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The buckling of hyperelastic incompressible cylindrical tubes of arbitrary length and
thickness under compressive axial load is considered within the framework of nonlinear
elasticity. Analytical and numerical methods for bifurcation are developed using the
exact solution of Wilkes for the linearized problem within the Stroh formalism. Using
these methods, the range of validity of the Euler buckling formula and its first nonlinear
corrections are obtained for third-order elasticity. The values of the geometric
parameters (tube thickness and slenderness) where a transition between buckling and
barrelling is observed are also identified.
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1. Introduction

Under a large enough compressive axial load an elastic beam will buckle. This
phenomenon known as elastic buckling or Euler buckling is one of the most
celebrated instabilities of classical elasticity. The critical load for buckling was
first derived by Euler in 1744 (Euler 1744, 1759; Oldfather et al. 1933) and
further refined for higher modes by Lagrange in 1770 (Lagrange 1770;
Timoshenko 1983). Both authors reached their conclusion on the basis of simple
beam equations first derived by Bernoulli (Todhunter 1893; figure 1). Since then,
Euler buckling has played a central role in the stability and mechanical
properties of slender structures from nano- to macrostructures in physics,
engineering, biochemistry and biology (Timoshenko & Gere 1961; Niklas 1992).
Explicitly, the critical compressive axial load N that will lead to a buckling
instability of a hinged–hinged isotropic homogeneous beam of length L is

NEuler Z
p2EI

L2
; ð1:1Þ

where ‘p is the circumference of a circle whose diameter is one’ (Euler 1759); E is
Young’s modulus; and I is the second moment of area, which, in the case of a
cylindrical shell of inner radius A and outer radius B, is IZpðB 4KA4Þ=4.

There are many different ways to obtain this critical value and infinite
variations on the theme. If the beam is seen as a long slender structure, the one-
dimensional theory of beams, elastica, or Kirchhoff rods, can be used successfully
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(a) (b)

Figure 1. Euler problem: (a) illustrations from Euler (1744). (b) Lagrange solutions (1770), modes
1, 2 and 3.
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to capture the instability, either by bifurcation analysis, energy argument
(Timoshenko & Gere 1961) or directly from the exact solution, which in the case
of rods can be written in terms of elliptic integrals (Nizette & Goriely 1999). The
one-dimensional theory can be used with a variety of boundary conditions, it is
particularly easy to explain and generalize and it can be used for large geometric
deflections of the axis (Antman 1995). However, since material cross sections
initially perpendicular to the axis remain undeformed and perpendicular to the
tangent vector, no information on the elastic deformation around the central
curve can be obtained. In particular, other modes of instability such as barrelling
cannot be obtained. Here, by barrelling, we refer to axisymmetric deformation
modes of a cylinder or a cylindrical shell. These modes will typically occur for
sufficiently stubby structures.

The two-dimensional theory of shells can be used when the thickness of the
cylindrical shell is small enough. Then, the stability analysis of shell equations
such as the Donnell–von Kármán equations leads to detailed information on
symmetric instability modes, their localization and selection (Hunt et al. 2003).
However, the theory cannot be directly applied to obtain information on the
buckling instability (asymmetric buckling mode).

The three-dimensional theory of nonlinear elasticity provides, in principle, a
complete and exact description of the motion of each material point of a body
under loads. However, due to the mathematical complexity of the governing
Proc. R. Soc. A (2008)



3005Nonlinear Euler buckling
equations, most problems cannot be explicitly solved. In the case of long slender
structures under loads, the buckling instability can be captured by assuming that
the object is either a rectangular beam (Biot 1962; Levinson 1968; Nowinski
1969) or a cylindrical shell under axial load. Using the theory of incremental
deformations around a large deformation-stressed state, the buckling instability
can be recovered by a bifurcation argument, usually referred to, in the nonlinear
elasticity theory, as small-on-large, or incremental, theory. By taking the proper
asymptotic limit for long slender structures, the Euler criterion can then be
recovered. In comparison to the one- and two-dimensional theories, this
computation is rather cumbersome as it is based on non-trivial tensorial
calculations, but it contains much information about the instability and the
unstable modes selected in the bifurcation process.

