latter condition is that the
upper face of the layer be free of mechanical tractions, so
that σ̂23 = ĉ44û3,2 is zero there. Then it follows from (4)
and (5) that A = tan

√
v2/v̂2 − 1kh in Case (i), and that

A = − tanh
√

1 − v2/v̂2kh in Case (ii). Consequently, the
mechanical field is now entirely known in the layer, up to
the quantity Û3(0).

The procedure to find the electrical field is similar, and
even simpler because the layer is not piezoelectric. Taking
the electric potential φ̂ in the form, say,

φ̂ = ϕ̂ (kx2) eik(x1−vt), (6)

Poisson’s equation, ∆φ̂ = 0, reduces to

ϕ̂′′ = ϕ̂ = 0, (7)

with general solution

ϕ̂ (kx2) = ϕ̂(0) (coshkx2 + B sinh kx2) , (8)

where the constant B can be determined from the bound-
ary condition on the upper face of the layer x2 = h. A
thin metallic film covers that face, and it is grounded to
potential zero, ϕ̂(kh) = 0. It then follows from (8) that
B = − coth kh and, consequently, that the electrical field
is now entirely known in the layer, up to the quantity ϕ̂(0).

For the problem at hand, only the values of the fields at
the interface x2 = 0 between the layer and the substrate
are needed. Because the mechanical displacement û3 and
the electrical potential φ̂ are in the forms (2) and (6), re-
spectively, the mechanical traction σ̂23 and the electrical
displacement D̂2 must also be of a similar form, due to the
constitutive relations, σ̂23 = ĉ44û3,2 and D̂2 = −ε̂11φ̂,2,
where ε̂11 is the dielectric constant of the layer. Hence,

σ̂23 = ikt̂23 (kx2) eik(x1−vt), D̂2 = ikd̂2 (kx2) eik(x1−vt),
(9)

say. In particular, the conclusions drawn from the calcu-
lations conducted above are that at the layer/substrate
interface,

t̂23(0) = −iĉÛ3(0), d̂2(0) = −iε̂ϕ̂(0), (10)

where

ĉ = ĉ44

√
v2

v̂2 − 1 tan

√
v2

v̂2 − 1kh, when v > v̂,

ĉ = −ĉ44

√
1 − v2

v̂2 tanh

√
1 − v2

v̂2 kh, when v < v̂,

ε̂ = ε̂11 coth kh.

(11)
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III. The Substrate

The substrate occupies the half-space x2 ≤ 0 with the
strong piezoelectric crystal, potassium niobate, KbNO3
(orthorhombic mm2 symmetry). Cut the crystal along a
plane containing the Z-axis and making an angle θ with
the XZ plane. Let x1x2x3 be the coordinate system ob-
tained after the rotation⎡⎣ m n 0

−n m 0
0 0 1

⎤⎦ , where m = cos θ, n = sin θ. (12)

Yet again, for a two-dimensional motion (independent
of x3), the out-of-plane strain and stress decouple from
their in-plane counterparts. Hence, with u1 = u2 = 0,
u3 = u3 (x1, x2, t) for the mechanical displacement, and
φ = φ (x1, x2, t) for the electric potential, the constitutive
relations yield σ11 = σ22 = σ33 = σ12 = 0 for the stress
components and D3 = 0 for the electrical displacement,
and they reduce to

σ23 = c44u3,2 + c45u3,1 + e14φ,1 + e24φ,2,

σ31 = c45u3,2 + c55u3,1 + e15φ,1 + e14φ,2,

D1 = e14u3,2 + e15u3,1 − ε11φ,1 − ε12φ,2,

D2 = e24u3,2 + e14u3,1 − ε12φ,1 − ε22φ,2,

(13)

where the cij , eij , and εij are related to the corresponding
quantities c̃ij , ẽij , and ε̃ij in the crystallographic coordi-
nate system XY Z through tensor transformations [12] as

c44 = m2c̃44 + n2c̃55, c55 = n2c̃44 + m2c̃55,

c45 = mn (c̃44 − c̃55) , e24 = m2ẽ24 + n2ẽ15,

e15 = n2ẽ24 + m2ẽ15, e14 = mn (ẽ24 − ẽ15) ,

ε11 = m2ε̃11 + n2ε̃22, ε22 = n2ε̃11 + m2ε̃22,

ε12 = mn (ε̃22 − ε̃11) .

