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In an attempt to describe cork-pulling, we model a cork as an incompressible rubber-like
material and consider that it is subject to a helical shear deformation superimposed onto
a shrink fit and a simple torsion. It turns out that this deformation field provides an
insight into the possible appearance of secondary deformation fields for special classes of
materials. We also find that these latent deformation fields are woken up by normal
stress differences. We present some explicit examples based on the neo-Hookean, the
generalized neo-Hookean and the Mooney–Rivlin forms of the strain-energy density.
Using the simple exact solution found in the neo-Hookean case, we conjecture that it is
advantageous to accompany the usual vertical axial force by a twisting moment, in order
to extrude a cork from the neck of a bottle efficiently. Then we analyse departures from
the neo-Hookean behaviour by exact and asymptotic analyses. In that process, we are
able to give an elegant and analytic example of secondary (or latent) deformations in the
framework of nonlinear elasticity.
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1. Introduction

Rubbers and elastomers are highly deformable solids, which have the remarkable
property of preserving their volume through any deformation. This permanent
isochoricity can be incorporated into the equations of continuum mechanics
through the concept of an internal constraint, here the constraint of incompressi-
bility. Mathematically, the formulation of the constraint of incompressibility has
led to the discovery of several exact solutions in isotropic finite elasticity, most
notably to the controllable or universal solutions of Rivlin and co-workers (e.g.
Rivlin 1948). Subsequently, Ericksen (1954) examined the problem of finding all
such solutions. He found that there are no controllable finite deformations in
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isotropic compressible elasticity, except for homogeneous deformations (Ericksen
1955). The impact of that result on the theory of nonlinear elasticity was quite
important and long-lasting, and, for many years, a palpable pessimism reigned
about the possibility of finding exact solutions at all for compressible elastic
materials. Then Currie & Hayes (1981) showed that one could obtain interesting
classes of exact solutions, beyond the homogeneous universal deformations,
if attention was restricted to certain special classes of compressible materials.
A string of results about the search for exact solutions in nonlinear elasticity
followed. Now a long list exists for classes of exact solutions, which are universal
only relative to some special strain-energy functions (for a recent presentation of
such classes, see Fu & Ogden (2001)). These solutions can help us to understand
the structure of the theory of nonlinear elasticity and to complement the
celebrated solutions of Rivlin.

In the same vein, some recent efforts focused on determining the maximal strain
energy for which a certain deformation field, fixed a priori, is admissible. This is a
sort of inverse problem: find the elastic materials (i.e. the functional form of the
strain-energy function) for which a given deformation field is controllable (i.e. for
which the deformation is a solution to the equilibrium equations in the absence of
body forces). A classic example illustrating such an approach is obtained by
considering deformations of anti-plane shear type. Knowles (1976) shows that a
non-trivial (non-homogeneous) equilibrium state of anti-plane shear is not always
(universally) admissible, not only for compressible solids (as expected from
Ericksen’s result) but also for incompressible solids (Horgan (1995) gives a surveyof
anti-plane shear deformations in nonlinear elasticity). Only for a special class of
incompressible materials (inclusive of the so-called ‘generalized neo-Hookean
materials’) is an anti-plane shear deformation controllable.

Let us consider, for example, the case of an elastic material filling the annular
region between two coaxial cylinders, with the following boundary-value problem:
hold fixed the outer cylinder and pull the inner cylinder by applying a tension in the
axial direction. It is well established that a solution to this problem, valid for every
incompressible isotropic elastic solid, is obtained by assuming a priori that the
deformation field is a pure axial shear. Now consider the corresponding problem for
non-coaxial cylinders, thereby losing the axial symmetry. Then it is clear that we
cannot expect the material to deform as prescribed by a pure axial shear
deformation. Knowles’s result tells us that now the boundary-value problem can be
solved with a general anti-plane deformation (not axially symmetric) only for a
subclass of incompressible isotropic elastic materials. Of course, this restriction
does not mean that, for a generic material, it is not possible to deform the annular
material as prescribedbyourboundary conditions, but rather that, in general, these
lead to a deformation field that is more complex than an anti-plane shear. Hence,
we also expect secondary in-plane deformations.