Here, we are concerned with the case of a cylindrical shell under axial load.
This problem was first addressed in the framework of nonlinear elasticity in a
remarkable 1955 article by Wilkes who showed that the linearized system around
a finite axial strain can be solved exactly in terms of Bessel functions. While
Wilkes only analysed the first axisymmetric mode (nZ0, see below), he noted in
his conclusion that the asymmetric mode (nZ1) corresponds to the Euler strut
and doing so, opened the door to further investigation by Fosdick & Shield
(1963), who recovered Euler’s criterion asymptotically from the solution of
Wilkes. These initial results constitute the basis for much of the modern theory
of elastic stability of cylinders within the framework of three-dimensional
nonlinear elasticity (Haughton & Ogden 1979a,b; Simpson & Spector 1984; Duka
et al. 1993; Pan & Beatty 1997; Bigoni & Gei 2001; Dorfmann & Haughton 2006).
The experimental verification of Euler’s criterion was considered by Southwell
(1932) and by Beatty & Hook (1968).

The purpose of this article is threefold. First,we revisit the problemof the stability
of an incompressible cylindrical shell under axial load using the Stroh formalism
(Stroh 1962) and, based on the solution of Wilkes, we derive a new and compact
formulation of the bifurcation criterion that can be used efficiently for numerical
approximation of the bifurcation curves for all modes. Second, we use this
formulation to obtain nonlinear corrections of Euler’s criterion for arbitrary shell
thickness and third-order elasticity. Third, we consider the problem of determining
the critical aspect ratio where there is a transition between buckling and barrelling.
2. Large deformation

We consider a hyperelastic homogeneous incompressible cylindrical tube with
isotropic cross sectionsof initial inner radiusA, outer radiusBand lengthL, subjected
to a uniaxial constant strain l3 and deformed into a shorter tube with current
dimensions a, b and l. The deformation bringing a point at (R, Q, Z ), in cylindrical
coordinates in the initial configuration, to (r, q, z) in the current configuration is

r Z l1R; qZQ; z Z l3Z ; ð2:1Þ

where l1Za=AZb=B and l3Zl/L. Since the material is isotropic in the cross
sections, the physical components of the corresponding deformation gradient F are

½F �Z diagðl1; l1; l3Þ; ð2:2Þ
Proc. R. Soc. A (2008)
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showing that the principal stretches are the constants l1, l2Zl1, l3; and that
the pre-strain is homogeneous. Owing to incompressibility, det FZ1, so that

l1 Z l
K1=2
3 : ð2:3Þ

The principal Cauchy stresses required to maintain the pre-strain are (Ogden 1984)

si ZKpCli
vW

vli
ði Z 1; 2; 3Þ ð2:4Þ

(no sum), where p is a Lagrange multiplier introduced by the internal constraint of
incompressibility and W is the strain energy density (a symmetric function of the
principal stretches). In our case,s2Zs1 because l2Zl1. Also,s1Z0 because the inner
and outer faces of the tube are free of traction. It follows that:

pZ l1W1; s3 Z l3W3K l1W1; ð2:5Þ

whereWihvW/vli, andwe conclude that theprincipalCauchy stresses are constant.
3. Instability

To perform a bifurcation analysis, we take the view that the existence of small
deformation solutions in the neighbourhood of the large pre-strain signals the
onset of instability (Biot 1965).
(a ) Governing equations

The incremental equations of equilibrium and incompressibility can be written
as (Ogden 1984)

div sZ 0; div u Z 0; ð3:1Þ

where s is the incremental nominal stress tensor and u is the infinitesimal
mechanical displacement. They are linked by

sZA0 gradðuÞCp gradðuÞK _pI ; ð3:2Þ

where _p is the increment in the Lagrange multiplier p and A0 is the fourth-order
tensor of instantaneous elastic moduli. This tensor is similar to the stiffness
tensor of linear anisotropic elasticity, with the differences that it possesses only
the major symmetries, not the minor ones, and that it reflects strain-induced
anisotropy instead of intrinsic anisotropy. Its explicit non-zero components in a
coordinate system aligned with the principal axes are (Ogden 1984)

A0iijj Z liljWij ;

A0ijij Z ðliWiKljWjÞl2i =ðl2i Kl2j Þ; if isj; lislj ;

