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Abstract. We study the propagation of small amplitude waves superimposed on a large static
deformation in a nonlinear viscoelastic material of differential type. We use bulk waves and
surface waves to address the questions of dissipation and of material and geometric stability.
In particular, the analysis provides bounds on the constitutive parameters and on the pre-
deformation that ensure linearized stability in the neighbourhood of a large pre-stretch. This
type of result is relevant to the imaging of biological soft tissues using acoustical techniques,
where pre-deformation is known to increase contrast and reduce de-correlation noise.
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1. Introduction

In many important technological applications, polymeric materials — such as the
elastomers used in engine mounts or bridge bearings — are subject to large defor-
mations, and infinitesimal theories are not suitable for modelling their mechanical
response. This is true also for complex biomaterials ‘in service’ such as ligaments,
tendons, skin, arteries, and other biological soft tissues that have several mechan-
ical features in common with elastomeric polymers.

An adequate modelling of rubber-like materials and of biological soft tissues
subject to large deformations requires the use of the theories of nonlinear elasticity
and nonlinear viscoelasticity. Whereas the theory of nonlinear elasticity is a well-
developed chapter of solid mechanics, the theory of nonlinear viscoelasticity is still
in its infancy. Relatively few studies have been carried out beyond establishing
basic constitutive characterizations and their general thermodynamical implica-
tions. In particular, there is a paucity of complete studies of the propagation
of mechanical waves. Beyond the literature dedicated to acceleration waves and
universal motions, we find few papers dedicated to finite amplitude waves and to
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small amplitude waves superimposed on finite deformations in viscoelastic solids
(of course, the situation is different for waves in viscoelastic fluids).

Antman and Seidman [1] provided a detailed mathematical study of large shear-
ing motions of nonlinearly viscoelastic slabs (see also Rajagopal and Saccomandi
[27] for some exact solutions in a similar framework). Recently, Hayes and Sacco-
mandi [21, 22, 23] and Destrade and Saccomandi [8, 9, 10] obtained some results
for finite amplitude motions and waves in some classes of nonlinear viscoelastic
materials. Earlier, Hayes and Rivlin [16, 17, 18, 19, 20] had established some gen-
eral results for the theory of small motions superposed on a large deformation in
nonlinear viscoelastic solids (see also a recent note by Saccomandi [28] concerning
such waves in a special class of materials).

The situation is, of course, completely different in the linear theory of viscoelas-
ticity where the study of bulk and surface waves is a well-developed subject with
a wealth of results obtained over the years. However, this linear framework does
not meet the needs of the actual technological advances in non-invasive techniques
of investigation and medical imaging. These techniques, based on ultrasound [30],
are bringing wave motion to the forefront of imaging and therapy in many areas of
medicine. At the same time, the apparatus used must now rely on nonlinear con-
stitutive assumptions in order to account for the pre-loading and large stretches
found in living soft tissues; see the recent review by Hoskins [24]. In particular,
we emphasize that pre-loads and pre-deformations are fundamental for reducing
the dynamic range of object stiffness. Indeed, compression of soft tissues before
imaging increases contrast and reduces de-correlation noise [12, 14].

Here we study the propagation of small amplitude waves in certain isotropic
and incompressible nonlinearly viscoelastic solids, with a view to investigating their
stability when subject to large deformations. The solids under consideration are
characterized by a Cauchy stress tensor T depending only on the Cauchy–Green
deformation tensor B and on the symmetric part D of the velocity gradient. This
class of materials is usually referred to as simple materials of differential type
of grade 1 ; see Truesdell and Noll [31]. This is a basic class of models in non-
linear viscoelasticity; it accounts for classical effects like creep and recovery, as
in Kelvin-Voigt linear viscoelasticity, but cannot describe stress relaxation. This
class contains the so-called Mooney–Rivlin viscoelastic material [2] and the incom-
pressible version of the model proposed by Landau and Lifschitz in their book on
the theory of elasticity [25].