The theory of non-Newtonian fluid dynamics has generated a substantial
literature about secondary flows (e.g. Fosdick & Serrin 1973). In solid mechanics,
it seems that only Fosdick & Kao (1978) and Mollica & Rajagopal (1997)
produced some significant and beautiful examples of secondary deformation fields
for the non-coaxial cylinders problem, although this topic is clearly of
fundamental importance not only from a theoretical point of view but also for
technical applications.
Proc. R. Soc. A (2007)
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Figure 1. (a) Shrink fit of an elastic tube, followed by the combination of (b) simple torsion and (c)
helical shear. (The figure is not drawn to scale among the various deformations.)

2947Cork-pulling and the semi-inverse method
In this paper, we consider a complex deformation field in incompressible
isotropic elasticity, to point out by an explicit example the situations just evoked
and to elaborate on their possible impact on solid mechanics. Our deformation
field takes advantage of the radial symmetry; therefore, we find it convenient to
visualize it by considering an elastic cylinder.

Let us imagine that a corkscrew has been driven through a cork (the
cylinder) in a bottle. The inside of the bottleneck is the outer rigid cylinder
and the idealization of the gallery carved out by the corkscrew constitutes the
inner coaxial rigid cylinder. Our first deformation is purely radial, originated
from the introduction of the cork into the bottleneck and then completed
when the corkscrew penetrates the cork (a so-called shrink-fit problem, which
here is a source of elastic residual stresses). We call A and B the respective
inner and outer radii of the cork in the reference configuration, and r1>A and
r2!B their respective current counterparts. Then we follow with a simple
torsion combined with a helical shear, in order to model pulling the cork
out of the bottleneck in the presence of a contact force. Figure 1 sketches
this deformation.

Of course, we are aware of the shortcomings of our modelling with respect to
the description of a ‘real’ cork-pulling problem, because no cork is an infinitely
long cylinder, nor is a corkscrew perfectly straight. In addition, traditional corks
made from bark are anisotropic (honeycomb-shaped mesoscopic structure) and
possess the remarkable (and little-known) property of having an infinitesimal
Poisson ratio equal to zero (see the review article by Gibson et al. (1981)).
However, we note that polymer corks have appeared on the world wine market;
they are made of elastomers, for which incompressible isotropic elasticity seems
like a reasonable framework (indeed, the documentation of these synthetic wine
stoppers indicates that they lengthen during the sealing process). We hope that
this study provides a first step towards a nonlinear alternative to the linear
elasticity testing protocols presented in the international standard ISO 9727. We
also note that low-cost shock absorbers often consist of a moving metal cylinder,
glued to the inner face of an elastomeric tube, the outer face of which is glued to a
fixed metal cylinder (Hill 1975).
Proc. R. Soc. A (2007)
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The plan of the paper is as follows. Section 2 is devoted to the derivation of the
governing equations and to a detailed description of the boundary-value problem.
In §3 we specialize the analysis to the neo-Hookean strain-energy density and find
the corresponding exact solution. We use it to show that it is advantageous to
add a twisting moment to an axial force when extruding a cork from a bottle.
The neo-Hookean strain-energy density is linear with respect to the first principal
invariant of the Cauchy–Green strain tensor. It is much used in finite elasticity
theory, although it poorly captures the basic features of rubber behaviour
(Saccomandi 2004). We thus investigate the consequence of departing from that
strain-energy density. First, in §4 we consider the generalized neo-Hookean
strain-energy density—nonlinear with respect to the first principal invariant of
the Cauchy–Green strain tensor—to show that, in this case, torsion is explicitly
present in the solution for the axial shear displacement, but it is a second-order
dependence. Next, in §5 we consider the Mooney–Rivlin strain-energy density—
linear with respect to the first and second principal invariants of the Cauchy–
Green strain tensor—and find that it is also possible to obtain an exact solution
to our boundary-value problem. Its expression is too cumbersome to manipulate
and we resort to a small-parameter asymptotic expansion from the neo-Hookean
case. Section 6 concludes the paper with some remarks on the limitations of the
semi-inverse method.
2. Basic equations