A0ijij Z ðA0iiiiKA0iijj CliWiÞ=2; if isj; li Z lj ;

A0ijji ZA0jiijA0ijijK liWi

9>>>>>=
>>>>>;

ð3:3Þ
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3007Nonlinear Euler buckling
(no sums), where Wij hv2W=ðvli vljÞ. Note that some of these components are
not independent because here l1Zl2. In particular, we have

A02121 ZA01212; A02323 ZA01313; A02222 ZA01111;

A02233 ZA01133; A02332 ZA01331; A03232 ZA03131;

A01221CA01212A01111KA01122 Z 2A01212CA01331KA01313:

9>=
>; ð3:4Þ

(b ) Solutions

We look for solutions that are periodic along the circumferential and axial
directions, and have yet unknown variations through the thickness of the tube, so
that our ansatz is

fur ; uq; uz ; _p; srr ; srq; srzgZfUrðrÞ;UqðrÞ;UzðrÞ;PðrÞ;SrrðrÞ;SrqðrÞ; SrzðrÞg

!expðiðnqCkzÞÞ; ð3:5Þ

where nZ0, 1, 2,. is the circumferential number; k is the axial wavenumber; the
subscripts (r, q, z) for u and s refer to components within the cylindrical
coordinates (r, q, z); and all upper-case functions are functions of r alone.

The specialization of the governing equations (3.1) to this type of solution has
already been conducted in several articles (see Wilkes 1955; Fosdick & Shield 1963;
Mack 1989; Pan & Beatty 1997; Negron-Marrero 1999; and Dorfmann & Haughton
2006 for the compressible counterpart). Here we adapt the work of Shuvalov (2003a)
on waves in anisotropic cylinders to develop a Stroh-like formulation of the problem
(Stroh 1962). The central idea is to introduce a displacement–traction vector,

hh ½Ur ;Uq;Uz ; irSrr ; irSrq; irSrz �T; ð3:6Þ

so that the incremental equations can be written in the form

d

dr
hðrÞZ i

r
GðrÞhðrÞ; ð3:7Þ

whereG is a 6!6 matrix, with the block structure

GZ
G1 G2

G3 GC
1

" #
; G2 ZGC

2 ; G3 ZGC
3 : ð3:8Þ

Here the superscript ‘C’ denotes the Hermitian adjoint (transpose of the complex
conjugate) andG1,G2 andG3 are the 3!3 matrices

i Kn Kkr

Kn Ki 0

Kkr 0 0

2
64

3
75;

0 0 0

0 K
1

A01212

0

0 0 K
1

A01313

2
6666664

3
7777775
;

k11 ik12 k13

Kik12 k22 k23

Kik13 k23 k33

2
64

3
75; ð3:9Þ
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respectively, with

k11Z4A01212CðA03131KA01313Þk2r2; k23Znð2A01212CA01313Þkr;

k12Z4nA01212; k13Z2A01212kr; k22Z4n2A01212CA03131k
2r2;

k33Zn2A01313Cð4A01212C2A01122KA01111CA03333K2A01133Þk2r2:

9>>=
>>; ð3:10Þ

As it happens, there exists a set of six explicit Bessel-type solutions to these
equationswhenns0.This situation is inmarkedcontrastwith thecorresponding set-
up in linear anisotropic elastodynamics, where explicit Bessel-type solutions exist
only for transversely isotropic cylinders with a set of four linearly independentmodes
and do not exist for cylinders of lesser symmetry (Martin & Berger 2001; Shuvalov
2003b). As mentioned in §1, the six Bessel solutions are presented in the article by
Wilkes (1955; for a derivation see Bigoni & Gei 2001).