In Section 2 we summarize the basic governing equations and constitutive as-
sumptions for these materials. We devote Section 3 to deriving the general form
of the incremental equations of motion in a deformed viscoelastic solid. Then we
specialize the analysis to two-dimensional motions and find conditions for time-
averaged dissipation in time-periodic homogeneous motions. In Section 4 we study
bulk wave propagation and material stability; we find that the combination of
time-averaged dissipation and strong ellipticity of the static deformation results in
material stability. In Section 5 we consider surfaces waves and geometric stability;
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we find some explicit results when we specialize the analysis to a Mooney–Rivlin
solid with Newtonian viscosity.

2. Basic equations

2.1. Kinematics

Consider a continuous body whose stress-free reference configuration is denoted
Br and in which material points are labelled in terms of their position vectors
X. In the current (deformed) configuration at time t, denoted B, X occupies the
position x, and the motion from Br to B is described by the bijection mapping χ
such that

x = χ(X, t). (1)

The deformation gradient associated with the motion, denoted F , is defined as

F = Gradx, (2)

where Grad is the gradient operator in Br, and the velocity v of a material particle
is defined as

v =
∂x

∂t
≡ ∂χ

∂t
(X, t). (3)

It follows that ∂F /∂t = LF , where

L = gradv, (4)

with v regarded as a function of x and t, is the velocity gradient. Its symmetric
part is the strain-rate tensor D, given by

D = 1
2 (L + LT ), (5)

where the superscript T denotes the transpose. Finally, the left and right Cauchy–
Green deformation tensors are defined by

B = FF T , C = F T F , (6)

respectively, and we note that

∂C/∂t = 2F T DF . (7)

For an incompressible material only isochoric motions are permitted, in which
case the constraints

det F = 1, trL = trD = 0, (8)

are enforced at all times. The latter condition is equivalent to

divv = 0, (9)

where div is the divergence operator in B.
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For an incompressible material we now define eight independent invariants of
the two tensors B and D by

I1 = trB, I2 = tr(B−1), I5 = tr(DB), I6 = tr(DB2),
I7 = tr(D2), I8 = tr(D2B), I9 = tr(D2B2), I10 = tr(D3), (10)

noting that the invariants I3 = det B = 1 and I4 = trD = 0 have been omitted
from the list by virtue of (6) and (8).

2.2. Constitutive law and equation of motion

For an incompressible isotropic material with Cauchy stress tensor T depending
on B and D only, the general representation for the constitutive law is [15, Chap.
11]

T = −pI + α1B + α2B
2 + α3D

+ α4(DB + BD) + α5(DB2 + B2D) + α6D
2

+ α7(D2B + BD2) + α8(D2B2 + B2D2), (11)

where I is the identity tensor, p is the Lagrange multiplier associated with the
incompressibility constraint, and αi, i ∈ {1, 2, . . . 8}, are material functions that
depend on the eight invariants (10):

αi = αi(I1, I2, I5, I6, I7, I8, I9, I10). (12)

The equation of motion in the absence of body forces is

div T = ρ∂2x/∂t2, (13)

where ρ is the mass density of the material. Equivalently, it can be written as

Div S = ρ∂2x/∂t2, (14)

where Div is the divergence operator in Br, and S is the nominal stress tensor,
defined here as

S = F−1T . (15)

2.3. Equilibrium

Suppose now that the material is in equilibrium in a deformed configuration B̄ so
that v = 0, D = 0. Let all quantities associated with B̄ be denoted by an overbar.
Then the deformation is written

x̄ = χ̄(X), (16)

the associated deformation gradient is F̄ , and the corresponding left Cauchy–
Green tensor is denoted B̄. The Cauchy stress is

T̄ = −p̄I + ᾱ1B̄ + ᾱ2B̄
2
, (17)
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where
ᾱi = αi(Ī1, Ī2, 0, . . . , 0), (18)

and Ī1, Ī2 are the first two principal invariants of B̄. Finally, the equilibrium
equation may be written in either of the equivalent forms

div T̄ = 0, DivS̄ = 0, (19)

where S̄ = F̄
−1

T̄ .