(14)

Now consider the x2-cut, x1-propagation of a shear-
horizontal interface acoustic wave, that is, a motion with
speed v and wave number k where the displacement field
u3 and the electric potential φ are of the form, say,

{u3, φ} (x1, x2, t) = {U3 (kx2) , ϕ (kx2)}eik(x1−vt),
(15)

with

U3(−∞) = 0, ϕ(−∞) = 0. (16)

It follows from the constitutive relations (13) that the trac-
tion σ32 and the electric induction D2 are of a similar form,
say,

{σ32, D2} (x1, x2, t) = ik{t32 (kx2) , d2 (kx2)}eik(x1−vt),
(17)

where

t32(−∞) = 0, d2(−∞) = 0. (18)

The nontrivial part of the equations of piezoacoustics,
σij,j = ρui,tt, Di,i = 0 (where ρ is the mass density of
the crystal), can be written as a second-order differential
system [13]:

T

[
U3

′′

ϕ′′

]
+ 2iR

[
U ′

3
ϕ′

]
−

[
Q −

(
ρv2)J

] [
U3
ϕ

]
=

[
0
0

]
,
(19)

where

T =
[
c44 e24
e24 −ε22

]
, R =

[
c45 e14
e14 −ε12

]
,

Q =
[
c55 e15
e15 −ε11

]
, J =

[
1 0
0 0

]
,

(20)

or as a first-order differential system in the form

ξ′ = iNξ, where ξ (kx2) = [U3, ϕ, t31, d2]
t ;

(21)

N has the Stroh block structure

N =
[

N1 N2
N3 +

(
ρv2

)
J N t

1

]
, (22)

with [14]

N1 = −T −1R, N2 = T −1, N3 = RT −1R − Q.
(23)

Here the components of N are easily computed from (20)
and (23) by hand or using a computer algebra system.

Seeking a solution to (19) in the form [U3, ϕ]t =
[U3(0), ϕ(0)]t eikqx2 , where q is constant, yields the propa-
gation condition

det
[
q2T + 2qR + Q −

(
ρv2)J

]
= 0, (24)

a quartic in q. Explicitly,

cD
44q

4 + 2
ε12
ε22

cD
16q

3 +
(
cD
45 − ρv2) q2

+ 2
ε12
ε22

(
cD
26 − ρv2) q +

ε11
ε22

(
cD
55 − ρv2) = 0, (25)

where

cD
44 = c44 +

e2
24

ε22
, cD

16 = c44 + c45
ε22
ε12

+ 2
e14e24

ε12
,

cD
45 = c55 + c44

ε11
ε22

+ 2
e15e24

ε22
+ 4c45

ε12
ε22

+ 4
e2
14

ε22
,

cD
55 = c55 +

e2
15

ε11
, cD

26 = c55 + c45
ε11
ε12

+ 2
e15e24

ε12
.

(26)

Out of the four possible roots, only two have a negative
imaginary part, insuring exponential decay as x2 → −∞.
Computing these qualifying roots analytically at θ = 0◦

or 90◦ is straightforward, because then the quartic is a bi-
quadratic. Otherwise, it is not an easy matter. Although
it is actually possible to do so [15], [16], this paper follows
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a different route and makes extensive use of the “funda-
mental equations” derived in [9]–[11]. They read

ξ(0) · M (n)ξ(0) = 0, where M (n) =
[
0 I
I 0

]
Nn,

(27)

and n is any positive or negative integer.