First, denote by q21, q
2
2 the roots of the following quadratic in q2:

A01313q
4KðA01111CA03333K2A01331K2A01133Þq2 CA03131 Z 0: ð3:11Þ

Then the roots of this quartic in q are Gq1 and Gq2, and it can be checked that
the following two vectors are solutions to (3.7):

hð1Þ;hð2Þ Z iI 0nðqkrÞ;K
n

qkr
InðqkrÞ;KqInðqkrÞ;

�

K
kr

q
ðA01313q

2CA03131ÞInðqkrÞC2A01212 I 0nðqkrÞK
n2

qkr
InðqkrÞ

� �
;

K2inA01212 I 0nðqkrÞK
1

qkr
InðqkrÞ

� �
;Kið1Cq2ÞkrA01313I

0
nðqkrÞ

�T
;

ð3:12Þ
where qZq1, q2 in turn and In is the modified Bessel function of order n.
Similarly, we checked that the following vector h(3):

hð3Þ Z i
n

kr
Inðq3krÞ;Kq3I

0
nðq3krÞ; 0;K2nq3A01212 I 0nðq3krÞK

1

q3kr
Inðq3krÞ

� �
;

�

!iq3A01212 2I 0nðq3krÞK q3krC2
n2

q3kr

� �
Inðq3krÞ

� �
;KinA01313Inðq3krÞ

�T
ð3:13Þ

is also a solution when q3 is the positive root of the quadratic equation

A01212q
2KA03131 Z 0: ð3:14Þ

Finally, we also checked that the vectors h(4), h(5) and h(6), obtained by replacing
In with the modified Bessel functionKn in the expressions above, are solutions too.

Next, we follow Shuvalov (2003a) and introduce N (r) as a fundamental matrix
solution to (3.7):

NðrÞZ
h
hð1Þjhð2Þj.jhð6Þ

i
: ð3:15Þ
Proc. R. Soc. A (2008)



3009Nonlinear Euler buckling
It clearly satisfies

d

dr
NðrÞZ i

r
GðrÞN ðrÞ: ð3:16Þ

Let M(r,a) be the matricant solution to (3.7), i.e. the matrix such that

hðrÞZMðr ; aÞhðaÞ; M ða; aÞZ I ð6Þ: ð3:17Þ

It is obtained from N (r) (or from any other fundamental matrix made of linearly

independent combinations of the h(i )) by

Mðr ; aÞZNðrÞNK1ðaÞ ð3:18Þ

and it has the following block structure:

Mðr; aÞZ
M 1ðr; aÞ M 2ðr; aÞ
M 3ðr; aÞ M 4ðr; aÞ

" #
; ð3:19Þ

say.
(c ) Boundary conditions

Some boundary conditions must be enforced on the top and bottom faces of
the tubes. Considering that they remain plane (UzZ0 on zZ0, l ) and free
of incremental shear tractions (SrzZSrqZ0 on zZ0, l ) leads to

k Z
mp

l
Z

mp

l3L
; ð3:20Þ

where mZ1, 2, 3,. but, since the equations depend only on k, we can take mZ1
without loss of generality.

The other boundary conditions are that the inner and outer faces of the
tube remain free of incremental tractions. We call Sh ½Srr ;Srq; Srz �T the traction
vector and U h ½Ur ;Uq;Uz �T the displacement vector. We substitute the
condition S(a)Z0 into (3.17) and (3.19) to find the following connection:

rSðrÞZ zðr; aÞUðrÞ; where zh iM 3M
K1
1 ð3:21Þ

is the (Hermitian) 3!3 impedance (Shuvalov 2003a). Since S(b)Z0, a non-
trivial solution exists only if the matrix z(b, a) is singular, which implies the
bifurcation condition

det zðb; aÞZKi
det M 3ðb; aÞ
det M 1ðb; aÞ

Z 0: ð3:22Þ

This is a real equation since zZzC (Shuvalov 2003a) that applies independently
of the nature (i.e. real or complex (Pan & Beatty 1997), simple or double
(Dorfmann & Haughton 2006)) of the roots q1, q2 and q3.
Proc. R. Soc. A (2008)
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4. The adjugate method

We are now in a position to use the bifurcation condition (3.22) to compute
explicitly bifurcation curves for each mode n. We note that the components of A0

depend on the strain energy density W and on the pre-strain, which by (2.3)
depends only on l3; so do q1, q2, q3, by (3.11) and (3.14). According to (3.12) and
(3.13), the entries of M(b, a) thus depend (for a given W) on l3, n, ka and kb
only. For a given material (W specified) with a given thickness (b/aZB/A
specified), the bifurcation equation (3.22) gives a relationship between a measure

of the critical pre-stretch: l3ZlK2
1 , and a measure of the tube slenderness:

kbZ2pmðb=lÞZ2pml
K3=2
3 ðB=LÞ, for a given bifurcation mode (n specified). That

is, for a given tube slenderness, what is the axial strain necessary to excite a
given mode?