3. Small motion superimposed on a static finite strain

3.1. Incremental kinematics

We now superimpose a small amplitude motion on the finite static deformation in
the configuration B̄. Let ẋ(X, t) denote this incremental motion. We then change
variables from (X, t) to (x̄, t) and introduce the mechanical displacement vector
u(x, t) defined by

ẋ(X, t) = u(χ̄(X), t), (20)

there being no need to distinguish between x and x̄ in this linearization. The
corresponding increment in the deformation gradient is

Ḟ = Grad ẋ = HF̄ , (21)

where H = gradu is the displacement gradient.
Because the basic deformation is static, we have v = ∂(x̄ + ẋ)/∂t = ∂u/∂t,

and hence
∂Ḟ /∂t = Gradv = LF̄ , (22)

where L = gradv is the velocity gradient defined in (4), and we have

L = ∂H/∂t. (23)

We compute the (linearized) increments in the relevant kinematical quantities
as

Ḃ = HB̄ + B̄HT ,
˙

(B2) = HB̄
2 + B̄HB̄ + B̄HT B̄ + B̄

2
HT ,

İ1 = 2 tr (HB̄), İ2 = −2 tr (HB̄
−1),

İ5 = tr (DB̄), İ6 = tr (DB̄
2). (24)

Note that the increments in the invariants I7, . . . , I10 are zero at first order. In
fact, because D = (L + LT )/2 is infinitesimal by (23), we have

I7 = I8 = I9 = I10 = 0 (25)

at first order. It follows that the material parameters αi in the constitutive equa-
tion (11) need from now on be considered as functions of four invariants only,
namely (I1, I2, I5, I6). Thus,

αi = αi(I1, I2, I5, I6), i ∈ {1, . . . , 8}. (26)
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3.2. Incremental stress and incremental equations of motion

Now we increment the constitutive law (11), retaining only the first-order terms.
We find, using (24) and the increment of (26), that

Ṫ =− ṗI + ᾱ1(HB̄ + B̄HT ) + ᾱ2(HB̄
2 + B̄HB̄ + B̄HT B̄ + B̄

2
HT )

+ ᾱ3D + ᾱ4(DB̄ + B̄D) + ᾱ5(DB̄
2 + B̄

2
D)

+ [2ᾱ11tr(HB̄)− 2ᾱ12tr(HB̄
−1) + ᾱ15tr(DB̄) + ᾱ16tr(DB̄

2)]B̄

+ [2ᾱ21tr(HB̄)− 2ᾱ22tr(HB̄
−1) + ᾱ25tr(DB̄) + ᾱ26tr(DB̄

2)]B̄2
, (27)

where ᾱi and ᾱij are the values of αi and ∂αi/∂Ij , respectively, evaluated for
B = B̄, D = 0.

Incrementing the connection (15) between Cauchy stress and nominal stress,
and using (21), we obtain the increment in the nominal stress as

Ṡ = F̄
−1(Ṫ −HT̄ ). (28)

It follows that the increment in the equation of motion (14), which is

DivṠ = ρ∂2ẋ/∂t2, (29)

can equivalently be written as

div(Ṫ −HT̄ ) = ρ∂2u/∂t2, (30)

with x and t as the independent variables. This is coupled with the incremental
incompressibility condition

divu = 0. (31)

We recall that the underlying deformation is homogeneous so that B̄ is con-
stant, and hence ᾱi and ᾱij are constants, as is T̄ . It follows that

div(HT̄ ) = T̄ (divH) = T̄ grad(divu) = 0, (32)

and the equation of motion (30) reduces to

div Ṫ = ρ∂2u/∂t2. (33)

Upon substitution of (27) into (33), we arrive at

− grad ṗ + div[ᾱ1B̄HT + ᾱ2(B̄HB̄ + B̄HT B̄ + B̄
2
HT )]

