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Abstract In this paper the equations governing the deformations of infinitesimal
(incremental) disturbances superimposed on finite static deformation fields involving
magnetic and elastic interactions are presented. The coupling between the equations
of mechanical equilibrium and Maxwell’s equations complicates the incremental
formulation and particular attention is therefore paid to the derivation of the
incremental equations, of the tensors of magnetoelastic moduli and of the incre-
mental boundary conditions at a magnetoelastic/vacuum interface. The problem of
surface stability for a solid half-space under plane strain with a magnetic field normal
to its surface is used to illustrate the general results. The analysis involved leads to the
simultaneous resolution of a bicubic and vanishing of a 7 × 7 determinant. In order to
provide specific demonstration of the effect of the magnetic field, the material model
is specialized to that of a “magnetoelastic Mooney–Rivlin solid”. Depending on the
magnitudes of the magnetic field and the magnetoelastic coupling parameters, this
shows that the half-space may become either more stable or less stable than in the
absence of a magnetic field.
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1 Introduction

One of the main reasons for industrial interest in rubber-like materials resides in
their ability to dampen vibrations and to absorb shocks. This paper is concerned
with an extension of the nonlinear elasticity theory adopted for describing the
properties of these materials to incorporate nonlinear magnetoelastic effects so as to
embrace a class of solids referred to as magneto-sensitive elastomers. These “smart”
elastomers typically consist of an elastomeric matrix (rubber, silicon, for example)
with a distribution of ferrous particles (with a diameter of the order of 1–5 μm) within
their bulk. They are sensitive to magnetic fields in that they can deform significantly
under the action of magnetic fields alone without mechanical loading, a phenomenon
known as magnetostriction. As a result, their mechanical damping abilities can be
controlled by applying suitable magnetic fields. This coupling between elasticity and
magnetism was probably first observed by Joule in 1847 when he noticed that a
sample of iron changed its length when magnetized.

In general, the physical properties of magnetoelastic materials depend on factors
such as the choice of magnetizable particles, their volume fraction within the bulk,
the choice of the matrix material, the chemical processes of curing, etc.; see Bellan
and Bossis [1] for details, and also Rigbi and Jilkén [2] for an experimental study on
a magneto-sensitive elastomer.

The coupling between magnetism and nonlinear elasticity has generated much
interest over the last 50 years or so, as illustrated by the works of Truesdell and
Toupin [3], Brown [4], Yu and Tang [5], Maugin [6], Eringen and Maugin [7],
Kovetz [8], and others. The corresponding engineering applications are more recent
(see Jolly et al. [9], or Dapino [10], for instance) and have generated renewed impetus
in theoretical modelling (see, for example, Dorfmann and Brigadnov [11]; Dorfmann
and Ogden [12]; Kankanala and Triantafyllidis [13]). Here, we derive the (linearized)
equations governing incremental effects in a magnetoelastic solid subject to finite
deformation in the presence of a magnetic field. These equations are then used to
examine the problem of surface stability of a homogeneously pre-strained half-space
subject to a magnetic field normal to its (plane) boundary. Related works on this
subject include the studies of McCarthy [14], van de Ven [15], Boulanger [16, 17],
Maugin [18], Carroll and McCarthy [19] and Das et al. [20].

We adopt the formulation of Dorfmann and Ogden [12] as the starting point
for the derivation of the incremental equations. This involves a total stress tensor
and a modified strain energy function or total energy function, which enable the
constitutive law for the stress to be written in a form very similar to that in standard
nonlinear elasticity theory. The coupled governing equations then have a simple
structure. We summarize these equations in Section 2. For incompressible isotropic
magnetoelastic materials the energy density is a function of five invariants, which
we denote here by I1 and I2, the first two principal invariants of the Cauchy–Green
deformation tensors, and I4, I5, I6, three invariants involving a Cauchy–Green tensor
and the magnetic induction vector. This formulation is similar in structure to that
associated with transversely isotropic elastic solids (see Spencer [21]). The general
incremental equations of nonlinear magnetoelasticity are then derived in Section 3.
Therein we define the various magnetoelastic ‘moduli’ tensors and provide general
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incremental boundary conditions. Care is needed in deriving the boundary equations
since the Lagrangian fields in the solid and the Eulerian fields in the vacuum must be
reconciled.

Section 4 provides a brief summary of the basic equations associated with the pure
homogeneous plane strain of a half-space of magnetoelastic material with a magnetic
field normal to its boundary. In Section 5, the general incremental equations are
applied to the analysis of surface stability. Not surprisingly, the resulting bifurcation
criterion is a complicated equation, even when the pre-stress corresponds to plane
strain and the magnetic induction vector is aligned with a principal direction of strain,
as is the case here. The bifurcation equation comes from the vanishing of the determi-
nant of a 7 × 7 matrix, which must be solved simultaneously with a bicubic equation.
To present a tractable example, we therefore focus on a “Mooney–Rivlin magnetoe-
lastic solid” for which the total energy function is linear in the invariants I1, I2, I4,
and I5. Of course, these invariants are nonlinear in the deformation and the theory
remains highly nonlinear. The bicubic then factorizes and a complete analytical reso-
lution follows. In addition to the two elastic Mooney–Rivlin parameters (material
constants), the material model involves two magnetoelastic coupling parameters.
The stability behaviour of the half-space depends crucially on the values of these
coupling parameters and also on the magnitude of the magnetic field. In particular, a
judicious choice of parameters can stabilize the half-space relative to the situation in
the absence of a magnetic field. Equally, the half-space can become de-stabilized for
different choices of the parameters. Thus, even this very simple model illustrates the
possible complicated nature of the magnetoelastic coupling in the nonlinear regime.

2 The Equations of Nonlinear Magnetoelasticity

In this section the equations for nonlinear magnetoelastic deformations, as devel-
oped by Dorfmann and Ogden [12, 22–24], are summarized for subsequent use in the
derivation of the incremental equations.

We consider a magnetoelastic body in an undeformed configuration B0, with
boundary ∂B0. A material point within the body in that configuration is identified
by its position vector X. By the combined action of applied mechanical loads and
magnetic fields, the material is then deformed from B0 to the configuration B, with
boundary ∂B, so that the particle located at X in B0 now occupies the position
x = χ(X) in the deformed configuration B. The function χ describes the static
deformation of the body and is a one-to-one, orientation-preserving mapping with
suitable regularity properties. The deformation gradient tensor F relative to B0 is
defined by F = Gradχ , Fiα = ∂xi/∂ Xα , Grad being the gradient operator in B0. The
magnetic field vector in B is denoted H, the associated magnetic induction vector by
B and the magnetization vector by M.