Consider a long hollow cylindrical tube composed of an incompressible isotropic
nonlinearly elastic material. At rest, the tube is in the region

A%R%B; 0%Q%2p and KN%Z%N; ð2:1Þ

where (R, Q, Z ) are the cylindrical coordinates associated with the undeformed
configuration, and A and B are the inner and outer radii of the tube, respectively.
(a ) Equilibrium equations

Consider the general deformation obtained by the combination of radial
dilatation, helical shear and torsion as

r Z rðRÞ; qZQCgðRÞCtZ and z Z lZ CwðRÞ; ð2:2Þ

where (r, q, z) are the cylindrical coordinates in the deformed configuration; t is
the amount of torsion; and l is the stretch ratio in the Z-direction. Here, g and w
are yet unknown functions of R only. (The classic case of pure torsion
corresponds to wZgZ0; for instance, see Ogden (1997) or Atkin & Fox (2005).)

Hidden inside (2.2) is the shrink-fit deformation

r Z rðRÞ; qZQ and z Z lZ ; ð2:3Þ

which is (2.2) without any torsion or helical shear (tZgZwh0).
Proc. R. Soc. A (2007)
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The physical components of the deformation gradient F and its inverse FK1

are then

r 0 0 0

rg 0 r=R rt

w 0 0 l

2
664

3
775 and

rl=R 0 0

rw 0tKrg 0l r 0l Krr 0t

Krw 0=R 0 rr 0=R

2
664

3
775; ð2:4Þ

respectively. Note that we used the incompressibility constraint in order to
compute FK1; it states that det FZ1, so that

r 0 Z
R

lr
: ð2:5Þ

In our first deformation, the cylindrical tube is pressed into a cylindrical cavity
with inner radius r1OA and outer radius r2!B. It follows by integration of
equation (2.5) that

rðRÞZ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l
Ca

r
; ð2:6Þ

where now

aZ
B2r 21KA2r 22
B2KA2

and lZ
B2KA2

r 22Kr 21
: ð2:7Þ

We compute the physical components of the left Cauchy–Green strain tensor
BhFFt from (2.4) and find its first three principal invariants I1htr B,
I2h(det B)tr(BK1) and I3hdet B as

I1 Z ðr 0Þ2Cðrg 0Þ2Cðr=RÞ2 CðrtÞ2 Cl2Cðw 0Þ2;

I2 Z ðrl=RÞ2Cðrw 0tKrg 0lÞ2 Cðrw 0=RÞ2CðR=rÞ2 Cð1=lÞ2CðRt=lÞ2
ð2:8Þ

and, of course, I3Z1.
For a general incompressible hyperelastic solid, the Cauchy stress tensor T is

related to the strain through

TZKpI C2W1BK2W2B
K1; ð2:9Þ

where p is the Lagrange multiplier introduced by the incompressibility
constraint; WZW(I1, I2) is the strain-energy density; and WihvW/vIi. Having
computed BK1h(Ft)K1FK1 from (2.4), we find that the components of T are

Trr ZKpC2W1ðr 0Þ2K2W2½ðrl=RÞ2Cðrw 0tKrg 0lÞ2 Cðrw 0=RÞ2�;

Tqq ZKpC2W1½ðrg 0Þ2Cðr=RÞ2 CðrtÞ2�K2W2ðR=rÞ2;

Tzz ZKpC2W1½l2 Cðw 0Þ2�K2W2½ð1=lÞ2CðRt=lÞ2�;
Trq Z 2W1ðrr 0g 0ÞK2W2ðw 0tKg 0lÞR;

Trz Z 2W1ðr 0w 0ÞK2W2½rRg 0tKrRw 0t2=lKrw 0=ðlRÞ� and

Tqz Z 2W1ðrw 0g 0 CrltÞC2W2ðr 0RtÞ:

ð2:10Þ

Finally, the equilibrium equations in the absence of body forces are as follows:
div TZ0; for fields depending only on the radial coordinate as shown here, they
Proc. R. Soc. A (2007)
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reduce to

dTrr

dr
C

TrrKTqq

r
Z 0;

dTrq

dr
C

2

r
Trq Z 0 and

dTrz

dr
C

1

r
Trz Z 0: ð2:11Þ

(b ) Boundary conditions

Now consider the inner face of the tube. We assume that it is subject to a
vertical pull,

TrzðAÞZTA
0 and TrqðAÞZ 0; ð2:12Þ

say. Then by integrating the second and third equations of equilibrium (2.11)2,3,
we find that

TrzðrÞZ
r1
r
TA

0 and TrqðrÞZ 0: ð2:13Þ
The outer face of the tube (in contact with the glass in the cork/bottle

problem) remains fixed, so that

wðBÞZ 0; gðBÞZ 0 and TrrðBÞZT0; ð2:14Þ
say. In addition to the axial traction applied on its inner face, the tube is subject
to a resultant axial force N (say) and a resultant moment M (say),

N Z

ð2p
0

ðr2
r1

Tzzr dr dq and M Z

ð2p
0

ðr2
r1

Tqzr
2 dr dq: ð2:15Þ

Note that the traction T0 of (2.14) is not arbitrary but is instead determined by
the shrink-fit pre-deformation (2.3), by requiring that NZ0 when
TA

0 ZtZgZwh0. (This process is detailed in §3.) Therefore, T0 is connected
with the stress field experienced by the cork when it is introduced in the
bottleneck.

In the rest of the paper we aim at presenting results in dimensionless form. To
this end, we normalize the strain-energy density W and the Cauchy stress tensor
Twith respect to m, the infinitesimal shear modulus; hence, we introduce �W and
�T defined as

�W Z
W

m
and �TZ

T

m
: ð2:16Þ

Similarly, we introduce the following non-dimensional variables:

hZ
A

B
; �RZ

R

B
; �ri Z

ri
B
; �w Z

w

B
; �aZ

a

B2
and

�tZBt;

ð2:17Þ

so that h% �R%1. Also, we find from (2.7) that

�aZ
�r21Kh2�r22
1Kh2

and lZ
1Kh2

�r22K�r21
: ð2:18Þ

Turning to our cork or shock absorber problems, we imagine that the inner
metal cylinder is introduced into a pre-existing cylindrical cavity (this precaution
ensures a one-to-one correspondence of the material points between the reference
Proc. R. Soc. A (2007)
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and the current configurations). In our upcoming numerical simulations, we take
AZB/10, so that hZ0.1; we consider that the outer radius is shrunk by 10%,
r2Z0.9B, and that the inner radius is doubled, r1Z2A; finally, we apply a
traction, the magnitude of which is half the infinitesimal shear modulus:
jTA

0 jZm=2. This gives

�ax3:22!10K2; lx1:286 and �T
A
0 ZK0:5: ð2:19Þ

At this point, it is possible to state clearly our main observation. A first
glance at the boundary conditions, in particular at the requirements that g be
zero on the outer face of the tube, gives the expectation that gh0 everywhere
is a solution to our boundary-value problem, at least for some simple forms of
the constitutive equations. In what follows, we find that, for the so-called
‘neo-Hookean’ solids, gh0 is indeed a solution, whether there is a torsion t or
not. However, if the solid is not neo-Hookean, then it is necessary that gs0
when ts0, and the picture becomes more complex. For this reason, we
classify the following question as ‘purely academic’: which is the most general
strain-energy density for which it is possible to solve the above boundary-value
problem with gh0? Indeed, there is no ‘real-world’ material, the behaviour of
which is ever going to be described exactly by that strain-energy density
(supposing that it exists). Instead, a more pertinent issue to raise for ‘real-
world applications’ is whether we are able to evaluate the importance of
latent (secondary) stress fields, because they are bound to be woken up
(triggered) by the deformation.
3. Neo-Hookean materials

First, we consider the special strain-energy density that generates the class of
neo-Hookean materials, namely

W Z ðI1K3Þ=2; so that 2W1 Z 1 and W2 Z 0: ð3:1Þ
Note that here and hereafter, we use the non-dimensional quantities introduced
previously, from which we drop the overbar for convenience. Hence, the
components of the (non-dimensional) stress field in a neo-Hookean material
reduce to