+ div[ᾱ3D + ᾱ4(DB̄ + B̄D) + ᾱ5(DB̄
2 + B̄

2
D)]

+ B̄grad[2ᾱ11tr(HB̄)− 2ᾱ12tr(HB̄
−1) + ᾱ15tr(DB̄) + ᾱ16tr(DB̄

2)]

+ B̄
2grad[2ᾱ21tr(HB̄)− 2ᾱ22tr(HB̄

−1) + ᾱ25tr(DB̄) + ᾱ26tr(DB̄
2)]

= ρ∂2u/∂t2, (34)

where we have used the incremental incompressibility condition (31).
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3.3. Two-dimensional waves

Let λ2
1, λ

2
2, λ

2
3 be the eigenvalues of B̄ and denote by x1, x2, x3 the coordinates

associated with Cartesian axes along the corresponding eigenvectors. These are
the principal axes of pre-strain, and for isotropic materials, as considered here,
they are aligned with the principal axes of the pre-stress.

In the remainder of the paper we focus on two-dimensional waves, whose spatial
variations depend on two principal space variables only, x1 and x2 say. Hence

u = u(x1, x2, t), ṗ = ṗ(x1, x2, t), (35)

and the incremental incompressibility constraints (31) and (9) reduce to

u1,1 + u2,2 = 0, v1,1 + v2,2 = 0, (36)

respectively, where the comma denotes partial differentiation. The components of
Ṫ in the (x1, x2) plane are

Ṫ11 =− ṗ + 2(ᾱ1 + 2λ2
1ᾱ2)λ2

1u1,1 + (ᾱ3 + 2λ2
1ᾱ4 + 2λ4

1ᾱ5)v1,1

+ 2λ2
1(ᾱ11 + λ2

1ᾱ21)(λ2
1u1,1 + λ2

2u2,2)
− 2λ2

1(ᾱ12 + λ2
1ᾱ22)(λ−2

1 u1,1 + λ−2
2 u2,2)

+ λ2
1(ᾱ15 + λ2

1ᾱ25)(λ2
1v1,1 + λ2

2v2,2)
+ λ2

1(ᾱ16 + λ2
1ᾱ26)(λ4

1v1,1 + λ4
2v2,2),

Ṫ22 =− ṗ + 2(ᾱ1 + 2λ2
2ᾱ2)λ2

2u2,2 + (ᾱ3 + 2λ2
2ᾱ4 + 2λ4

2ᾱ5)v2,2

+ 2λ2
2(ᾱ11 + λ2

2ᾱ21)(λ2
1u1,1 + λ2

2u2,2)
− 2λ2

2(ᾱ12 + λ2
2ᾱ22)(λ−2

1 u1,1 + λ−2
2 u2,2)

+ λ2
2(ᾱ15 + λ2

2ᾱ25)(λ2
1v1,1 + λ2

2v2,2)
+ λ2

2(ᾱ16 + λ2
2ᾱ26)(λ4

1v1,1 + λ4
2v2,2),

Ṫ12 = [ᾱ1 + (λ2
1 + λ2

2)ᾱ2]λ2
2u1,2 + [ᾱ1 + (λ2

1 + λ2
2)ᾱ2]λ2

1u2,1

+ 1
2 [ᾱ3 + (λ2

1 + λ2
2)ᾱ4 + (λ4

1 + λ4
2)ᾱ5](v1,2 + v2,1), (37)

and they do not involve u3.
The incremental equations of motion (33) reduce to

Ṫ11,1 + Ṫ12,2 = ρu1,tt, Ṫ12,1 + Ṫ22,2 = ρu2,tt. (38)

It is easy to check that these equations decouple from the third equation of motion
Ṫ13,1 + Ṫ23,2 = ρu3,tt, which involves u3 only. We therefore take u3 = 0 so that
this is satisfied and need not be considered further. A simple manipulation of (38)
then leads to

(Ṫ11 − Ṫ22),12 + Ṫ12,22 − Ṫ12,11 = ρ(u1,2tt − u2,1tt), (39)

which eliminates ṗ.
It is now convenient to introduce the material parameters α, γ, β, δ, ε, defined
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by