To avoid a conflict of standard notations, the Cauchy–Green tensors are rep-
resented here by lower case characters; thus, the left and right Cauchy–Green
tensors are b = FFT and c = FT F, respectively, where T denotes the transpose. The
Jacobian of the deformation gradient is J = det F, and the usual convention J > 0
is adopted.
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2.1 Mechanical Equilibrium

Conservation of the mass for the material is here expressed as

Jρ = ρ0, (1)

where ρ0 and ρ are the mass densities in the configurations B0 and B, respectively.
For an incompressible material, J = 1 is enforced so that ρ = ρ0.

The equilibrium equation in the absence of mechanical body forces is given in
Eulerian form by

divτ = 0, (2)

where τ is the total Cauchy stress tensor, which is symmetric, and div is the divergence
operator in B. The total nominal stress tensor T is then defined by

T = JF−1τ , (3)

so that the Lagrangian counterpart of the equilibrium equation (2) is

Div T = 0, (4)

Div being the divergence operator in B0.
Let N denote the unit outward normal vector to ∂B0 and n the corresponding unit

normal to ∂B. These are related by Nanson’s formula nda = J F−T NdA, where dA
and da are the associated area elements. The traction on the area element in ∂B may
be written τnda or as TT NdA. A traction boundary condition might therefore be
expressed in the form

TT N = ta, (5)

where ta is the applied traction per unit reference area. If this is independent of the
deformation then the traction is said to be a dead load.

2.2 Magnetic Balance Laws

In the Eulerian description, Maxwell’s equations in the absence of time dependence,
free charges and free currents reduce to

div B = 0, curl H = 0, (6)

which hold both inside and outside a magnetic material, where curl relates to B.
Thus, B and H can be regarded as fundamental field variables. A third vector field,
the magnetization, when required, can be defined by the standard relation

B = μ0(H + M), (7)

where μ0 is the magnetic permeability in vacuum.
We shall not need to make explicit use of the magnetization in this paper.

Associated with the equations (6) are the boundary continuity conditions

(B − B�) · n = 0, (H − H�) × n = 0, (8)

wherein B and H are the fields in the material and B� and H� the corresponding
fields exterior to the material, but in each case evaluated on the boundary ∂B.
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Lagrangian counterparts of B and H, denoted Bl and Hl , respectively, are
defined by

Bl = JF−1 B, Hl = FT H, (9)

and in terms of these quantities equations (6) become

Div Bl = 0, Curl Hl = 0, (10)

where Curl is the curl operator in B0. We note in passing that a Lagrangian
counterpart of M may also be defined, one possibility being Ml = FT M.

The boundary conditions (8) can also be expressed in Lagrangian form, namely

(Bl − JF−1 B�) · N = 0, (Hl − FT H�) × N = 0, (11)

evaluated on the boundary ∂B0.

2.3 Constitutive Equations

There are many possible ways to formulate constitutive laws for magnetoelastic
materials based on different choices of the independent magnetic variable and the
form of energy function. For present purposes it is convenient to use a formulation
involving a ‘total energy function’, or ‘modified free energy function’, which is
denoted here by �, following Dorfmann and Ogden [12]. This is defined per unit
reference volume and is a function of F and Bl : �(F, Bl). This leads to the very
simple expressions

T = ∂�

∂F
, Hl = ∂�

∂ Bl
(12)

for a magnetoelastic material without internal mechanical constraints, and

T = ∂�

∂F
− pF−1, Hl = ∂�

∂ Bl
(13)

for an incompressible material, where p is a Lagrange multiplier associated with the
constraint det F = 1. Note that the expression for Hl is unchanged except that now
det F = 1 in �.

The Eulerian counterparts of the above equations are

τ = J−1 F
∂�

∂F
, H = F−T ∂�

∂ Bl
(14)

for an unconstrained material, where F−T = (F−1)T, and

τ = F
∂�

∂F
− pI, H = F−T ∂�

∂ Bl
, (15)

where I is the identity tensor. We emphasize that the first equation in each of
(12–15) has exactly the same form as for a purely elastic material in the absence
of a magnetic field.
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2.4 Isotropic Magnetoelastic Materials

In general the mechanical properties of magnetoelastic elastomers have features that
are similar to those of transversely isotropic materials. During the curing process
a preferred direction is ’frozen in’ to the material if the curing is done in the
presence of a magnetic field, which aligns the magnetic particles. If cured without a
magnetic field then the distribution of particles is essentially random and the resulting
magnetoelastic response is isotropic. We focus on the latter case here for simplicity,
but the corresponding analysis for the more general case follows the same pattern,
albeit more complicated algebraically. A general constitutive theory for the former
situation has been developed by Bustamante and Ogden (unpublished manuscript)
and applied to some simple problems. For isotropic materials, the energy function �

depends only on c and Bl ⊗ Bl , through the six invariants

I1 = tr c, I2 = 1

2

[
(tr c)2 − (tr c2)

]
, I3 = det c = J2,

I4 = Bl · Bl, I5 = (c Bl) · Bl, I6 = (c2 Bl) · Bl. (16)

For incompressible materials, I3 = 1 and only the five invariants I1, I2, I4, I5, and
I6 remain. The total stress tensor τ is then expressed as

τ = −pI + 2�1b + 2�2(I1b − b2
) + 2�5 B ⊗ B + 2�6(B ⊗ bB + bB ⊗ B), (17)

where �i = ∂�/∂ Ii, and the total nominal stress tensor T as

T = − pF−1 + 2�1 FT + 2�2(I1 FT − FTb)

+ 2�5 Bl ⊗ B + 2�6(Bl ⊗ bB + FT B ⊗ B). (18)

Finally, the magnetic field vector H is found from (15) as

H = 2(�4b−1 B + �5 B + �6bB), (19)

and its Lagrangian counterpart is

Hl = 2(�4 Bl + �5cBl + �6c2 Bl). (20)

2.5 Outside the Material

In vacuum, there is no magnetization and the standard relation (7) reduces to

B� = μ0 H�, (21)

where the star is again used to denote a quantity exterior to the material. Also, the
stress tensor τ is now the Maxwell stress τ �, given by