IV. The Layer/Substrate Structure

The continuity of all fields at the layer/substrate inter-
face x2 = 0 imposes the boundary conditions:

U3(0) = Û3(0), ϕ(0) = ϕ̂(0),

t23(0) = t̂23(0), d2(0) = d̂2(0).
(28)

Now the dispersion equations are derived explicitly. In the
special cases of X- and Y -cuts, the dispersion equation
is exact: if it is satisfied, then the Love wave exists. In
other cases, the dispersion equation is rationalized: it has
spurious roots, not corresponding to a true Love wave so
that a subsequent validity check is necessary.

A. Special Cases θ = 0◦, 90◦

For a X-cut or a Y -cut of the substrate, the analy-
sis simplifies considerably; it leads to an exact dispersion
equation and it does not require the use of the fundamental
equations.

When m = 1, n = 0, or m = 0, n = 1, the parameters
c45, e14, and ε12 vanish according to (14). Then in (20),
R ≡ 0 also, and the quartic (24) becomes the following
biquadratic [4]:

q4 − Sq2 + P = 0, (29)

where the nondimensional quantities S and P are given by

−S =
c44ε11 + c55ε22 + 2e15e24 − ε22

(
ρv2

)
c44ε22 + e2

24
,

P =
c55ε11 + e2

15 − ε11
(
ρv2

)
c44ε22 + e2

24
. (30)

The relevant roots q1 and q2 come in one of the two
following forms, either

q1 = −iβ1, q2 = −iβ2, (31a)

or

q1 = −α − iβ, q2 = α − iβ, (31b)

where βi > 0 and β > 0. In either case, q1 + q2 has no real
part and a negative imaginary part, and q1q2 is a negative
real number. Explicitly,

q1 + q2 = −i

√
2
√

P − S, q1q2 = −
√

P. (32)

The associated eigenvectors ζ1 and ζ2 follow from (for
instance) the third column of the adjoints to the matrices
N − q1I and N − q2I, as ζi =

[
ai, bi

]t, (i = 1, 2) where

ai =
[
q2
i +

ε11
ε22

,
e24

ε22
q2
i +

e15

ε22

]t

, bi = qiTai,
(33)

(here T is given by (20), with components evaluated at
0◦ or 90◦). Then the general solution to the equations of
motion is of the form

ξ (kx2) = γ1e
ikq1x2ζ1 + γ2e

ikq2x2ζ2, (34)

where γ1 and γ2 are constants.
At x2 = 0, it can be split as

[U3(0), ϕ(0)]t = Aγ, [t23(0), d2(0)]t = Bγ,
(35)

where

A =
[
a1|a2]

, B =
[
b1|b2]

, γ = [γ1, γ2]
t
,

(36)

Now the boundary conditions (28) and (10) give the link

Bγ =
[
t̂23(0), d̂2(0)

]t

= Diag (−iĉ,−iε̂)
[
Û3(0), ϕ̂(0)

]t

= −i Diag (ĉ, ε̂)Aγ, (37)

from which the dispersion equation follows as

|iBA−1 − Diag (ĉ, ε̂) | = 0. (38)

It is written in this form to take advantage of the many de-
sirable properties of the surface impedance tensor iBA−1

[17]; thus, this matrix is Hermitian in the subsonic range
(defined below), and of the compact form:

iBA−1 =
i

q1 + q2

[
ρv2 − c55 − c44q1q2 −e15 + e24q1q2

−e15 + e24q1q2 ε11 − ε22q1q2

]
.

(39)

Moreover, the eigenvalues of the aggregate impedance ten-
sor in (38) are real monotically decreasing functions of v
for any fixed kh, so that the wave speed of each mode is ob-
tained unambiguously from the roots of (38); see Shuvalov
and Every [18].