α = [ᾱ1 + ᾱ2(λ2
1 + λ2

2)]λ
2
1,

γ = [ᾱ1 + ᾱ2(λ2
1 + λ2

2)]λ
2
2,

2β = ᾱ1(λ2
1 + λ2

2) + ᾱ2(3λ4
1 + 3λ4

2 − 2λ2
1λ

2
2)

+ 2ᾱ11(λ2
1 − λ2

2)
2 + 2ᾱ12λ

−2
1 λ−2

2 (λ2
1 − λ2

2)
2

+ 2ᾱ21(λ2
1 − λ2

2)
2(λ2

1 + λ2
2) + 2ᾱ22λ

−2
1 λ−2

2 (λ2
1 − λ2

2)
2(λ2

1 + λ2
2),

2δ = ᾱ3 + ᾱ4(λ2
1 + λ2

2) + ᾱ5(λ4
1 + λ4

2),
ε = [ᾱ15 + (ᾱ16 + ᾱ25)(λ2

1 + λ2
2) + ᾱ26(λ2

1 + λ2
2)

2](λ2
1 − λ2

2)
2. (40)

Then, on use of u2,2 = −u1,1 and v2,2 = −v1,1, we obtain

Ṫ11 − Ṫ22 = (α + γ + 2β)u1,1 + (ε + 4δ)v1,1, (41)
Ṫ12 = αu2,1 + γu1,2 + δ(v1,2 + v2,1). (42)

The incremental incompressibility constraint suggests the introduction of a
scalar potential function ψ = ψ(x1, x2, t) such that

u1 = ψ,2, u2 = −ψ,1, v1 = ψ,2t, v2 = −ψ,1t, (43)

use of which enables the equation of motion (39) to be cast as an equation for ψ,
namely

αψ,1111 + 2βψ,1122 + γψ,2222

+ δ(ψ,1111t + 2ψ,1122t + ψ,2222t) + εψ,1122t = ρ(ψ,11tt + ψ,22tt). (44)

This is the equation that governs the two-dimensional incremental motions.

3.4. Dissipation

For a continuum, the work done by external forces is converted into kinetic energy,
stored energy, and dissipated energy. The combination of the latter two is mea-
sured by the rate of working of the stresses, which, per unit volume, is tr(SḞ ).
For the incremental motion this can be written tr[(S̄+Ṡ)Ḟ ]. The first term in this
sum can be considered as the stored elastic energy associated with the underlying
static deformation, whilst the second term tr(ṠḞ ) is a measure of the dissipation
associated with the motion (which may include some additional stored energy).

From (28), (22), the symmetry of Ṫ , and the definition (5), we obtain

tr(ṠḞ ) = tr(ṪD)− tr(HT̄L). (45)

For the two-dimensional incremental motions, the two terms on the right-hand
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side of (45) may be computed, respectively, as

tr(ṪD) = Ṫ11D11 + Ṫ22D22 + 2Ṫ12D12

= (Ṫ11 − Ṫ22)v1,1 + Ṫ12(v1,2 + v2,1)
= (α + γ + 2β)u1,1v1,1 + (ε + 4δ)v2

1,1

+ (αu2,1 + γu1,2)(v1,2 + v2,1) + δ(v1,2 + v2,1)2 (46)

and

tr(HT̄L) = T̄11(u1,1v1,1 + u2,1v1,2) + T̄22(u1,2v2,1 + u2,2v2,2)
+ T̄12(u1,2v1,1 + u2,2v1,2 + u1,1v2,1 + u2,1v2,2). (47)

In the case of time-periodic homogeneous motions, we use angle brackets to
denote the time average over a period; here we find that

〈
tr(ṪD)

〉
= (ε + 4δ)

〈
v2
1,1

〉
+ δ

〈
(v1,2 + v2,1)2

〉
, (48)

and that the other terms vanish, as we now show.
First we have

u1,1v1,1 = ψ,12ψ,12t = 1
2

(
ψ2

,12

)
,t

, (49)

whose time average clearly vanishes by periodicity. Next we have

(αu2,1 + γu1,2)(v1,2 + v2,1) = 1
2α

(
ψ2

,11

)
,t

+ 1
2γ

(
ψ2

,22

)
,t
− αψ,11ψ,22t − γψ,22ψ,11t.