τ � = μ−1
0

[
B� ⊗ B� − 1

2
(B� · B�)I

]
, (22)

which, since div B� = 0 and curl B� = 0, satisfies divτ ∗ = 0.
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3 Incremental Equations

3.1 Increments within the Material

Suppose now that both the magnetic field and, within the material, the deformation
undergo incremental changes (which are denoted by superposed dots). Let Ḟ and Ḃl

be the increments in the independent variables F and Bl . It follows from (12) that
the increment Ṫ in T and the increment Ḣl in Hl are given in the form

Ṫ = AḞ + � Ḃl, Ḣl = � Ḟ + KḂl, (23)

where A, � and K are, respectively, fourth-, third- and second-order tensors, with
components defined by

Aαiβ j = ∂2�

∂ Fiα∂ Fjβ
, �αiβ = ∂2�

∂ Fiα∂ Blβ
= ∂2�

∂ Blβ ∂ Fiα
, Kαβ = ∂2�

∂ Blα ∂ Blβ
. (24)

We refer to these tensors as magnetoelastic moduli tensors. We note the symmetries

Aαiβ j = Aβ jαi, Kαβ = Kβα, (25)

and observe that � has no such indicial symmetry. The products in (23) are defined
so that, in component form, we have

Ṫαi = Aαiβ j Ḟjβ + �αiβ Ḃlβ , Ḣlα = �βiα Ḟiβ + Kαβ Ḃlβ . (26)

For an unconstrained isotropic material, � is a function of the six invariants
I1, I2, I3, I4, I5, I6, and the expressions (24) can be expanded in the forms

Aαiβ j =
6∑

m=1, m�=4

6∑
n=1, n �=4

�mn
∂ In

∂ Fiα

∂ Im

∂ Fjβ
+

6∑
n=1, n �=4

�n
∂2 In

∂ Fiα∂ Fjβ
,

�αiβ =
6∑

m=4

6∑
n=1, n �=4

�mn
∂ Im

∂ Blβ

∂ In

∂ Fiα
+

6∑
n=5

�n
∂2 In

∂ Fiα∂ Blβ
,

Kαβ =
6∑

m=4

6∑
n=4

�mn
∂ Im

∂ Blα

∂ In

∂ Blβ
+

6∑
n=4

�n
∂2 In

∂ Blα ∂ Blβ
, (27)

where �n = ∂�/∂ In, �mn = ∂2�/∂ Im∂ In. Expressions for the first and second deriv-
atives of In, n = 1, . . . , 6, are given in the Appendix.

For an incompressible material, T is given by (13) and its increment is then

Ṫ = AḞ + � Ḃl − ṗF−1 + pF−1 Ḟ F−1, (28)

which replaces (23) in this case. On the other hand, Hl is still given by (12) and
its increment is unaffected by the constraint of incompressibility, except, of course,
since � is now independent of I3 = 1, the summations in equations (27) omit m = 3
and n = 3.

It is now a simple matter to obtain the incremental forms of the (Lagrangian)
governing equations. We have

Div Ṫ = 0, Div Ḃl = 0, Curl Ḣl = 0. (29)
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These equations can be transformed into their Eulerian counterparts (indicated by a
zero subscript) by means of the transformations

Ṫ0 = J−1 FṪ, Ḃl0 = J−1 F Ḃl, Ḣl0 = F−T Ḣl (30)

(with J = 1 for an incompressible material), leading to

div Ṫ0 = 0, div Ḃl0 = 0, curl Ḣl0 = 0. (31)

Now let u denote the incremental displacement vector. Then, Ḟ =Gradu =
(gradu)F, where grad is the gradient operator with respect to x. We use the notation
d for the displacement gradient gradu, in components dij = ∂ui/∂x j. From (30) and
(23) we then have

Ṫ0 = A0d + �0 Ḃl0, Ḣl0 = �0d + K0 Ḃl0, (32)

where, in index notation, the tensors A0, �0, and K0 are defined by

A0 jisk = J−1 F jα FsβAαiβk, �0 jik = Fjα F−1
βk �αiβ, K0ij = JF−1

αi F−1
β j Kαβ (33)

for an unconstrained material. For an incompressible material J = 1 in the above and
(32) is replaced by

Ṫ0 = A0d + �0 Ḃl0 + pd − ṗI, Ḣl0 = �0d + K0 Ḃl0, (34)

and the incremental incompressibility condition is

divu = 0. (35)

Notice that A0 and K0 inherit the symmetries of A and K, respectively, so that

A0 jisk = A0skji, K0ij = K0 ji. (36)

Finally, using the incremental form of the rotational balance condition FT =
(FT)T, we find that �0 has the symmetry

�0ijk = �0 jik, (37)

and we uncover the connections

A0 jisk − A0ijsk = τ jsδik − τisδ jk (38)

between the components of the tensors A0 and τ for an unconstrained material (see,
for example, Chadwick and Ogden [25] for the specialization of these in the purely
elastic case), and

A0 jisk − A0ijsk = (τ js + pδ js)δik − (τis + pδis)δ jk (39)

for incompressible materials (see Chadwick [26] for the elastic specialization).
Following Prikazchikov [27], we decompose the tensor A0 into the sum

A0 = A(0)
0 + A(5)

0 + A(6)
0 . (40)
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The first term A(0)
0 does not involve any derivatives with respect to I4, I5,

and I6. Clearly, this term is very similar to the tensor of elastic moduli associated
with isotropic elasticity in the absence of magnetic fields. In component form it is
given by

JA(0)

0 jisk = 4bijbks�11 + 4NijNks�22 + 4J4δijδks�33 + 4(bksNij + bijNks)�12

+ 4(bksδij + bijδks)�13 + 4J2(Nksδij + Nijδks)�23

+ 2δikbjs�1 + 2(2bijbks + δikNjs − bjkbis − bikbjs)�2

+ 2J2(2δijδks − δisδ jk)�3, (41)

where

Nij = bkkbij − bikbkj (42)

and bij are the components of b.
The terms A(5)

0 jisk and A(6)

0 jisk may be expressed in the forms

A(5)

0 jisk = A0(5)

0 jisk�5 +
6∑

m=1, m�=4

Am(5)

0 jisk�m5,

A(6)

0αiβ j = A0(6)

0 jisk�6 +
6∑

m=1, m�=4

Am(6)

0 jisk�m6, (43)

where A4(5)

0 jisk = 0 and

A0(5)