Trr ZKpCðr 0Þ2; Tqq ZKpCðrg 0Þ2 Cðr=RÞ2 CðrtÞ2;

Tzz ZKpCl2Cðw 0Þ2; Trq Z rr 0g 0;

Trz Z r 0w 0 and Tqz Z rg 0w 0Crlt:

ð3:2Þ

Substituting into (2.13), we find that

w 0 Z lr1T
A
0 =R and g 0 Z 0 ð3:3Þ

and by integration, using (2.14), we have

w Z lr1T
A
0 ln R and g Z 0: ð3:4Þ

In figure 2a, we present a rectangle in the tube at rest, which is delimited by
0.1%R%1.0 and 0.0%Z%1.0. Then it is subject to the deformation
Proc. R. Soc. A (2007)
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Figure 2. (a,b) Pulling on the inside face of a neo-Hookean tube. Here the vertical axis is the
symmetry axis of the tube.
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corresponding to the numerical values of (2.19). To generate figure 2b,
we computed the resulting shape for a neo-Hookean tube, using (2.2), (2.6)
and (3.4).

Now that we know the full deformation field (see (2.2) and (3.4)), we can
compute TrrKTqq from (3.2) and deduce Trr by integration of (2.11)1, with initial
condition (2.14)3. Then the other field quantities follow from the rest of (3.2).
Proc. R. Soc. A (2007)
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Finally, we find in turn that

Trr Z
1

2l
ln

lr 22R
2

R2 Cal
CðR2K1Þ a

r 22ðR2CalÞCt2

" #( )
CT0;

Tqq ZTrr C
R2

l
Ca

 !
1

R2
Ct2

 !
K

R2

lðR2CalÞ and

Tzz ZTrr Cl2 1C
r 21ðTA

0 Þ2

R2

 !
K

R2

lðR2 CalÞ

ð3:5Þ

(where we used the identity 1CalZlr 22, see (2.6) with RZ1) and that

Trq Z 0; Trz Z
r1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

R2

l
Ca

q TA
0 and Tqz Z lt

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R2

l
Ca

r
: ð3:6Þ

The constant T0 is fixed by the shrink-fit pre-deformation (2.3), imposing that
NZ0 when tZgZwZTA

0 h0, or

ðT0Cl2Þð1Kh2ÞC 1

l

ð1
h

ln
lr 22R

2

R2 Cal
C

aðR2K1Þ
r 22ðR2 CalÞK

2R2

R2Cal

� �
R dRZ 0:

ð3:7Þ
Using (3.7) and (2.15), (3.5) and (3.6), we find the following expressions for the
resultant moment:

M Zp r 42Kr 41
� �

lt=2 ð3:8Þ
and for the axial force

N Z 2plr 21jln hj TA
0

� �2
K

p

4
r 22Kr 21
� �2

t2: ð3:9Þ

We now have a clear picture of the response of a neo-Hookean solid to the
deformation (2.2), with the boundary conditions of §2b. First, we saw that here
the contribution g(R) is not required for the azimuthal displacement, whether
there is a torsion t or not. Also, if a moment Ms0 is applied, then the tube
suffers an amount of torsion ts0 proportional to M. On the other hand, if the
tube is pulled by the application of an axial force only (Ns0) and no moment
(MZ0), then tZ0 and no azimuthal shear occurs at all.

When we try to apply our results to the extrusion of a cork from the neck of a
bottle, the following remarks seem to be relevant. From the elementary theory of
Coulomb friction, it is known that the pulled cork starts to move when, in
modulus, the friction force exerted on the neck surface is equal to the normal
force times the coefficient of static friction. In our case, this means thatffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

jTrzð1Þj2C jTrqð1Þj2
q

Z fSjTrrð1ÞjZ fSjT0j; ð3:10Þ

where fS is the coefficient of static friction. Using (2.12) and (2.13), we find that
the elements of the l.h.s. of equality (3.10) are