(50)
Here the time averages of the first two terms vanish by periodicity. To compute the
time averages of the last two terms, we write ψ explicitly. For (two-dimensional)
time-harmonic motions, we may write it in the general form

ψ = Ceiω(s n·x−t) + Ce−iω(s n·x−t), (51)

where C is a complex constant, ω is the real frequency, s is the complex slowness,
n = (n1, n2, 0) is a real unit vector in the propagation direction, and the overbar
denotes the complex conjugate. Introducing the function ϕ defined by

ϕ = −ω2
[
Cs2eiω(s n·x−t) + Cs2e−iω(s n·x−t)

]
, (52)

we obtain the expressions

ψ,11ψ,22t = ψ,22ψ,11t = 1
2n2

1n
2
2

(
ϕ2

)
,t

, (53)

which have a zero time average by periodicity. Similar calculations show that the
time average of tr(HT̄L) vanishes.

Turning back to the time average of (48), we find, using the function ϕ, that
it can be written as 〈

tr(ṪD)
〉

= (ε n2
1n

2
2 + δ)

〈
(ϕ,t)2

〉
, (54)
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making it clear that the deformed viscoelastic solid is dissipative under (plane)
incremental motions when ε n2

1n
2
2 + δ > 0 for all n1, n2 such that n2

1 + n2
2 = 1.

This is ensured when
δ ≥ 0, ε + 4δ ≥ 0, (55)

with at least one of these inequalities being strict. For the remainder of the paper,
we assume that these inequalities hold.

Having established the conditions for time-averaged dissipation of time-periodic
homogeneous motions, we now investigate stability issues for a deformed viscoelas-
tic solid occupying, first, the whole space and, second, a semi-infinite space.

4. Material stability

First we look at the situation where the perturbation has no time dependence,
that is when ∂/∂t = 0. For all intents and purposes, the viscous effects are
not felt then, and the solid behaves as a purely elastic solid. The corresponding
incremental equation of elastostatics is the specialization of (44) to

αψ,1111 + 2βψ,1122 + γψ,2222 = 0. (56)

It is known [11] that this equation is strongly elliptic when

α > 0, γ > 0, β +
√

αγ > 0, (57)

and we assume henceforth that these inequalities hold. This guarantees material
stability in the strong ellipticity sense with respect to incremental static deforma-
tions.

Next we study bulk homogeneous plane waves because they provide a natural
tool for addressing the question of the material (bulk) stability of the deformed
viscoelastic solid. We therefore seek solutions of the form

ψ = ψ0eiω(s n·x−t), (58)

where ψ0 is a constant, ω = ω+ +iω− is the complex frequency, s = s+ +is− is the
complex scalar slowness, and n is a real two-dimensional unit vector in the direction
of propagation. Note that this motion is not necessarily time-periodic because ω−

may be different from zero. Combining this motion with the expressions in (43),
we see that the displacement, velocity and stress fields have the same exponential
dependence as ψ. The argument of the exponential may be decomposed as

iω(sn · x− t) = − [
(ω+s− + ω−s+)n · x− ω−t

]

+ i
[
(ω+s+ − ω−s−)n · x− ω+t

]
.

The first bracketed term gives the amplitude variations of the fields, and the second
one their phase.

Material stability is ensured when there is no amplitude growth for a given
phase [5]. In other words, when (ω+s− + ω−s+)n · x − ω−t ≥ 0 with (ω+s+ −
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ω−s−)n · x− ω+t = 0. This gives

ω+s− + ω−s+

ω+s+ − ω−s−
ω+ − ω− ≥ 0, (59)

or equivalently, after removing the positive factor [(ω+)2 + (ω−)2], and taking the
inverse,

s+

s−
ω+ − ω− ≥ 0. (60)

We now examine the implications of this inequality for a deformed viscoelastic
solid.