0 jisk = 2J−1a jasδik, A1(5)

0 jisk = 4J−1(akasbij + aia jbks),

A2(5)

0 jisk = 4J−1(akasNij + aia jNks), A3(5)

0 jisk = 4J(akasδij + aia jδks),

A5(5)

0 jisk = 4J−1a jaiasak, A6(5)

0 jisk = 2J−1(a jaiHks + akasHij), (44)

with

Hij = a jakbik + aiakbjk, ai = Fiα Blα . (45)

Similarly, A4(6)

0 jisk = 0 and

A0(6)

0 jisk = 2J−1(δikH js + aiasbjk + a jakbis + a jasbik + aiakbjs),

A1(6)

0 jisk = 4J−1(bksHij + bijHks), A2(6)

0 jisk = 4J−1(HijNks + HksNij),

A3(6)

0 jisk = 4J(Hksδij + Hijδks), A5(6)

0 jisk = 2J−1(aia jHks + akasHij),

A6(6)

0 jisk = 4J−1HijHks. (46)

The tensor �0 is decomposed as

�0 = �
(1)
0 + �

(2)
0 + �

(3)
0 + �

(5)
0 + �

(6)
0 , (47)
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with components given by

�
(1)

0 jik = 4bijM1k, �
(2)

0 jik = 4NijM2k, �
(3)

0 jik = 4J2δijM3k,

�
(5)

0 jik = 4a jaiM5k + 2(a jδik + aiδ jk)�5,

�
(6)

0 jik = 4HijM6k + 2(δikasbjs + aibjk + δ jkasbis + a jbik)�6, (48)

where

Mik = F−1
αk Blα �i4 + ak�i5 + a jbjk�i6. (49)

Finally, we represent K0 in the form

K0 = K(4)
0 + K(5)

0 + K(6)
0 , (50)

with components

K(4)

0ij = 2JF−1
αi (2BlαM4 j + F−1

α j )�4,

K(5)

0ij = 2J(2aiM5 j + δij�5),

K(6)

0ij = 2J(2akbikM6 j + bij�6). (51)

For an incompressible material, the above expressions are unaltered except that
J = 1 and all the terms �3 and �n3, n = 1, . . . , 6 in A0ijkl , �0ijk, K0ij are omitted.

3.2 Outside the Material

The standard relation B = μ0 H in vacuum is incremented to

Ḃ
� = μ0 Ḣ

�
, (52)

where Ḃ
�

and Ḣ
�

are the increments of B� and H�, respectively. These fields satisfy
Maxwell’s equations

div Ḃ
� = 0, curl Ḣ

� = 0. (53)

Finally, we increment the Maxwell stress of (22) to

τ̇
� = μ−1

0 [Ḃ� ⊗ B� + B� ⊗ Ḃ
� − (B� · Ḃ

�
)I], (54)

noting that div τ̇
� = 0.

3.3 Incremental Boundary Conditions

At the boundary of the material, in addition to any applied traction ta (defined per
unit reference area), there will in general be a contribution from the Maxwell stress
exterior to the material. This is a traction τ �n per unit current area and can be ‘pulled
back’ to the reference configuration to give a traction Jτ � F−T N per unit reference
area, in which case the boundary condition (5) is modified to

TT N = Jτ � F−T N + ta. (55)
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On taking the increment of this equation, we obtain

Ṫ
T

N = Jτ̇
� F−T N − Jτ � F−T Ḟ

T
F−T + J̇τ � F−T N + ṫa, (56)

and hence, on updating this from the reference configuration to the current
configuration,

Ṫ
T
0 n = τ̇

�n − τ �dTn + (divu)τ �n + ṫa. (57)

Proceeding in a similar fashion for the other fields, we increment the magnetic
boundary conditions (11) to give, again after updating,

(Ḃl0 + d B� − (divu)B� − Ḃ
�
) · n = 0 (58)

and

(Ḣl0 − dT H� − Ḣ
�
) × n = 0. (59)

4 Pure Homogeneous Deformation of a Half-Space

Here we summarize the basic equations for the pure homogeneous deformation
of a half-space in the presence of a magnetic field normal to its boundary prior to
considering a superimposed incremental deformation in Section 5.

4.1 The Deformed Half-Space

Let X1, X2, X3 be rectangular Cartesian coordinates in the undeformed half-space
B0 and take X2 = 0 to be the boundary ∂B0, with the material occupying the domain
X2 ≥ 0. In order to minimize the number of parameters, we consider the material to
be incompressible and subject to a plane strain in the (X1, X2) plane. With respect to
the Cartesian axes, the deformation is then defined by x1 = λX1, x2 = λ−1 X2, x3 =
X3. The components of the deformation gradient tensor F and the right Cauchy–
Green tensor c are written F and c, respectively, and are given by

F =
⎡
⎣

λ 0 0
0 λ−1 0
0 0 1

⎤
⎦ , c =

⎡
⎣

λ2 0 0
0 λ−2 0
0 0 1

⎤
⎦ , (60)

where λ is the principal stretch in the X1 direction. The invariants I1 and I2 are
therefore

I1 = I2 = 1 + λ2 + λ−2. (61)

We take the magnetic induction vector B to be in the x2 direction and to be
independent of x1 and x3. It then follows from div B = 0 that its component B2 is
constant. Thus,

B1 = 0, B2 �= 0, B3 = 0. (62)

The associated Lagrangian field Bl = F−1 B then has components

Bl1 = 0, Bl2 = λB2, Bl3 = 0, (63)
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and the invariants involving the magnetic field are

I4 = B2
l2, I5 = λ−2 I4, I6 = λ−4 I4. (64)

We may now compute the stress field using (17), (60) and (63). The resulting non-
zero components of τ are

τ11 = 2�1λ
2 + 2�2(λ

2 + 1) − p,

τ22 = 2�1λ
−2 + 2�2(1 + λ−2) − p + 2�5λ

−2 I4 + 4�6λ
−4 I4,

τ33 = 2�1 + 2�2(λ
2 + λ−2) − p. (65)

The magnetic field H has components given by (19) as

H1 = 0, H2 = 2(�4 + λ−2�5 + λ−4�6)λBl2, H3 = 0. (66)

Since Bl2 and λ are constant, all the fields are uniform and the equilibrium equations
and Maxwell’s equations are satisfied.