Trzð1ÞZ ðr1=r2ÞTA
0 and Trqð1ÞZ 0: ð3:11Þ
Proc. R. Soc. A (2007)
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Now, our main concern is to understand whether it is better to apply a moment
Ms0 when uncorking a bottle, than to pull only. To address this question, we
note that the l.h.s. of equality (3.10) increases when jTA

0 j increases; on the other
hand, combining (3.8) and (3.9), we have

TA
0

� �2
Z

N C 1
pl2ðr 21Cr 22Þ

2 M
2

h i
ð2plr 21jln hjÞ : ð3:12Þ

It is now clear that, for a fixed value ofTA
0 , in the caseMs0, it is necessary to apply

an axial force, the intensity ofwhich is less than the one in the caseMZ0.Moreover,

equation (3.12) shows that TA
0

� �2
grows linearly with N but quadratically withM.

With respect to efficient cork-pulling, the conclusion is that adding a twisting
moment to a given pure axial force is more advantageous than solely increasing the
vertical pull. Moreover, we observe that a moment is applied by using a lever and
this is always more convenient from an energetic point of view.

Recall that we made several simplifying assumptions to reach these results:
not only infinite axial length, incompressibility and isotropy, but also the choice
of a truly special strain-energy density. In §§4 and 5 we depart from the neo-
Hookean model.
4. Generalized neo-Hookean materials

As a first broadening of the neo-Hookean strain-energy density (3.1), we consider
generalized neo-Hookean materials, for which the strain-energy density is a
nonlinear function of the first invariant I1 only,

W Z Ŵ ðI1Þ; ð4:1Þ
say. To gain access to the Cauchy stress components in this context, it suffices to
take W2Z0 and W1ZŴ

0
in equations (2.10). In particular, TrqZ2rr 0g 0Ŵ

0
and

the integrated equation of equilibrium (2.13)2 gives g 0Z0. By integrating, with
(2.12) as an initial value, we find that

gh0: ð4:2Þ
Hence, just as in the neo-Hookean case, azimuthal shear can be avoided
altogether, whether there is a torsion t or not. We are left with an equation for
the axial shear, namely (2.13)1, which can be written as

2Ŵ
0ðI1Þw 0ðRÞZ lr1

R
TA

0 : ð4:3Þ

Obviously, the same steps as those taken for neo-Hookean solids may be followed
here for any given strain-energy density (4.1), but now by resorting to a
numerical treatment. Horgan & Saccomandi (2003a) show, through some specific
examples of hardening generalized neo-Hookean solids, how rapidly involved the
analysis becomes, even when there is only helical shear and no shrink fit.

Instead, we simply point out some striking differences between our present
situation and the neo-Hookean case. We remark that I1 is of the form (2.8)1 at
gh0, i.e.

I1 Z l2 C
R2

lðR2CalÞC
R2

l
Ca

� 	
1

R2
Ct2

� 	
C ½w 0ðRÞ�2: ð4:4Þ
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It follows that (4.3) is a nonlinear differential equation for w0, in contrast to the
neo-Hookean case. Another contrast is that the axial shear w is now intimately
coupled with the torsion parameter t, and that this dependence is a second-order
effect (t appears above as t2).

A similar problem where the azimuthal shear has not been ignored, but the
axial shear has been considered null, i.e. wh0, has recently been considered by
Wineman (2005).
5. Mooney–Rivlin materials

In this section, we specialize the general equations of §2 to the Mooney–Rivlin
form of the strain-energy density, which in its non-dimensional form reads

W Z
I1K3CmðI2K3Þ

2ð1CmÞ ; so that 2W1 Z
1

1Cm
and 2W2 Z

m

1Cm
;

ð5:1Þ
where mO0 is a material parameter, distinguishing the Mooney–Rivlin material
from the neo-Hookean material (3.1), and also allowing a dependence on the
second principal strain invariant I2, in contrast to the generalized neo-Hookean
solids of §4.