Using the identities q2
1 + q2

2 = S and q2
1q

2
2 = P and the

connections (30) and (32), the exact, explicit, dispersion
equation is finally derived as∣∣∣∣∣∣∣∣∣

ρv2 − c55 − c44
√

P√
2
√

P − S
+ ĉ −e15 + e24

√
P√

2
√

P − S

−e15 + e24
√

P√
2
√

P − S

ε11 + ε22
√

P√
2
√

P − S
+ ε̂

∣∣∣∣∣∣∣∣∣ = 0,
(40)

which is a fully explicit equation, because ĉ and ε̂ are de-
fined in (10) and S and P in (30).
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The dispersion equation is valid in the subsonic range,
that is, as long as the speed is less than the limiting speed
vL, the smallest speed at which the biquadratic (29) ceases
to have two roots q1 and q2 with a positive imaginary
part. When q1 and q2 are of the form in (31a), then vL

is root to P = 0; when they are of the form in (31b),
then vL is root to 2

√
P = S. In either case, the wave

becomes homogeneous at v = vL because then the roots of
the biquadratic are real; they are: ±q, where q =

√
SL or

q =
√

SL/2, according to each case (here SL is S given by
(30) at v = vL). The associated eigenvectors are [a,±b]t,
where

a =
[
q2 +

ε11
ε22

,
e24

ε22
q2 +

e15

ε22

]t

, b = qTa. (41)

The vanishing of the wave away from the interface can no
longer be ensured then, but the continuity of the fields at
x2 = 0 can. The conclusion is that the boundary conditions
(28) and (10) lead to the following cut-off equation,∣∣∣∣∣∣∣∣
(

c44 +
e2
24

ε22

)
q2 +

c44ε11 + e24e15

ε22
ĉ

(
q2 +

ε11
ε22

)
e24

ε11
ε22

− e15 ε̂

(
e24

ε22
q2 +

e15

ε22

)
∣∣∣∣∣∣∣∣ = 0.

(42)

This equation has an infinity of roots in kh (corresponding
to the intersections of the graph of tan with the graph of
coth). Each root (kh)L, say, is a cut-off parameter for each
dispersion mode, at which the Love wave ceases to exist.

Note that the dispersion relation (40) is consistent with
the secular equation of a Bleustein-Gulyaev wave traveling
in the substrate alone: as h tends toward zero, ĉ → 0 and
ε̂ → ∞, so that (40) reduces to ρv2 − c55 = c44

√
P , which,

once squared, coincides with the quadratic (56) obtained
in the next Section. It is also consistent with the dispersion
equation for a purely elastic Love wave. Indeed, by taking
eij → 0 and εij → 0 in (30) and (40), the equation of
Lardat et al. [1] is recovered:

tan

√
ρ̂v2 − ĉ44

ĉ44
kh =

c44

√
c55 − ρv2

c44

ĉ44

√
ρ̂v2 − ĉ44

ĉ44

. (43)

Finally, it is consistent with the dispersion equation of
Love surface waves in an isotropic dielectric layer over a
6mm piezoelectric substrate [2], by the corresponding spe-
cialization.

B. Rotated Cut

Combining the boundary conditions (28) with the re-
sults for t̂23(0) and d̂2(0) of (10) gives the following form
for ξ(0):

ξ(0) = U3(0) [1, α, −iĉ, −iε̂α]t , (44)

where α = ϕ(0)/U3(0) is complex: α = α1 + iα2, say. Then
the fundamental relations (27) read⎡⎢⎢⎣

1
α
iĉ
iε̂α

⎤⎥⎥⎦
⎡⎢⎢⎢⎣
M

(n)
11 M

(n)
12 M

(n)
13 M

(n)
14

M
(n)
12 M

(n)
22 M

(n)
23 M

(n)
24

M
(n)
13 M

(n)
23 M

(n)
33 M

(n)
34

M
(n)
14 M

(n)
24 M

(n)
34 M

(n)
44

⎤⎥⎥⎥⎦
⎡⎢⎢⎣

1
α

−iĉ
−iε̂α

⎤⎥⎥⎦ = 0,
(45)

or [
M

(n)
12 + ĉε̂M

(n)
34

]
(2α1) +

[
ε̂M

(n)
14 − ĉM

(n)
23

]
(2α2)

+
[
M

(n)
22 + ε̂2M

(n)
44

] (
α2

1 + α2
2
)

= −
[
M

(n)
11 + ĉ2M

(n)
33

]
.