In view of (61) and (64), there are only two independent variables, λ and I4. We
thus introduce a specialization ω(λ, I4) of the total energy �, by the definition

ω(λ, I4) = �(1 + λ2 + λ−2, 1 + λ2 + λ−2, I4, λ
−2 I4, λ

−4 I4), (67)

from which it follows that

ωλ = 2λ−1[(λ2 − λ−2)(�1 + �2) − λ−2 I4�5 − 2λ−4 I4�6],
ω4 = �4 + λ−2�5 + λ−4�6, (68)

where ωλ = ∂ω/∂λ, ω4 = ∂ω/∂ I4. Hence,

τ11 − τ22 = λωλ, H2 = 2λBl2ω4. (69)

4.2 Outside the Material

From the boundary conditions (8) applied at the interface x2 = X2 = 0, we have
B�

2 = B2 and H�
1 = H�

3 = 0, while from (21) it follows that B�
1 = B�

3 = 0 and H�
2 =

μ−1
0 B�

2 = μ−1
0 B2. Outside the material we take the magnetic field to be uniform and

equal to its interface value, Maxwell’s equations are then satisfied identically, B�

therefore has components

B�
1 = 0, B�

2 = B2 = λ−1 Bl2, B�
3 = 0, (70)

and H� has components

H�
1 = 0, H�

2 = μ−1
0 B2 = μ−1

0 λ−1 Bl2, H�
3 = 0. (71)

From these expressions, we deduce that the non-zero components of the Maxwell
stress (22) are given by

τ �
11 = −τ �

22 = −1

2
μ−1

0 B2
2 = −1

2
μ−1

0 λ−2 I4 = τ �
33. (72)

The applied mechanical traction on x2 = 0 required to maintain the plane strain
deformation has a single non-zero component τ22 − τ �

22.
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5 Surface Stability

We now address the question of surface stability for the deformed half-space by
establishing a bifurcation criterion based on the incremental static solution of the
boundary-value problem. Biot [28] initiated this approach, which has since been
successfully applied to a great variety of boundary-value problems; see Ogden [29]
for pointers to the vast literature on the subject.

5.1 Magnetoelastic Moduli

First we note that since Fij = 0 for i �= j and Bl1 = Bl3 = 0 several simplifications
occur in the expressions for the components of the magnetoelastic moduli tensors
A0, �0, K0. In particular, we have

A0iijk = 0, K0 jk = 0, for j �= k,

�0ii3 = �03ii = �0ii1 = �01ii = 0,

�0ijk = 0, for i �= j �= k �= i. (73)

For subsequent use we compute the quantities

a = A01212, 2b = A01111 + A02222 − 2A01221 − 2A01122, c = A02121,

d = �0211, e = �0222 − �0112, f = K011, g = K022. (74)

Explicitly, we obtain

a = 2λ2(�1 + �2) + 2I4�6,

b = (λ2 + λ−2)(�1 + �2) + I4[λ−2�5 + (6λ−4 − 2)�6]
+2(λ4 + λ−4 − 2)(�11 + 2�12 + �22)

+4I4(λ
−4 − 1)[�15 + �25 + 2λ−2(�16 + �26)]

+2I2
4λ

−4(�55 + 4λ−2�56 + 4λ−4�66),

c = 2λ−2(�1 + �2) + 2I4[λ−2�5 + (2λ−4 + 1)�6],
d = 2Bl2λ[λ−2�5 + (λ−4 + 1)�6],
e = 4Bl2λ

−1[�5 + 2λ−2�6 + (1 − λ4)(�14 + �24)

+(λ−2 − λ2)(�15 + �25) + (λ−4 − 1)(�16 + �26)

+I4(�54 + λ−2�55 + 2λ−2�46 + 3λ−4�56 + 2λ−6�66)],
f = 2(λ−2�4 + �5 + λ2�6)

g = 2(λ2�4 + �5 + λ−2�6) + 4I4(λ
2�44 + 2�45 + 2λ−2�46

+λ−2�55 + 2λ−4�56 + λ−6�66). (75)
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In terms of the energy density ω(λ, I4) we have the connections

a − c = λωλ, 2(b + c) = λ2ωλλ, e = −2Bl2λ
2ωλ4, g = 2λ2(ω4 + 2I4ω44), (76)

where ωλλ = ∂2ω/∂λ2, ωλ4 = ∂2ω/∂λ∂ I4 and ω44 = ∂2ω/∂ I2
4 .

5.2 Incremental Fields and Equations

We seek incremental solutions depending only on the in-plane variables x1 and x2

such that u3 = 0 and Ḃl03 = 0. Hence ui = ui(x1, x2) and Ḃl0i = Ḃl0i(x1, x2) for i =
1, 2 and ṗ = ṗ(x1, x2). In the following, a subscripted comma followed by an index i
signifies partial differentiation with respect to xi, i = 1, 2.

The incremental version (35) of the incompressibility constraint reduces here to

u1,1 + u2,2 = 0, (77)

and hence there exists a function ψ = ψ(x1, x2) such that

u1 = ψ,2, u2 = −ψ,1. (78)

Similarly, equation (31)2 reduces to

Ḃl01,1 + Ḃl02,2 = 0, (79)

and the function φ = φ(x1, x2) is introduced such that

Ḃl01 = φ,2, Ḃl02 = −φ,1. (80)

The incremental equations of equilibrium (31)1 simplify to

Ṫ011,1 + Ṫ021,2 = 0, Ṫ012,1 + Ṫ022,2 = 0. (81)

From the identities (73), the only non-zero components of the incremental stress
Ṫ0 are found to be

Ṫ011 = (A01111 + p)u1,1 + A01122u2,2 + Ḃ02�0112 − ṗ,

Ṫ021 = (A02112 + p)u2,1 + A02121u1,2 + Ḃ01�0211,

Ṫ012 = (A01221 + p)u1,2 + A01212u2,1 + Ḃ01�0121,

Ṫ022 = (A02222 + p)u2,2 + A02211u1,1 + Ḃ02�0222 − ṗ. (82)
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Also, equation (31)3 reduces to

Ḣl01,2 − Ḣl02,1 = 0, (83)

wherein are the only non-zero components of Ḣl , which, from (73), are given by

Ḣl01 = �0121(u1,2 + u2,1) + K011 Ḃl01, Ḣl02 = �0112u1,1 + �0222u2,2 + K022 Ḃl02. (84)

In terms of the functions ψ and φ equations (81) and (83) become

(A01111 − A01122 − A01221)ψ,112 + A02121ψ,222 − �0112φ,11 + �0121φ,22 = ṗ,1,

(A02222 − A01122 − A01221)ψ,122 + A01212ψ,111 − (�0121 − �0222)φ,12 = − ṗ,2,

(�0222 − �0112 − �0121)ψ,112 + �0121ψ,222 + K022φ,11 + K011φ,22 = 0. (85)

We eliminate ṗ from the first two equations by cross-differentiation and addition and
obtain finally the coupled equations

aψ,1111 + 2bψ,1122 + cψ,2222 + (e − d)φ,112 + dφ,222 = 0 (86)

and

dψ,222 + (e − d)ψ,112 + fφ,22 + gφ,11 = 0 (87)

for ψ and φ.