While this bifurcation condition is formally clear, it has not been successfully
implemented to compute all bifurcation curves. Indeed, for mode nO1, the root
finding of det(z) becomes numerically unstable and numerical methods become
unreliable (as observed in Dorfmann & Haughton (2006) for a similar problem)
and, in explicit computations, most authors do not use the exact solution by
Wilkes but use a variety of numerical techniques to solve the linear boundary-
value problems directly (such as the compound matrix method (Haughton & Orr
1997), the determinantal method (Ben Amar & Goriely 2005) or the Adams–
Moulton method (Zhu et al. 2008)). Note that from a computational perspective,
the Stroh formalism is particularly well suited and well behaved (Biryukov 1985;
Fu 2005) and if numerical integration was required it would provide an ideal
representation of the governing equation.

Rather than integrating the original linear problem numerically, we now show
how to use an alternative form of (3.22) to compute all possible bifurcation
curves. This method bypasses the need for numerical integration and reduces the
problem to a form that is manageable both numerically and symbolically, to
study analytically particular asymptotic limits. The main idea is to transform
condition (3.22) by factoring non-vanishing factors. We start by realizing that
since the fundamental solutions {h(i ), iZ1,., 6} are linearly independent, the
matrix N (r) is invertible for all r2[a,b], which implies that the elements of
M(r, a) are bounded for r2[a,b]. Therefore, det(M1(r, a)) is uniformly bounded
away from zero and det zZ0 implies det(M3(b, a))Z0. Instead of expressing
det(M3(b, a)) as the determinant of a 3!3 submatrix of a matrix obtained as the
product of two 6!6 matrices, we first decompose N (r) as

NðrÞZ
N 1ðrÞ N 2ðrÞ
N 3ðrÞ N 4ðrÞ

" #
; ð4:1Þ

say, where each block is a 3!3 matrix. We also rewrite equation (3.18) as

Mðr; aÞN ðaÞZNðrÞ; ð4:2Þ
and write explicitly the two entries N 3(r) and N 4(r), which are

M 3ðr; aÞN 1ðaÞCM 4ðr; aÞN 3ðaÞZN 3ðrÞ; ð4:3Þ

M 3ðr; aÞN 2ðaÞCM 4ðr; aÞN 4ðaÞZN 4ðrÞ; ð4:4Þ
Proc. R. Soc. A (2008)
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Figure 2. Bifurcation curves (stretch as a function of stubbiness) of a homogeneous neo-Hookean
cylindrical tube for modes nZ0–8 with b/aZB/AZ2 and C1Z1.
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which implies

M3ðr; aÞ N 1ðaÞNK1
3 ðaÞKN 2ðaÞNK1

4 ðaÞ
� �

ZN 3ðrÞNK1
3 ðaÞKN 4ðrÞNK1

4 ðaÞ:
ð4:5Þ

Using again the fact that the entries of N are bounded, we have that the
bifurcation condition det(M3(b, a))Z0 implies that

detQðb; aÞZ 0; ð4:6Þ

where

Qðb; aÞZdetðN 4ðaÞÞN 3ðbÞadjðN 3ðaÞÞKdetðN 3ðaÞÞN 4ðbÞadjðN 4ðaÞÞ; ð4:7Þ

and adj(A) is the adjugate matrix of A, i.e. the transpose of the cofactor matrix
(which in the case of an invertible matrix is simply adj(A)Zdet(A)AK1). This
new bifurcation condition is equivalent to the previous one but has many
advantages. The matrix Q involves only products of 3!3 matrices and is
polynomial in the entries of N , i.e. det Q(b, a) is a polynomial of degree 18 in
Bessel functions and has no denominator (hence no small denominator). Both
numerically and symbolically, this determinant is well behaved, even in the
limits a/0, which corresponds to a solid cylinder, and nZ0, which corresponds
to the first barrelling mode (and usually requires a special treatment). We will
refer to the use of this form of the bifurcation condition as the adjugate method.
Proc. R. Soc. A (2008)
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(a ) Numerical results