(46)

Writing them for n = −1, 1, 2, and re-arranging the three
resulting equations, leads to the following nonhomoge-
neous system of linear equations,

[k1|k2|k3]p = −k4, (47)

where p =
[
2α1, 2α2, α2

1 + α2
2
]t and k1, k2, k3, and k4

are the vectors with components:

M
(n)
12 + ĉε̂M

(n)
34 , ε̂M

(n)
14 − ĉM

(n)
23 ,

M
(n)
22 + ε̂2M

(n)
44 , M

(n)
11 + ĉ2M

(n)
33 , (48)

(n = −1, 1, 2), respectively. Cramer’s rule gives the unique
solution to the system as

2α1 = −∆1/∆, 2α2 = −∆2/∆, α2
1 + α2

2 = −∆3/∆,
(49)

where ∆ = det [k1|k2|k3], ∆1 = det [k4|k2|k3], ∆2 =
det [k1|k4|k3], and ∆3 = det [k1|k2|k4]. The dispersion
equation follows then from the compatibility of the equal-
ities (49):

∆2
1 + ∆2

2 + 4∆3∆ = 0. (50)

When (and if) this dispersion relation yields a real pos-
itive wave speed v for a given wave number k, it remains
to be checked whether that speed corresponds to a valid
solution. Proceed as follows. First recall that the exact
boundary condition is of the form (38), where now the ai

and bi (i = 1, 2) are defined by

ai =
[
q2
i + 2

ε12
ε22

qi +
ε11
ε22

, q2
i + 2

e14

ε22
qi +

e15

ε22

]t

bi = (qiT + R)ai. (51)

The computation of the corresponding surface impedance
tensor iBA−1 is long but perfectly possible analytically; its
components depend on q1 and q2 through the sum q1 + q2
and the product q1q2. Now, having found a speed from
(50), compute numerically the roots of the quartic (24).
Select q1 and q2, the roots with negative imaginary parts (if
there are no such roots, then v is not valid.) Then compute
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q1 + q2, q1q2, and iBA−1, and check whether the exact
boundary condition (38) is satisfied.

Finally, it is also possible to determine exactly the limit-
ing speed vL above which the decay condition is no longer
insured. Fu [15] shows that vL is the smallest root of D = 0,
where D is the discriminant of the cubic resolvent associ-
ated with the quartic (24). Thus, rewrite the quartic (24)
in its canonical form, say,

p4 + rp2 + sp + t = 0, (52)

using the substitution q = p − (1/2)
(
ε12

/
ε22

) (
cD
16

/
cD
44

)
.

Then,

D = −4
(
12t + r2)3

+
(
−72tr + 2r3 + 27s2)2

.
(53)

Using a computer algebra system, it was found that the
equation D = 0 is a sextic in the squared wave speed.

V. Bleustein-Gulyaev Wave as h → 0

Shuvalov and Every [18] show that a great variety of
asymptotic behaviors arises for an interface wave on a
coated half-space. When the thickness of the layer van-
ishes here, the asymptotic behavior of the Love wave in
the layer/substrate structure is that of a shear-horizontal
surface wave propagation over the piezoelectric substrate
alone (the Bleustein-Gulyaev wave [19], [20]). For such a
wave, with metalized boundary conditions, the vector ξ(0)
takes the form

ξ(0) = [U3(0), 0, 0, d3(0)]t = U3(0) [1, 0, 0, α]t ,
(54)

where α = d3(0)/U3(0) is complex. The fundamental re-
lations (27), written for, say, n = −1, 1, 2, can be ar-
ranged as⎡⎢⎣M

(−1)
11 M

(−1)
14 M

(−1)
44

M
(1)
11 M

(1)
14 M

(1)
44

M
(2)
11 M

(2)
14 M

(2)
44

⎤⎥⎦
⎡⎣ 1

α + α
αα

⎤⎦ =

⎡⎣0
0
0

⎤⎦ , (55)

a homogeneous linear system of three equations. Its solu-
tion is nontrivial when the determinant of the 3×3 matrix
on the left-hand side is zero. The resulting secular equa-
tion is a cubic in ρv2. At θ = 0◦ and θ = 90◦, the secular
equation factorizes into the product of a term linear in ρv2

and a term quadratic in ρv2. In particular, at θ = 0 the
quadratic is

(
ρv2 − c̃55

)2
+ c̃2

44

(
ρv2 − c̃55

)
ε̃11 − ẽ2

15

c̃44ε̃22 + ẽ2
24

= 0.
(56)