5.3 Outside the Material

In vacuum, Maxwell’s equations (53) hold for Ḃ and Ḣ. From the second equation,
and the assumption that all fields depend only on x1 and x2, we deduce the existence
of a scalar function φ� = φ�(x1, x2) such that

Ḣ�
1 = −φ�

,1, Ḣ�
2 = −φ�

,2, Ḣ�
3 = 0. (88)

Equation (52) then gives

Ḃ�
1 = −μ0φ

�
,1, Ḃ�

2 = −μ0φ
�
,2, Ḃ�

3 = 0, (89)

and from (53)1 we obtain the equation

φ�
,11 + φ�

,22 = 0 (90)

for φ�. Finally, the incremental Maxwell stress tensor (54) has non-zero components

τ̇ �
11 = λ−1 Bl2φ

�
,2 = τ̇ �

33 = −τ̇ �
22, τ̇ �

12 = −λ−1 Bl2φ
�
,1 = τ̇ �

21. (91)
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5.4 Boundary Conditions

We now specialize the general incremental boundary conditions of Section 3.3 to
the present deformed semi-infinite solid. First, for ṫa = 0, the incremental traction
boundary conditions (57) reduce to

Ṫ021 + τ �
11u2,1 − τ̇ �

21 = 0, Ṫ022 + τ �
22u2,2 − τ̇ �

22 = 0, (92)

on x2 = 0. Putting together the results of this section, using (72), (74), (78), (80), (82),
(88) and (91), we express the two equations (92) as

(
τ22 + 1

2
μ−1

0 λ−2 I4 − c
)

ψ,11 + cψ,22 + dφ,2 + λ−1 Bl2φ
�
,1 = 0, (93)

and
(

2b + c − τ22 + 1

2
μ−1

0 λ−2 I4

)
ψ,112 + cψ,222 + eφ,11 + dφ,22 − λ−1 Bl2φ

�
,12 = 0, (94)

which apply on x2 = 0. In obtaining the latter we have differentiated (92)2 with
respect to x1 and made use of (85)1.

Next, the incremental magnetic boundary conditions (58) and (59) reduce to

Ḃl02 + B�
2u2,2 − Ḃ�

2 = 0, Ḣl01 − H�
2u2,1 − Ḣ�

1 = 0 (95)

on x2 = 0. Using again the results of the preceding sections, we write these as

λ−1 Bl2ψ,12 + φ,1 − μ0φ
�
,2 = 0, (96)

and

(μ−1
0 λ−1 Bl2 − d)ψ,11 + dψ,22 + fφ,2 + φ�

,1 = 0 (97)

on x2 = 0.

5.5 Resolution

We are now in a position to solve the incremental boundary value problem. We
seek small-amplitude solutions, localized near the interface x2 = 0. Hence we take
solutions in the solid (x2 ≥ 0) to be of the form

ψ = Ae−ksx2 eikx1 , φ = kDe−ksx2 eikx1 , (98)

where k > 0 (2π/k is the wavelength of the perturbation) and s is such that

�(s) > 0 (99)

to ensure decay with increasing x2 (> 0).
Substituting (98) into the incremental equilibrium equations (86) and (87), we

obtain

(cs4 − 2bs2 + a)A − s(ds2 + d − e)D = 0,

s(ds2 + d − e)A − ( f s2 − g)D = 0. (100)
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For non-trivial solutions to exist, the determinant of coefficients of A and D must
vanish, which yields a cubic in s2, namely

(cf − d2)s6 − [2bf + cg + 2(d − e)d]s4 + [2bg + af − (d − e)2]s2 − ag = 0. (101)

From the six possible roots we select s1, s2, s3 to be the three roots satisfying (99). We
then construct the general solution for the solid as

ψ =
3∑

j=1

Aje−ks jx2 eikx1 , φ = k
3∑

j=1

Dje−ks jx2 eikx1 , (102)

where Aj, Dj, j = 1, 2, 3, are constants.
For the half-space x2 ≤ 0 (vacuum) we take a solution φ� to (90) that is localized

near the interface x2 = 0. Specifically, we write this as

φ� = ikC�ekx2 eikx1 , (103)

where C� is a constant.
The constants Aj and Dj are related through either equation in (100). From the

second equation, for instance, we obtain

s j(ds2
j + d − e)Aj + ( f s2

j − g)Dj = 0, j = 1, 2, 3; no summation. (104)

We also have the two traction boundary conditions (93) and (94), which read
(

c − τ22 − 1

2
μ−1

0 λ−2 I4

)
(A1 + A2 + A3) + c(s2

1 A1 + s2
2 A2 + s2

3 A3)

− d(s1 D1 + s2 D2 + s3 D3) − λ−1 Bl2C� = 0, (105)

and
(

τ22 − 1

2
μ−1

0 λ−2 I4 − 2b − c
)

(s1 A1 + s2 A2 + s3 A3)

+ c(s3
1 A1 + s3

2 A2 + s3
3 A3) + (e − ds2

1)D1

+ (e − ds2
2)D2 + (e − ds2

3)D3 − λ−1 Bl2C� = 0. (106)

Finally, the two magnetic boundary conditions (96) and (97) become

λ−1 Bl2(s1 A1 + s2 A2 + s3 A3) − (D1 + D2 + D3) + μ0C� = 0, (107)

and

(d −μ−1
0 λ−1 Bl2)(A1 + A2 + A3) + d(s2

1 A1 + s2
2 A2 + s2

3 A3)

− f (s1 D1 + s2 D2 + s3 D3) − C� = 0. (108)

In total, there are seven homogeneous linear equations for the seven unknowns
Aj, Dj, j = 1, 2, 3, and C�. The resulting determinant of coefficients must vanish
and this equation is rather formidable to solve, particularly since it must be solved
in conjunction with the bicubic (101). It is in principle possible to express the
determinant in terms of the sums and products s1 + s2 + s3, s1s2 + s2s3 + s3s1, s1s2s3,
and to find these from the bicubic (101), similarly to the analysis conducted in
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the purely elastic case (see Destrade et al. [30]). However, the resulting algebraic
expressions rapidly become too cumbersome for this approach to be pursued.

