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Laboratoire de Modélisation en Mécanique, CNRS (UMR7607), Université
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Efforts at modelling the propagation of seismic waves in half-spaces with continuously
varying properties have mostly been focused on shear-horizontal waves. Here, a
sagittally polarized (Rayleigh type) wave travels along a symmetry axis (and is
attenuated along another) of an orthotropic material with stiffnesses and mass density
varying in the same exponential manner with depth. In contrast to what could be
expected at first sight, the analysis is very similar to that of the homogeneous half-space,
with the main and capital difference that the Rayleigh wave is now dispersive. The
results are illustrated numerically for (i) an orthotropic half-space typical of horizontally
layered and vertically fractured shales and (ii) for an isotropic half-space made of silica.
In both the examples, the wave travels at a slower speed and penetrates deeper than in
the homogeneous case. In the second example, the inhomogeneity can force the wave
amplitude to oscillate as well as decay with depth, in marked contrast with the
homogeneous isotropic general case.

Keywords: elastic-wave theory; inhomogeneous media; Rayleigh waves;
seismic anisotropy; seismic modelling; surface waves
*de

Rec
Acc
1. Introduction

Love (1911) showed that an inhomogeneous half-space, consisting of an elastic
layer covering a semi-infinite body made of a different elastic material, can
sustain the propagation of a linearly polarized (shear horizontal) surface wave.
The Love wave is faster than the elliptically polarized (vertical) Rayleigh (1885)
wave and it has been recorded countless times during earthquakes or
underground explosions. Another recorded phenomenon is that Rayleigh waves
are dispersive, a characteristic which is incompatible with the context of a
homogeneous half-space given by Rayleigh (1885). Love showed that his layer/
substrate configuration could also support a two-partial, vertically polarized,
surface wave. Since this configuration introduces a new characteristic length, the
layer thickness h (say), a dispersion parameter is now kh where k is the
wavenumber, and that surface wave is dispersive.

Subsequent analyses introduced more and more layers to refine the model,
until it was considered practical to view the inhomogeneity of the half-space as a
continuous variation of the material properties (Ewing et al. 1957). The chief
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among these continuous variations is the one for which the elastic stiffnesses and
the mass density vary exponentially with depth, all in the same manner,
proportional to a common factor exp(K2ax2) say, where a is the inverse of a
inhomogeneity characteristic length, and x2 is the coordinate along the normal to
the free surface, so that here a dispersion parameter is now a/k for instance.
Hence, Wilson (1942), Deresiewicz (1962), Dutta (1963) and Bhattacharya
(1970) and many others studied the propagation of surface waves in such
inhomogeneous media; however, they were interested in shear-horizontal waves
(Love-type). The literature on Rayleigh-type surface waves in that type of media
is quite scarce, probably because the difficulty exposed below is encountered
quite early in the analysis.

In an anisotropic elastic body with continuously variable properties, the
general equations of motion read

Cijklul;kl CCijkl;jul;k Z rui;tt; ð1:1Þ
where u is the mechanical displacement, and Cijkl and r are the elastic stiffnesses
and the mass density, respectively. Now consider the propagation of an
inhomogeneous plane wave with speed v and wavenumber k in the x1-direction
and with attenuation in the x2-direction,

u ZU 8eikðx1Cqx2KvtÞ; ð1:2Þ
in a half-space x2R0 made of an orthotropic1 material with an exponential
depth profile,

fc11ðx 2Þ; c22ðx 2Þ; c12ðx 2Þ; c66ðx 2Þ; rðx 2ÞgZ eK2ax 2fc118 ; c228 ; c128 ; c668 ; r8g: ð1:3Þ
Here, the x1, x2, x3 directions are aligned with the axes of symmetry, a is a real
number and the cij8 and r8 are constants. In addition, U 8 is a constant vector
and q a complex number so that the attenuation factor is k Im(q). Then the
equations of motion (1.1) yield

c668 q
2 Cc118 Krv2C2iða=kÞqc668 qðc128 Cc668 ÞC2iða=kÞc668

qðc128 Cc668 ÞC2iða=kÞc128 c228 q
2 Cc668 Krv2C2iða=kÞqc228

" #
U 8Z 0:

ð1:4Þ
At aZ0, the material is homogeneous, and the associated determinantal
equation—the propagation condition—is a real quadratic in q2 which can be
solved exactly (Sveklo 1948).