As a first test of the stability of the numerical procedure, we consider a neo-
Hookean potential WZC1ðI1K3Þ=2, where we set C1Z1 without loss of
generality and consider the typical value B/AZ2. We compute the critical
value of lhl3 as a function of the current stubbiness kbZpb/l (the initial
stubbiness is nZB=LZkbl3=2=p) for the first 9 modes (nZ0–8) as shown
in figure 2. The known classical features of the stability problem for the
cylindrical shell are recovered, namely for slender tubes, the Euler buckling
(nZ1) is dominant and becomes unavoidable as the slenderness increases; there
is a critical slenderness value at which the first barrelling mode nZ0 is the first
unstable mode (in a thought experiment where the axial strain would be incre-
mentally increased until the tube becomes unstable); and for very large kb, the
critical compression ratio tends asymptotically to the value lZ0.444, which
corresponds to surface instability of a compressed half-space (Biot 1962).

For a second test, we consider very thin neo-Hookean tubes withB/AZ1.01. Here
we are interested in the mode selection process. As the stubbiness increases, the
bucklingmode rapidly ceases to be the first excitedmode and is replaced by different
barrellingmodes. Fromfigure 3, it appears clearly that as kb increases,modesnZ1–9
are selected (modes nZ0 and 10 remain unobservable). There is one particularly
interesting feature in these two sets of bifurcation curves.Dependingonboth the tube
thickness and the stubbiness, the instability mode of a tube transition occurs from
buckling to barrelling, the material transition from either the one-dimensional
behaviour of slender column to the two-dimensional behaviour of a thin short tube, or
the three-dimensional behaviour of a thick short tube. Accordingly, we will refer to
these particular geometric values where transition occurs as dimensional transitions
and obtain analytical estimates for them in §5.
Proc. R. Soc. A (2008)



3013Nonlinear Euler buckling
5. Asymptotic Euler buckling

We are now in a position to look at the asymmetric buckling mode (nZ1)
corresponding to the Euler buckling in the limit l/1. The asymptotic form of
the Euler criterion cannot be obtained for a general strain-energy density. This is
why we choose the Mooney–Rivlin potential, which, for l close to 1, corresponds
to the most general form of third-order incompressible elasticity (see §6 and
Rivlin & Saunders (1951)),

W ZC1ðI1K3Þ=2CC2ðI2K3Þ=2; ð5:1Þ
where C1R0 and C2O0 are material constants; I1Zl21Cl22Cl23; and I2Z
l21l

2
2Cl22l

2
3Cl23l

2
1. Close to lZ1, we introduce a small parameter related to the

stubbiness ratio
eZ kbZpb=l; ð5:2Þ

and look for the critical buckling stretch l as a function of e of order M,

lZ lðeÞZ 1C
XM
mZ1

lme
m COðeMC1Þ: ð5:3Þ

Similarly, we expand dðlÞZdetQðb; aÞ in powers of e,

dðlÞZ
XMd

mZ1

dme
m COðeMdC1Þ; ð5:4Þ

and solve each order dmZ0 for the coefficients lm. This is a rather cumbersome
computation. It can be checked that lm vanishes identically for all odd values of
m and that the first non-identically vanishing coefficient appears at order 24.
A computation to order 28 is necessary to compute the correct expression for a,
which is found to be to order 6 in e

lZ 1Clð2Þe
2 Clð4Þe

4 Clð6Þe
6 COðe8Þ; ð5:5Þ

with

lð2Þ ZK
r2C1

4r2
; ð5:6Þ

lð4Þ Z
ð19C2C28C1Þr4 C2ð53C2C62C1Þr2 C19C2 C28C1

144ðC1CC2Þr4
; ð5:7Þ

lð6Þ ZK
1

4608r6ðr4K1ÞðC1 CC2Þ

h
ð973C1 C341C2Þðr10K1Þ

Cð7073C1C3385C2Þr2ðr6K1ÞC4392 lnðrÞðC1CC2Þðr6 Cr4Þ

C4ð377C2C1141C1Þðr6Kr4Þ
i
; ð5:8Þ

where rhB/AZb/a. It is of interest to compare the different approximations.
We recover the Euler formula by keeping only the term up to e2, which we denote
by Euler2. We define similarly Euler4 and Euler6 by keeping terms up to orders 4

and 6 in e. We show the different approximations as a function of e2 for rZ1.01
Proc. R. Soc. A (2008)
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(figure 4a) and rZ10 (figure 4b). The classical Euler formula is well recovered in
the limit e/0, but the Euler4 and Euler6 approximations clearly improve the
classical formula for larger values of e. It also appears from the analysis of Euler4
that for C2R0 the classical Euler formula always underestimates the critical
stretch for instability.
6. Nonlinear Euler buckling for third-order elasticity