Instead, we propose either

(a) to turn directly to a numerical treatment once � has been determined by curve
fitting from experimental data for a given magnetoelastic solid,
or

(b) to use a simple form for � that allows some progress to be made.

Regarding approach (a), we remark that, as emphasized by Dorfmann and Ogden
[12, 22–24], there is a shortage of, and a pressing need for, suitable experimental data
and for the derivation of functions � from such data. In the next section we focus
primarily on the analytical approach (b).

5.6 Example: A “Mooney–Rivlin Magnetoelastic Solid”

As a prototype for the energy function �, we propose

� = 1

4
μ(0)[(1 + γ )(I1 − 3) + (1 − γ )(I2 − 3)] + μ−1

0 (αI4 + β I5), (109)

where μ(0) is the shear modulus of the material in the absence of magnetic fields and
α, β, γ are dimensionless material constants, α and β being magnetoelastic coupling
parameters. For α = β = 0, (109) reduces to the strain energy of the elastic Mooney–
Rivlin material, a model often used for elastomers.

In respect of (109) the stress τ in (17) reduces to

τ = −pI + 1

2
μ(0)(1 + γ )b + 1

2
μ(0)(1 − γ )(I1b − b2

) + 2μ−1
0 β B ⊗ B, (110)

while H in (19) becomes

H = 2μ−1
0 (αb−1 B + β B). (111)

Clearly, equation (110) shows that the parameter α does not affect the stress. By
contrast β, if positive, stiffens the material in the direction of the magnetic field,
i.e. a larger normal stress in this direction is required to achieve a given extension
in this direction than would be the case without the magnetic field. On the other
hand, by reference to (111), we see that α provides a measure of how the magnetic
properties of the material are influenced by the deformation (through b). If β = 0
the stress is unaffected by the magnetic field. On the other hand, if α = 0 then the
magnetic constitutive equation (111) is unaffected by the deformation. Thus, a two-
way coupling requires inclusion of both constants.

The quantities defined in (74) and (75) now reduce to

a = μ(0)λ2, 2b = μ(0)(λ2 + λ−2 + βλ−2 Ī4), c = μ(0)(λ−2 + βλ−2 Ī4),

d =
√

μ−1
0 μ(0)βλ−1 B̄l2, e = 2

√
μ−1

0 μ(0)βλ−1 B̄l2,

f = μ−1
0 (αλ−2 + β), g = μ−1

0 (αλ2 + β), (112)
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where B̄l2, a dimensionless measure of the magnetic induction vector amplitude, and
Ī4 are defined by

B̄l2 = Bl2/
√

μ0μ(0), Ī4 = B̄2
l2. (113)

Note the connections

2b = a + c, e = 2d. (114)

Now we find that the bicubic (101) factorizes in the form

(s2 − 1)(s2 − λ4)[αλ4 + βλ2 − (α + βλ2 + αβ Ī4)s2] = 0, (115)

and it follows that the relevant roots are

s1 = 1, s2 = λ2, s3 = λ

√
αλ2 + β

α + βλ2 + αβ Ī4
. (116)

Note that for s3 to be real for all λ > 0 and all B̄l2, the inequalities

α ≥ 0, β > 0 or α > 0, β ≥ 0 (117)

must hold. (The case in which there is no magnetic field corresponds to α = β = 0.)
It is assumed here that these inequalities are satisfied, so that s3 is indeed a qualifying
root satisfying (99).

The equation (104) becomes

s j(s2
j − 1)βλ−1 B̄l2 Âj − [(αλ−2 + β)s2

j − αλ2 − β]D̂j = 0, j = 1, 2, 3, (118)

where

Âj =
√

μ−1
0 μ(0)Aj, D̂j = μ−1

0 Dj, (119)

and the s j are given by (116).
Next, consider the four remaining boundary conditions (105–108). In order to

keep the number of parameters to a minimum (so far, we have λ, B̄l2, α, β), and
to make a simple connection with known results for the surface stability of an elastic
Mooney–Rivlin material, we assume that there is no applied mechanical traction on
the boundary x2 = 0, and hence

τ22 = τ �
22 = 1

2
μ−1

0 λ−2 I4. (120)

The boundary conditions (93–97) now read

[1 + (β − 1) Ī4](Â1 + Â2 + Â3) + (1 + β Ī4)(s2
1 Â1 + s2

2 Â2 + s2
3 Â3)

− βλB̄l2(s1 D̂1 + s2 D̂2 + s3 D̂3) − λB̄l2C� = 0,

(λ4 + 2 + 2β Ī4)(s1 Â1 + s2 Â2 + s3 Â3) − (1 + β Ī4)(s3
1 Â1 + s3

2 Â2 + s3
3 Â3)

+ βλB̄l2[(s2
1 − 2)D̂1 + (s2

2 − 2)D̂2 + (s2
3 − 2)D̂3] + λB̄l2C� = 0,
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B̄l2(s1 Â1 + s2 Â2 + s3 Â3) − λ(D̂1 + D̂2 + D̂3) + λC� = 0,

λB̄l2(β − 1)(Â1 + Â2 + Â3) + λβ B̄l2(s2
1 Â1 + s2

2 Â2 + s2
3 Â3)

− (α + βλ2)(s1 D̂1 + s2 D̂2 + s3 D̂3) − λ2C� = 0. (121)

From the seven equations (118) and (121), we have derived a bifurcation criterion
(vanishing of the determinant of coefficients) using a computer algebra package,
but it is too long to reproduce here. It is a complicated rational function of the
four parameters λ, B̄l2, α, β. However, it is easy to solve numerically, and for the
numerical examples we fix the material parameters α and β and find the critical
stretch λcr in compression as a function of B̄l2. For B̄l2 = 0, we recovered the well-
known critical compression stretch for surface instability of the elastic Mooney–
Rivlin material in plane strain, namely λcr =0.5437 [28], as expected. For Fig. 1a (1b)
we set α = 0.5 (α = 2.0) and curves for β = 0.0, 0.5, 1.0, 1.5, 2.0 are shown. We found
that λcr is an even function of B̄l2 and we therefore restricted attention to positive
B̄l2 (within the range 0 ≤ B̄l2 ≤ 3). The behaviour as B̄l2 becomes larger and larger
(not shown here) indicates that the half-space becomes more and more unstable in
compression. Moreover, it can even become unstable in tension (λcr > 1). The figures
also clearly demonstrate that for some values of α, β, and B̄l2 the critical stretch
ratio is smaller than that for the purely elastic case (λcr < 0.5437), in which cases the
magnetic field has a stabilizing effect.