At as0, the propagation condition is seemingly a quartic in q with complex
coefficients, whose analytical resolution might appear to be a daunting task and
to preclude further progress towards the completion of a boundary value
problem. (Note that it remains a quartic even when the material is isotropic.)
Hence, Das et al. (1992) and Pal & Acharya (1998) stopped their analytical study
of the problem at that very point. In fact, the transformation of the quartic to its
canonical form reveals that it is a quadratic in qCi(a/k), with real coefficients.
Biot (1965) seems to be the only one who has recognized this simplification
(in the context of incremental static deformations). The present paper shows
that the Stroh (1962) formulation of this problem, combined with a change of
unknown functions, leads naturally to the biquadratic in question. Then the
propagation condition can be solved exactly, and the general solution of form

1 An anisotropic material belongs to the orthotropic symmetry class when it possesses three
mutually orthogonal planes of mirror symmetry.
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497Rayleigh waves in exponentially graded half-spaces
(1.2) to the equations of motion follows. In particular, the resolution of the
dispersive Rayleigh wave boundary value problem poses no particular difficulty
after all. Section 2 exposes this analysis and §3 applies it to two types of
exponentially graded half-spaces: one which would be made of orthotropic shales
if a/0 and another which would be made of silica (isotropic). There, it is seen
for both the examples that the influence of the inhomogeneity is more marked
upon the wave speed (rapidly decreasing with a/k) than upon the attenuation
factors (slowing increasing with a/k). It is also found that the attenuation factors
for the displacement amplitudes are distinct from those for the traction
amplitudes, and that the amplitudes can decay in an oscillating manner for the
isotropic silica. These two features are unusual and are clearly due to the
inhomogeneity.

The overall aim of the paper is to show that simple, analytical and exact
results can be obtained for seismic Rayleigh wave propagation in an anisotropic,
inhomogeneous Earth. Of course, it is unlikely any ‘real’ inhomogeneity can be
such that the stiffnesses and the mass density, all vary in the same manner as in
equation (1.3), because it then leads to bulk wave speeds (proportional to the
square root of stiffnesses divided by the density) which are constant with depth.
The analysis of more realistic models must turn to numerical simulations such
as those based on the finite difference technique or on the pseudospectral
technique or on techniques with Fourier or other function expansions (e.g.
Tessmer 1995). However, these methods encounter difficulties for the
implementation of accurate boundary conditions and of strong heterogeneity.
The spectral element method seems to alleviate those difficulties but, as stressed
by Komatitsch et al. (2000), it must be validated against analytical solutions.
Such a solution validation procedure is indeed a crucial necessity of numerical
simulations in geophysics, where different software packages can give widely
different predictions (Hatton 1997).
2. The dispersion equation

Consider the propagation of a Rayleigh wave, travelling with speed v and
wavenumber k in the x1-direction, in an inhomogeneous half-space x2R0 made of
the orthotropic material presented in §1. The associated mechanical quantities
are the displacement components uj and the traction components sj2 ( jZ1,2).
They are now taken in the form

fuj ;sj2gðx1; x 2; tÞZ fUjðx 2Þ; itj2ðx 2Þgeikðx1KvtÞ; ð2:1Þ

where the Uj, tj2 (jZ1,2) are yet unknown functions of x2 alone, to be determined
from the equations of motion and from the boundary conditions.

The equations of motion: sij,jZrui,tt, can be written as the second-order
differential system (1.1), or as the following first-order differential system,

U 0

t 0

" #
Z i

kN1 e2ax2N2

k2eK2ax2K kNt
1

" #
U

t

" #
: ð2:2Þ
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Here N1, N2 and K are the usual constant matrices of Stroh (1962), given by

N1 Z

0 K1

K
c128

c228
0

2
6664

3
7775; N2 Z

1

c668
0

0
1

c228

2
6664

3
7775; K Z

XKc8 0

0 X

" #
; ð2:3Þ

where c8dc118 Kc 2
128 =c228 and Xdr8v2. With the new vector function x, defined as

xðx2Þd½eKax 2Uðx2Þ; eax 2tðx 2Þ�t; ð2:4Þ

the system (2.2) becomes

x0 Z ikNx; where Nd
N1C iða=kÞI ð1=kÞN2

kK Nt
1Kiða=kÞI

" #
: ð2:5Þ

Hence, the apparently anodyne change of unknown functions (2.4) transforms the
differential systemwith variable coefficients (2.2) into one with constant coefficients.