The analytical result presented in §5 was formulated in terms of parameters and
quantities natural for the computation and the theory of nonlinear elasticity. In
order to relate this result to the classical form of Euler buckling, we need to
express equation (5.5) in terms of the initial geometric values A, B, L, the axial
load acting on the cylinder and the elastic parameters entering in the theory of
linear elasticity.

We first consider the geometric parameters. We wish to express the critical
load as a function of the initial stubbiness nZB/L and tube relative thickness
rZB/A. Recalling that eZpb/l and lZl/L, bZlK1/2B, we have

e2l3 Zp2n2: ð6:1Þ

To express e as a function of n, we expand e in powers of n to order 6, and solve
(6.1) to obtain

e2 Zp2n2K3p4lð2Þn
4Kð3p6lð4ÞK15p6l2ð2ÞÞn6COðn8Þ; ð6:2Þ

where l(2) and l(4) are defined in (5.6) and (5.7) and come from the expansion of l
in powers of e.
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Second, we want to relate the axial compression to the actual axial load N. To
do so, we integrate the axial stress over the faces of the tubes, i.e.

N ZK2p

ðb
a
rs3 dr: ð6:3Þ

Since s3 is constant and given by (2.5), we have

N ZKpðb2Ka2Þs3 ZK
p

l
ðB2KA2Þs3

ZK
p

l3
ðB2KA2Þ½ðl4KlÞC1Cðl3K1ÞC2�: ð6:4Þ

Third, we relate the elastic Mooney parameters C1 and C2 to the classical
elastic parameters. Here, we follow Hamilton et al. (2004; Destrade &
Saccomandi 2005) and write the strain-energy density to third order for an
incompressible elastic material as

W ZK2mi2Cn3i3; ð6:5Þ
where m is the usual shear modulus, or second Lamé parameter, and n3 is a third-
order elasticity constant; m is related to Young’s modulus by EZ3m; also, in
Murnaghan’s notation, n3Zn and in Landau’s notation, n3ZA (see Norris (1998)
for other notations). In (6.5), i1, i2, i3 are the first three principal invariants of the
Green–Lagrange strain tensor, related to the first three principal invariants I1, I2,
I3 of the Cauchy–Green strain tensor by

I1 Z 2i1 C3; I2 Z 4i1C4i2C3; I3 Z 2i1 C4i2 C8i3 C1: ð6:6Þ

Since I3Z1, we can solve this linear system for i2 and i3 and write the strain-
energy density (6.5) as a function of I1 and I2, i.e.

W Z mC
n3

8

� �
I1K

m

2
K

n3

8

� �
I2; ð6:7Þ

which by comparison with (5.1) leads to

C1 Z 2mCn3=4; C2 ZmK n3=4: ð6:8Þ
To write the nonlinear buckling formula, we consider (6.4) and first expand l

in e using (5.5), then expand e in n using (6.2) and, finally, substitute the values
of the moduli in terms of the elastic parameters, which yield

N Z
3

4

p3B2mðr4K1Þn2
r4

K
1

96

p5B2ðr2K1Þð20r4mC9r4n3 C176r2mC18r2n3 C20mC9n3Þn4
r6

C
B2p7n6

512r8mðr2C1Þ 323m2r8K3n2
3K240r2mn3K9r2n2

3K9r10m2 C9m2
	

C3r10n2
3C1464 lnðrÞr6m2 C1464 lnðrÞr4m2C240r8mn3

C240r6mn3K180r6m2 C180r4m2 C9r8n2
3

C6r6n2
3K6r4n2

3K323r2m2K240r4mn3



COðn8Þ: ð6:9Þ
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While it is not surprising, it is comforting to recover to order n2 the classical
Euler buckling formula (1.1) (using rZB/A, nZB/L and mZE/3).
7. Dimensional transition