Substitute the expression (58) for ψ into the equation of motion (39), and
separate the real and imaginary parts to obtain

αn4
1 + 2βn2

1n
2
2 + γn4

2 + ω−(δ + εn2
1n

2
2) = ρ[(v+)2 − (v−)2],

ω+(δ + εn2
1n

2
2) = −2ρv+v−, (61)

where v± are real quantities defined by v+ + iv− = (s+ + is−)−1, that is

v+ =
s+

(s+)2 + (s−)2
, v− = − s−

(s+)2 + (s−)2
. (62)

From equation (61)2 we find

v−

v+
= −ω+(δ + εn2

1n
2
2)

2ρ(v+)2
. (63)

Then, dividing equation (61)1 through by (v+)2, and using this latter identity, we
find an expression for ω−. We can also use the identity above to find s+/s− =
−v+/v−. We end up with

ω− =
ρ(v+)2 − αn4

1 − 2βn2
1n

2
2 − γn4

2

δ + εn2
1n

2
2

− 1
4
ρ(v+)2(ω+)2(δ + εn2

1n
2
2),

ω+ s+

s−
= 2

ρ(v+)2

δ + εn2
1n

2
2

. (64)

Hence the stability condition (60) reads

4
ρ(v+)2 + αn4

1 + 2βn2
1n

2
2 + γn4

2

δ + εn2
1n

2
2

+ ρ(v+)2(ω+)2(δ + εn2
1n

2
2) ≥ 0. (65)

This condition is clearly satisfied when both (55) and (57) hold. In other words,
time-averaged dissipation with respect to time-periodic motions, coupled to strong
ellipticity with respect to static deformations, results in material stability.

Before we go on to investigate geometric stability, we pause to consider a classic
sub-case of the general bulk wave (58), namely the damped travelling wave solution.
It is of the form

ψ = ψ0e−at cos k(n · x− ct), (66)
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where a is the damping factor, k is the wavenumber, and c is the speed. It is an
important subclass of (58), obtained by taking

ω+s− + ω−s+ = 0, (67)

so that there is no spatial attenuation of the amplitude. Then (58) specializes to
(66) by making the identifications

a = −ω−, k = −a/v−, c = v+. (68)

Also, (67) gives ω+ = (s+/s−)a = −(v+/v−)a, so that the dispersion equations
(61) reduce to

ρc2 = αn4
1 + 2βn2

1n
2
2 + γn4

2 − (δ + εn2
1n

2
2)

2k2/(4ρ),

2ρa = (δ + εn2
1n

2
2)k

2. (69)

If damped travelling waves (66) can be generated in a viscoelastic solid, then
these equations provide a means to determine the constitutive parameters by varia-
tion of the propagation direction and of the underlying deformation. In particular,
if the response of the solid shows a dependence of the damping factor a on the
direction of propagation, then the constitutive model must be such that ε 6= 0,
according to (69)2. By (40)5, this means that the constitutive parameters α1 and
α2 cannot both be completely independent of the invariants I5 and I6. Therefore,
only certain (quite complex) constitutive models can display an influence of the
propagation direction on the damping factor. If the model is such that ε > 0,
then the directions of maximal dissipation are along the bisectors of the principal
directions, and those of minimal damping are aligned with the principal axes (and
vice-versa if the model is such that ε < 0).

Conversely, if the response of the solid shows that the damping factor a is
independent of the direction of propagation for damped travelling waves, then the
constitutive parameters α1 and α2 can both be completely independent of the
invariants I5 and I6.

5. Geometric stability

To study surface stability, we consider inhomogeneous motions in the half-space
x2 > 0 with boundary x2 = 0 in the (x1, x2)-plane, the deformation corresponding
to pure homogeneous strain with the principal axes of strain coincident with the
Cartesian axes. On the surface x2 = 0 we assume that the incremental surface
tractions vanish, i.e.