Then the integrated equations of equilibrium (2.13) can be written as

ðRCmt2r2RCmr2=RÞw 0Kðmtlr2RÞg 0 Z ð1CmÞlr1TA
0 and

ðmtlÞw 0Kð1Cml2Þg 0 Z 0:
ð5:2Þ

First, we ask ourselves if it is possible to avoid torsion during the pulling of the
inner face. Taking tZ0 above gives

ðRCmr2=RÞw 0 Z ð1CmÞlr1TA
0 and g 0 Z 0: ð5:3Þ

It follows that here it is indeed possible to solve our boundary-value problem.
We find

w Z lr1T
A
0

lð1CmÞ
2ðlCmÞ ln

malCðlCmÞR2

malCðlCmÞ

� �
and g Z 0: ð5:4Þ

However, if ts0, then it is necessary that gs0, otherwise (5.2)2 gives w 0Z0
while (5.2)1 gives w0s0, a contradiction. This constitutes the first departure
from the neo-Hookean and generalized neo-Hookean behaviours: torsion (ts0) is
necessarily accompanied by azimuthal shear (gs0).

In the case ts0, we introduce the function LZL(R) defined as

LðRÞZ ðRCmr2=RÞð1Cml2ÞCmt2r2R ð5:5Þ
(recall that rZr(R) is given explicitly in (2.6)). We then solve the system (5.2)
for w0 and g 0 as

w 0 Z ð1CmÞð1Cml2Þl TA
0

LðRÞ r1 and g 0 Zmð1CmÞl2 TA
0

LðRÞ tr1; ð5:6Þ
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Figure 3. (a,b) Pulling on the inside face of a Mooney–Rivlin tube, with a clockwise torsion.
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making clear the link between g and t. Thus, for the Mooney–Rivlin material, the
azimuthal shear g is a latent mode of deformation; it is woken up by any amount of
torsion t. Recall that, at first sight, the azimuthal shear component of the
deformation (2.2) seemed inessential to satisfy the boundary conditions, especially in
view of the boundary condition g(1)Z0. However, a non-zero W2 term in the
constitutive equation clearly couples the effects of a torsion and an azimuthal shear,
as displayed explicitly by the presence of t in expression (5.6) for g0.

It is perfectly possible to integrate equations (5.6) in the general case, but to
save space we do not reproduce the resulting long expressions. With them, we
generated the deformation field picture of figure 3a,b. There we took the
numerical values of (2.17) for a, l, and TA

0 ; we took a Mooney–Rivlin solid with
mZ5.0; we imposed a torsion of amount tZ0.5; and we looked at the
deformation field in the plane ZZ1 (reference configuration) and zZl (current
configuration).

Although the secondary fields appear to be slight in the picture, they are
nonetheless truly present and cannot be neglected. To show this, we consider a
perturbation method to obtain simpler solutions and to understand the effect of the
coupling, by takingm small. Then integrating (5.6), we find at the first order that

w

r1T
A
0

xð1CmÞl ln RK
1

2
m½t2R2 C2ð1Ct2alÞln RKal=R2Kt2 Cal�;

g

r1T
A
0

xl2tm ln R: ð5:7Þ

Hence, the secondary field g exists even for a nearly neo-Hookean solid (ifm is small,
then g is of order m). Interestingly, we also note that the azimuthal shear g in (5.7)
varies in a homogeneous and linear manner with respect to the torsion parameter t
and in a quadratic manner with respect to the axial stretch l, showing that the
presence of this secondary deformation field cannot be neglected when the effects of
both theprestress and the torsion are taken into account.To complete the picture,we
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use the first-order approximations

2W1x1Km and 2W2xm; ð5:8Þ
to obtain the stress field as

TrrxKpCð1KmÞðr 0Þ2Km ðrl=RÞ2 C ½ðrtÞ2Cðr=RÞ2� lr1TA
0

� �2
=R2

n o
;

TqqxKpCð1KmÞ½ðr=RÞ2CðrtÞ2�KmðR=rÞ2;

TzzxKpC lTA
0 r1

� �2
ð1C2ml2Þ 1

R2
K

2

R

t2r2

R
C

r2

R3
C

l2

R
K

1

2R

 !
m

" #

Cð1KmÞl2Km½ð1=lÞ2CðRt=lÞ2�;
Trqxrr 0g 0Kmlr1T

A
0 t;