Turning back to a phenomenological approach, we remark that the energy
function (109) has quite good curve-fitting qualities for moderate fields. There are
four parameters at hand, namely μ(0), α, β, γ , two of which, μ(0) and β, may be
determined from shear tests. Indeed Dorfmann and Ogden [24] show that in general

a b

Fig. 1 Dependence of the critical stretch λcr < 1 for instability in compression for a magnetoelastic
Mooney–Rivlin solid in plane strain on the non-dimensional measure B̄l2 of the magnetic field for
several values of the magnetoelastic coupling parameters α and β. a α = 0.5, b α = 2.0
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a b

Fig. 2 Dependence of the critical stretch λcr < 1 for instability in compression for a magnetoelastic
Mooney–Rivlin solid in plane strain with the dimensional measure Bl2 of the magnetic field, for
several values of the magnetoelastic coupling parameters α and β. a β = 0.53 b β = 0.72

the shear modulus for isotropic nonlinear magnetoelasticity is 2[�1 + �2 + I4�5 +
I4�6(3 + 2κ2)], where κ is the amount of shear in a simple shear test. Here the
modulus is independent of κ and is given by

μ(Bl2) = μ(0) + 2μ−1
0 β I4. (122)

This highlights the role of β in increasing the mechanical stiffness of the material—
through the shear modulus. Jolly et al. [9] conducted double lap shear tests on
magneto-sensitive elastomers containing 10, 20, and 30% by volume of iron particles.
From their Figure 7, we see that in the range 0 ≤ Bl2 ≤ 0.5 Tesla, the variations of
μ(Bl2) resemble those of a parabolic profile such as the one suggested by (122). For
the 10% iron by volume elastomer specimen, Table 1 in Jolly et al. [9] gives μ(0) =
0.26 MPa, and at Bl2 = 0.5 Tesla, we read off their Figure 7 that μ(0.5) − μ(0) � 0.07
MPa, indicating that β � 0.18. Similarly, for the 20% and the 30% iron by volume
elastomer specimens we find β � 0.53 and β � 0.72, respectively.

Figure 2a (2b) illustrates the variation of the critical compression stretch with the
amplitude of the dimensional magnetic induction vector, from 0 to 0.5 Tesla, for
the 20% (30%) iron by volume elastomer, and for several values of α. We remark
than the presence of the magnetic field makes the two specimens slightly more stable
than in the purely elastic case because all the critical compression stretch values are
smaller than 0.5437. It is also clear that increasing the value of α makes the half-space
more stable. However, it is worth noting that the 30% iron by volume specimen is
slightly less stable than the 20% iron by volume specimen for the same values of α.
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Appendix

Derivatives of the Invariants with Respect to F and Bl

We derive the expressions for the first derivatives of the six invariants with respect
to F,

∂ I1

∂ Fiα
= 2Fiα,

∂ I2

∂ Fiα
= 2(cγ γ Fiα − cαγ Fiγ ),

∂ I3

∂ Fiα
= 2I3 F−1

αi ,
∂ I4

∂ Fiα
= 0,

∂ I5

∂ Fiα
= 2Blα(Fiγ Blγ ),

∂ I6

∂ Fiα
= 2(Fiγ Blγ cαβ Blβ + Fiγ cγβ Blβ Blα), (A123)

and with respect to Bl ,

∂ I1

∂ Blα
= 0,

∂ I2

∂ Blα
= 0,

∂ I3

∂ Blα
= 0,

∂ I4

∂ Blα
= 2Blα,

∂ I5

∂ Blα
= 2cαβ Blβ,

∂ I6

∂ Blα
= 2cαγ cγβ Blβ . (A124)

The second derivatives of the invariants are computed as follows: first, the second
derivatives with respect to F,

∂2 I1

∂ Fiα∂ Fjβ
= 2δijδαβ,

∂2 I2

∂ Fiα∂ Fjβ
= 2(2Fiα Fjβ − Fiβ Fjα + cγ γ δijδαβ − bijδαβ − cαβδij),

∂2 I3

∂ Fiα∂ Fjβ
= 4I3 F−1

αi F−1
β j − 2I3 F−1

α j F−1
βi ,

∂2 I4

∂ Fiα∂ Fjβ
= 0,

∂2 I5

∂ Fiα∂ Fjβ
= 2δijBlα Blβ,

∂2 I6

∂ Fiα∂ Fjβ
= 2[δij(cαγ Blγ Blβ + cβγ Blγ Blα) + δαβ Fiγ Blγ Fjδ Blδ

+ Fiγ Blγ Fjα Blβ + Fjγ Blγ Fiβ Blα + bijBlα Blβ ]; (A125)
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next, the mixed derivatives with respect to F and Bl ,

∂2 I1

∂ Fiα∂ Blβ
= 0,

∂2 I2

∂ Fiα∂ Blβ
= 0,

∂2 I3

∂ Fiα∂ Blβ
= 0,

∂2 I4

∂ Fiα∂ Blβ
= 0,

∂2 I5

∂ Fiα∂ Blβ
= 2δαβ Fiγ Blγ + 2Blα Fiβ,

∂2 I6

∂ Fiα∂ Blβ
= 2Fiβcαγ Blγ + 2Fiγ Blγ cαβ + 2Fiγ cγβ Blα + 2δαβ Fiγ cγ δ Blδ; (A126)

finally, the second derivatives with respect to Bl ,

∂2 I1

∂ Blα∂ Blβ
= 0,

∂2 I2

∂ Blα∂ Blβ
= 0,

∂2 I3

∂ Blα∂ Blβ
= 0,

∂2 I4

∂ Blα∂ Blβ
= 2δαβ,

∂2 I5

∂ Blα∂ Blβ
= 2cαβ,

∂2 I6

∂ Blα∂ Blβ
= 2cαγ cγβ . (A127)
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