Further, c̃44 = c̃55, ε̃11 = ε̃22, and ẽ24 = ẽ15 for the 6mm
symmetry, and (56) then simplifies into the product of ρv2

and the linear equation in ρv2 of Bleustein and Gulyaev.

Fig. 2. Solid curves: Variations of the Bleustein-Gulyaev wave and
limiting wave speeds with cut angle in a homogeneous KbNO3 sub-
strate. Horizontal dashed lines: Speed of a (bulk) shear wave in
PMMA (1), Ge (2), SiO2 (3), SrTiO2, and Si (5).

Now for KbNO3, the material parameters of interest
are [21]: c̃44 = 7.43, c̃55 = 2.5 (1010 N/m2), ẽ24 = 11.7,
ẽ15 = 5.16 (C/m2), ε̃11 = 34ε0, ε̃22 = 780ε0 (ε0 = 8.854 ×
10−12 F/m), and ρ = 4630 kg/m3 . Using these values,
the corresponding parameters in the rotated coordinate
system follow from (14), and, in turn, T , R, and Q follow
from (20), N from (22)–(23), and M (n) from (27). Then the
cubic secular equation is solved for v for any value of the
cut angle θ. Out of the three possible roots, only one may
correspond to the Bleustein-Gulyaev wave ([22] explains
how the adequate root is selected.) It turns out that the
wave exists for all angles, with a speed vBG (say) increasing
from 2895.35 m/s at θ = 0◦ to 4450.85 m/s at θ = 90◦.
Fig. 2 shows the dependence in θ, and is in agreement with
the plots obtained by Nakamura and Oshiki [23] and by
Mozhaev and Weihnacht [24].

Fig. 2 also displays the speed of the bulk shear wave in
a germanium layer, for which [25] ĉ44 = 67.1×1010 N/m2,
ε̂11 = 16.6ε0, and ρ̂ = 5330 kg/m3; here, v̂ = 3550.31 m/s.
The angle at which vBG = v̂ is θ0 = 50.0817◦. The vari-
ation of the limiting speed vL in KbNO3 with the angle
of cut is shown as well, and that plot is also in agreement
with the plot of Mozhaev and Weihnacht [24].

VI. Dispersion Curves

A. Special Case θ = 0◦

At θ = 0◦ and kh = 0, the interface wave travels in the
substrate alone, with the Bleustein-Gulyaev wave speed of
2895.35 m/s. The limiting speed (found here as the root
of 2

√
P = S) is vL = 3939.33 m/s. The speed of the

fundamental mode starts at the Bleustein-Gulyaev wave
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Fig. 3. Dispersion curves at θ = 0◦, θ0, and 90◦.

speed at kh = 0, increases to a maximum speed of about
3857.18 m/s at kh = 0.517, and then decreases toward the
shear bulk speed of the layer, v̂ = 3550.31 m/s. In the
narrow range where kh is smaller than 7.08436×10−2, the
speed v of the fundamental mode wave is smaller than v̂.
The fundamental mode exists for all values of kh.

The speeds of the subsequent modes start from the lim-
iting speed vL at (kh)L and tend toward v̂ in a monoti-
cally decreasing manner. The cut-off parameter (kh)L for
the first mode, second mode, and third mode is: 6.24,
12.75, and 19.27, respectively. Fig. 3 shows the dispersion
curves for the fundamental mode and for the first mode.
Qualitatively, the plots echo those of Kielczynski et al. [26]
who considered a 6mm substrate covered with a “depolar-
ized” layer.