Now solve the differential system (2.5) with a solution in exponential
evanescent form,

xðx2ÞZ eikpx2z; ImðpÞO jaj=k; ð2:6Þ
where z is a constant vector, p is a scalar, and the inequality ensures that

uðNÞZ 0; tðNÞZ 0; xðNÞZ 0; ð2:7Þ

because by (2.4) and (2.6)1, u(x2) behaves as exp k(ipCa/k)x2 and t(x2) behaves
as exp k(ipKa/k)x2. Note in passing that, in sharp contrast to the homogeneous
case, the displacement field and the traction field have different attenuation
factors: for u it is k[Im(p)Ka/k]; for t it is k[Im(p)Ca/k].

Then z and p are solutions to the eigenvalue problem, NzZpz. The associated
determinantal equation is the propagation condition, here a biquadratic (and not
a quartic as equation (1.4) suggested),

p4KSp2CP Z 0; ð2:8Þ

where

SZ c 2
128 C2c128 c668 Kc118 c228 C c228 Cc668ð ÞX

� �
= c228 c668ð ÞK2ða=kÞ2;

PZ c118 KXð Þ c668 KXð Þ= c228 c668ð Þ
Kða=kÞ2 c 2

128 K2c128 c668 Kc118 c228 C c228 Cc668ð ÞX
� �

= c228 c668ð ÞCða=kÞ4: ð2:9Þ

Let p1 and p2 be the two roots of equation (2.8) satisfying inequality (2.6)2. This
pair may be in one of the two forms: p1Zib1, p2Zib2 or p1ZKaCib, p2ZKaCib,
where b, b1 and b2 are positive. In both the cases, p1p2 is a real negative number
and p1Cp2 is a purely imaginary number with positive imaginary part. It follows
in turn that

p1p2ZK
ffiffiffiffiffiffiffiffiffi
p21p

2
2

q
ZK

ffiffiffiffi
P

p
; p1Cp2Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Kðp1Cp2Þ2

q
Zi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
P

p
KS

q
: ð2:10Þ
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The associated eigenvectors z1, z2 are determined from NzjZpjz
j, as

zjZ

p2j C2iða=kÞpjKe0

K p3j Ciða=kÞpjCf1pjCiða=kÞf0
� �

Kk½g1pjCiða=kÞg0�

Kk Xp2j Ch0

� �

2
666664

3
777775; ð2:11Þ

where the non-dimensional quantities e0, f1, f0 appearing in the displacement
components are given by

e 0Zða=kÞ2Cc128 c668 KXð Þ= c228 c668ð Þ;

f1Zða=kÞ2Cðc8KXÞ=c668 Kc128 =c228 ;

f0Zða=kÞ2Cðc8KXÞ=c668 Cc128 =c228 ;

ð2:12Þ

and the quantities g1, g0, h 0 (dimensions of a stiffness) appearing in the traction
components are given by

g1Zc8K 1Cc128 =c228ð ÞX ;

g0Zc8K 1Kc128 =c228ð ÞX ;

h 0Zða=kÞ2XKðc8KXÞ c668 KXð Þ=c668 :

ð2:13Þ

Now construct the general solution to the equations of motion (2.5) as

xðx2ÞZg1e
ikp1x2z1Cg2e

ikp2x2z2; ð2:14Þ
where the constants g1, g2 are such that the surface x2Z0 is free of tractions,
t(0)Z0 or equivalently, x(0)Z[U(0), 0]t. This condition leads to a homogeneous
linear system of two equations for the two constants whose determinant must be
zero. After factorization and use of equation (2.10), the dispersion equation
follows as

g1ðX
ffiffiffiffi
P

p
Ch0ÞCða=kÞg0X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2

ffiffiffiffi
P

p
KS

q
Z0: ð2:15Þ

This equation is fully explicit (X is the sole unknown) because P and S are given
in equation (2.9) and g1, g0, h 0 are given in equation (2.13), and it is clearly
dispersive due to the multiple appearance of the dispersion parameter a/k.
At aZ0 (homogeneous substrate), it simplifies to

X

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c118 KXð Þ c668 KXð Þ

c228 c668

s
K

ðc8KXÞ c668 KXð Þ
c668

Z0; ð2:16Þ

the classic (non-dispersive) secular equation forRayleighwaves in orthotropic solids.
3. Examples: exponentially graded shales and silica

As two examples of application, consider in turn that the half-space is made of a
material with exponentially variable properties which is (i) with orthotropic
symmetry, and (ii) isotropic.
Proc. R. Soc. A (2007)