Finally, we use the buckling formula to compute the transition between modes as
parameters are varied. That is, to identify both the geometric values and the
axial strain for which there is a transition between buckling and barrelling
modes. Here we restrict again our attention to the neo-Hookean case (with C1Z1).
Fromfigures 2 and 3, it appears clearly that for e small enough there is a transition
(depending on the value of r) from either mode nZ1 to mode nZ0 (large r), or
from mode nZ1 to mode nZ2 (r close to 1) as e increases. We refer to this
transition as a dimensional transition, in the sense that the material mostly
behaves as a slender one-dimensional structure when it buckles according to
mode nZ0 and mostly as a two-dimensional structure when it barrels with mode
nZ2. Indeed both modes of instability can be captured by, respectively, a one- or
a two-dimensional theory. For r close to unity, the transition nZ0/nZ1 occurs
for small values of e. Therefore, in this regime, we can use the approximation
(5.5) for the barrelling curve and substitute it in the bifurcation condition of
mode nZ2. Expanding again this bifurcation condition in e as well as r, one
identifies the values rt of r and lt of l at which the transition occurs, as

rt Z 1C
3

4
e2K

53

32
e4C

2393

384
e6COðe8Þ;

lt Z 1K
1

4
e2C

13

8
e4K

665

96
e6COðe8Þ:

9>=
>; ð7:1Þ

In terms of the initial stubbiness nZB/L, we have

rt Z 1C
3

4
p2n2K

17

32
p4n4C

161

384
p6n6COðn8Þ: ð7:2Þ

This relationship also provides a domain of validity for the Euler buckling formula.
For sufficiently slender tube (n small), the buckling mode disappears when rOrt at
the expense of the nZ2 barrelling mode. For stubbier and fuller tubes, this
approximation cannot be used. To understand the dimensional transition, we solve
numerically the bifurcation condition, using the adjugate method, for the
intersection of two different modes. That is, for a given value of r�, we find the
value of e� such that both the bifurcations for either modes nZ1 and 2, or modes
nZ1 and 0 are satisfied. If the corresponding value l� is the largest value for which
a bifurcation takes place, the pair (e�, r�) is a transition point. The corresponding

transition point in terms of the initial parameters is n�Zðe�=pÞðl�Þ3=2; r�. In
figure 5, we show a diagram of all such pairs for both transitions.
8. Conclusion

This article establishes a reliable and effective method to study the stability of
tubes based on the exact solution of the incremental equations proposed by
Wilkes (1955) within the Stroh formalism. It then puts the method to use, to
Proc. R. Soc. A (2008)
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obtain the first geometric and material corrections to the Euler buckling. The
method can be also used to obtain the transition between buckling and barrelling
modes when a tube becomes unstable.

The method presented here can be easily generalized to different materials and
different boundary conditions. For instance, using the exact solution of the
incremental equations proposed in Dorfmann & Haughton (2006) for compres-
sible materials and the adjugate method, an explicit form of the bifurcation
condition in terms of Bessel functions can be obtained by following the steps
presented here and various asymptotic behaviours can be obtained. Similarly, a
variety of boundary-value problems can be analysed by the adjugate method,
such as the stability problem of a tube under pressure and tension (Han
2007; Zhu et al. 2008), the problem of a tube embedded in an infinite domain
(Bigoni & Gei 2001) and the problem of a tube with coating (Ogden et al. 1997).
In all these cases, useful asymptotic formulae for the buckling behaviour could be
obtained by perturbation expansions.

It is also enticing to consider the possibility of performing an analytical
post-buckling analysis of the solutions. Since the solutions of the linearized
problem can be solved exactly, a weakly nonlinear analysis of the solution
should be possible to third order. This would yield, in principle, an equation
for the amplitude of the unstable modes containing much information not
Proc. R. Soc. A (2008)
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only about the actual amplitude of the unstable modes but also on the
localization of unstable modes after bifurcation. We leave this daunting task for
another day.

This study is based in part upon work supported by the National Science Foundation under grant
no. DMS-0604704 (A.G.) and made possible by a CNRS/USA Collaborative Grant from the
French Centre National de la Recherche Scientifique (M.D.).
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