Trzxð1KmÞðr 0w 0ÞCmlr1T
A
0 ½rRt2=lCr=ðlRÞ�=R;

Tqzxð1KmÞrltClrr1T
A
0 g

0=RCmðr 0RtÞ:

ð5:9Þ

Using this stress field, it is straightforward, but it is long and cumbersome toderive
the analogue for a Mooney–Rivlin solid with a smallm of relation (3.12) (which was
established for neo-Hookean solids). However, nothing truly new is gained from these
complex formulaewith respect to the simple neo-Hookean case, andwedo not pursue
this aspect any further.
6. Conclusion

In non-Newtonian fluid mechanics and turbulence theory, the existence of shear-
induced normal stresses on planes transverse to the direction of shear is at the
root of some important phenomena occurring in the flow of fluid down pipes of
non-circular cross section (Fosdick & Serrin 1973). In other words, pure parallel
flows in tubes without axial symmetry are possible only when we consider the
classical theory of Navier–Stokes equations, the linear theory of turbulence or
tubes of circular cross section.

In nonlinear elasticity theory, similar phenomena are reported. Hence,
Fosdick & Kao (1978) and Mollica & Rajagopal (1997) show that, for general
incompressible isotropic materials, an anti-plane shear deformation of a cylinder
with non-axial symmetric cross section causes a secondary in-plane deformation
field, owing to normal stress differences. Horgan & Saccomandi (2003b) give a
detailed discussion of how the anti-plane shear deformation field couples with the
in-plane deformation field in a generalized neo-Hookean solid.

The appearance of what we called here latent deformations is quite general and
common. For example, it is known in compressible nonlinear elasticity that pure
torsion is possible only in a special class of materials, but we know that torsion
plus a radial displacement is possible in all compressible isotropic elastic
materials (Polignone & Horgan 1991). (Here we signal that ‘possible in all
materials’ is not equivalent to ‘universal’, because the corresponding radial
deformation differs from one material to another.)
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Figure 4. There are two main types of corkscrews: (a) one that relies on pulling only and (b)
another that adds a twist to the cork-pulling action. The analysis developed in this paper indicates
that the second type is more efficient.
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In this paper, we give an example where axial symmetry holds, where the
boundary conditions suggest that an axial shear deformation field is sufficient to
solve the boundary-value problem, and where, nevertheless, the normal stress
difference wakes up a latent azimuthal shear deformation. Moreover, since we are
able to find some explicit exact solutions by some perturbation techniques, we
are able to evaluate the importance of the latent deformation. Indeed, we show
that, if a certain constitutive parameter m (distinguishing a neo-Hookean solid
from a Mooney–Rivlin solid) is zero or the torsion parameter t is zero, then the
solution to the boundary-value problem can be found only in terms of the axial
shear deformation field; if these two parameters are not zero—even if they are
small—then the latent mode of deformation is quantitatively appreciable.

In conclusion, we suggest that it is not crucial to determine the class of
materials for which a given deformation field is possible. Rather, it is crucial to
classify all the latent deformations associated with a given deformation field in
such a way that this field is controllable for the entire class of materials. Indeed,
no real material, even when we accept that its mechanical behaviour is purely
elastic, is ever going to be described exactly by a special choice of strain-energy
functions. Looking for special classes of materials for which special deformation
fields are admissible may mislead us in our understanding of the nonlinear
mechanical behaviour of materials.

To finish the paper on a light note, we evoke a classic wine party dilemma:
which kind of corkscrew system requires the least effort to uncork a bottle?
Figure 4 sketches the two working principles commonly found in commercial
Proc. R. Soc. A (2007)
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corkscrews. The most common type (figure 4a) relies on pulling only (directly or
through levers) and the other type (figure 4b) relies on a combination of pulling
and twisting. Notwithstanding the shortcomings of this paper’s modelling with
respect to an actual uncorking, the authors are confident that they have provided
a scientific argument to those wine amateurs who favour the second type of
corkscrews over the first.

We are thankful to Bernard Collet and the referees for spotting mistakes in earlier versions of the
manuscript.
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