B. Special Case θ = 90◦

At θ = 90◦ and kh = 0, the limiting speed is the root of
P = 0; here, vL = 4508.73 m/s. The speed of the funda-
mental mode starts at the Bleustein-Gulyaev wave speed
of 4450.85 m/s at kh = 0, increases to a maximum speed
of about 4480.69 m/s at kh = 0.0581, and then decreases
toward the shear bulk speed of the layer, v̂ = 3550.31 m/s.
Here, too, the fundamental mode exists for all values of kh.

The speeds of the subsequent modes start from the lim-
iting speed vL at (kh)L and decrease toward v̂. The cut-
off parameter (kh)L for the first mode, second mode, and
third mode is 4.05, 8.06, and 12.06, respectively. Fig. 3
shows the dispersion curves for the fundamental mode and
for the first and second modes.

Fig. 4. Zooms for the dispersion of (a) the fundamental mode and
(b) the first mode at θ = θ0 (thick curves) and at θ = 0◦, 90◦ (thin
curves).

C. Special Case θ = θ0

As an example of a rotated cut, consider the case where
the speed of the Bleustein-Gulyaev wave in the substrate
is equal to the shear wave speed in the layer; this occurs at
θ = θ0 = 50.08◦; see the vertical arrow in Fig. 2. For this
cut, the limiting speed is vL = 3813.36 m/s. Starting from
vBG = v̂ at kh = 0, the speed of the fundamental mode
increases rapidly with kh. At kh = 0.1131, v = vL and the
wave ceases to exist. This state of affairs continues until kh
reaches 0.9410, after which the wave exists and its speed
decreases toward v̂. Hence, a forbidden band of frequencies
emerges for the fundamental mode, in clear contrast with
the situation for non-rotated cuts. Note that the dispersion
relation (50) actually gives roots below vL in that range,
which must nevertheless be discarded as they do not satisfy
the exact boundary condition (38).

Here the first higher-order mode starts at the cut-off
parameter (kh)L of 8.946 with vL and then decreases to-
ward v̂. Fig. 4 provides a zoom into the dispersion curves
of the fundamental mode around the forbidden band and
of the first mode up to kh = 11.

In this example, the layered structure supports a shear-
horizontal wave which in the long and short wavelength
ranges travels with the speed of the layer’s bulk shear wave;
in the intermediate range, the wave either does not exist,
or travels at a greater speed.

VII. Concluding Remarks

The analysis conducted in the paper showed that the
problem of a piezoelectric Love wave in a dielectric m3m
layer over a rotated Y -cut mm2 substrate could be solved
explicitly by the derivation of a rationalized dispersion
equation.

Of course, it must be noted that the boundary condi-
tions were special; here the upper surface of the structure
is metalized and grounded. It is likely that more general
boundary conditions (e.g., free surface) would lead to an
intractable, or at least impractical, analytic treatment.
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On the other hand, a certain degree of generality was
achieved. Hence the substrate can be taken as any rotated
Y -cut crystal with mm2 or 4mm symmetries (or, of course,
with 6mm symmetry). Here the numerical results used the
constants of potassium niobate because of its strong elec-
tromechanical coupling [23], [24]. Also, the parameters of
any dielectric material with m3m symmetry can be used
in the formulas derived in the paper. Here, germanium
was selected because its bulk shear wave speed is always
below the limiting speed for any angle of cut (a “slow”
layer; see the horizontal dashed line 2 on Fig. 2); simi-
larly a layer of polymethylmetacrylate (PMMA, isotropic)
could have been selected; see the horizontal dashed line 1
on Fig. 2. In contrast, a layer of silicon (m3m) is always
“faster” than the substrate; see the horizontal dashed line
5 on Fig. 2. Thus there is only a single, truncated, corre-
sponding dispersion curve: that of the fundamental mode,
increasing rapidly from the speed of the Bleustein-Gulyaev
speed to the limiting speed as the dispersion parameter
kh increases. Intermediate behaviors are depicted, for in-
stance, by fused silica (isotropic, horizontal dashed line 3)
or strontium titanate (m3m, horizontal dashed line 4).

Complementary results, including depth profiles, are
presented in a companion paper [27].
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