M. Destrade500
In example (i), the starting point is a model proposed by Shoenberg & Helbig
(1997), accounting for the vertical fine stratification and the vertical fractures
found in many shales. In their numerical simulations, they used the following
orthotropic elastic stiffness matrix,

cij8
� �

Z r8

9 3:6 2:25 0 0 0

3:6 9:89 2:4 0 0 0

2:25 2:4 5:9375 0 0 0

0 0 0 2 0 0

0 0 0 0 1:6 0

0 0 0 0 0 2:182

2
66666666664

3
77777777775
: ð3:1Þ

Note that here the matrix is density-normalized so that its components have the
dimensions of squared speeds, expressed in (km sK1)2 (Shoenberg 1994).
Schoenberg and Helbig remark that ‘the rock mass behaves as if it contains
systems of parallel fractures increasing the compliance in some directions’;
integrating this information, a is assumed positive here. In addition, equation
(3.1) is assumed to be the elastic stiffness matrix on the free surface x2Z0.

In example (ii), the half-space is assumed to be made of an exponentially
gradedmaterial such that at the boundary, c118 Z7:85, c128 Z1:61 (1010 N mK2) and
r8Z2203 kg mK3 as in silica (Royer & Dieulesaint 2000). Here too, a is
taken positive.

If the half-spaces were homogeneous, then the Rayleigh wave would travel
with speed v8Z

ffiffiffiffiffiffiffiffiffiffiffi
X=r8

p
where X is given by equation (2.16), that is

v8Z1.412 km sK1 for shales and v8Z3409 m sK1 for silica. For any given
dispersion parameter a/k, the dispersion equation (2.15) in the inhomogeneous
half-spaces gives a unique root X. In both the examples, it has then been checked
that for X, the propagation condition (2.8) gives two roots such that the
inequality (2.6)2 is always satisfied. Thus, the surface wave exists for arbitrary
value of a/k, and it travels with speed vZ

ffiffiffiffiffiffiffiffiffiffiffi
X=r8

p
. Although this state of affair is

acceptable mathematically, it seems reasonable to limit the range of a/k to
values where the wave amplitude decays faster than the inhomogeneity. Since
the amplitudes of the tractions t decay as expKk[Im(p)Ca/k], they always
decrease faster than expK2ax2 by inequality (2.6)2. On the other hand, the
amplitudes of the displacements u decay as expKk[Im(p)Ka/k]; thus, they
decrease faster than the inhomogeneity as long as Im(p)O3a/k. In example (i), it
turns out that this latter inequality is verified for a/k!0.107, and in example
(ii), for a/k!0.274.

Figure 1 shows the variation of the wave speed (decreasing) and of Im(p1),
Im(p2) (increasing) in example (i) over the range 0%a/k%0.1. It has also been
checked there that the attenuation factors for both the amplitudes of
displacements (k[Im(p)Ka/k]) and tractions (k[Im(p)Ka/k]) also increase. In
conclusion, the surface wave travels at a slower speed in the inhomogeneous
shales than in the homogeneous shales, and it is less localized.

Figure 2 shows the variation of the wave speed (decreasing) and of Im(p1),
Im(p2) (increasing) in example (ii) over the range 0%a/k%0.25. It has been
checked again that the attenuation factors for both the amplitudes of
Proc. R. Soc. A (2007)
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Figure 2. Exponentially graded silica: variations with the dispersion parameter a/k of (a) the
surface wave speed and (b) the imaginary parts of the quantities p1 and p2 appearing in equation
(2.14) (the dashed line is the plot of 3a/k).
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Figure 1. Exponentially graded orthotropic shales: variations with the dispersion parameter a/k of
(a) the surface wave speed and (b) the imaginary parts of the quantities p1 and p2 appearing in
equation (2.14) (the dashed line is the plot of 3a/k, above which Im(p1), Im(p2) must be for the
wave to decrease faster than the inhomogeneity).
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displacements (k[Im(p)Ka/k]) and the tractions (k[Im(p)Ka/k]) also increase.
Here again, the surface wave travels at a noticeably slower speed in the
inhomogeneous case than in the homogeneous case, and it is slightly less
localized. A most interesting phenomenon occurs at a/kz0.211 where the nature
of the roots changes from the form: p1Zib1, p2Zib2, to the form: p1ZKaCib,
p2ZaCib, so that the amplitudes switch from decaying in a real exponential
manner to decaying in an exponential oscillating manner. This latter situation
never arises in a homogeneous isotropic half-space.

I thank F. Watchorn for stimulating discussions.
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