(Ṫ −HT̄ )21 = (Ṫ −HT̄ )22 = 0. (70)

The shear traction condition leads, after some manipulation, to a condition in-
volving ψ, namely

γ(ψ,22 − ψ,11) + σ2ψ,11 + δ(ψ,22t − ψ,11t) = 0 (71)
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on x2 = 0, where σ2 is the (uniform) principal stress normal to the boundary in
basic state of deformation, i.e. σ2 ≡ T̄22.

In order to express the normal component of the incremental traction on the
boundary in terms of ψ it is first necessary to differentiate the latter equation in
(70) along the boundary, i.e. with respect to x1, and then make use of the first
component of the equation of motion to eliminate ∂ṗ/∂x1 (assuming this holds on
the boundary). After further manipulations this leads to

(2β + γ − σ2)ψ,112 + γψ,222 + (ε + 3δ)ψ,112t + δψ,222t − ρψ,2tt = 0 (72)

on x2 = 0. When the viscous terms are absent (δ = ε = 0) the boundary conditions
are then precisely those given by Dowaikh and Ogden [11] for the purely elastic
case.

We now consider waves of the inhomogeneous form

ψ = ψ0ei(kx1−ωt)e−ksx2 , (73)

where k, ω and s may be complex. However, we impose the following propagation
inequalities

Re(k) ≥ 0, Im(k) ≥ 0, Re(ω) ≥ 0, (74)

so that the wave propagates in the positive x1 direction at the interface x2 = 0
and attenuates (if at all) in the positive x1 direction. Additionally, we set

Re(ks) > 0, (75)

so that the wave decays away from the boundary x2 = 0 (the localization condi-
tion). Finally, we pay special attention to the sign of Im(ω); clearly, if

Im(ω) < 0, (76)

then the wave is damped (decays in time); if Im(ω) > 0 it blows up in time,
indicating the onset on instability, at least in the linearized theory. We refer to
(76) as the stability condition. If Im(ω) = 0 there is neither growth nor decay in
time.

On substitution of (73) into equation (44) we obtain a bi-quadratic for s, which
can be written compactly in the form

γ̂s4 − (2β̂ − Ω̂)s2 + α̂− Ω̂ = 0, (77)

where we have introduced the notations

α̂ = α− iωδ, 2β̂ = 2β − 2iωδ − iωε, γ̂ = γ − iωδ, Ω̂ = ρω2/k2. (78)

The general solution of the equation of motion may be written in the form

ψ = ei(kx1−ωt)(Ae−ks1x2 + Be−ks2x2), (79)

where A and B are constants and s1 and s2 are the solutions of (77) that satisfy
(74), (75), and (76). Substitution of (79) into the boundary conditions (71) and
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(72) then gives the two equations

[γ̂(s2
1 + 1)− σ2]A + [γ̂(s2

2 + 1)− σ2]B = 0,

[2β̂ + γ̂ − σ2 − Ω̂− γ̂s2
1]s1A + [2β̂ + γ̂ − σ2 − Ω̂− γ̂s2

2]s2B = 0, (80)

for A and B.
After removal of the factor s1 − s2 the determinant of coefficients yields the

dispersion equation, which, on use of the sum and product of the roots of (77),
reads

(γ̂ − σ2)2 − γ̂(α̂− Ω̂)− γ̂s1s2(2β̂ + 2γ̂ − 2σ2 − Ω̂) = 0. (81)

The product s1s2 has not been replaced since there are two possible solutions of
s2
1s

2
2 = (α̂ − Ω)/γ̂ and this needs careful evaluation. This dispersion equation

reduces to the elasticity result obtained by Dowaikh and Ogden [11] on setting
δ = ε = 0 and ω and k real. We remark here that if the case s1 = s2 is considered
separately and the solution (79) amended accordingly then the associated disper-
sion condition reduces to σ2 = ±2γ̂. It can be shown that this also follows from
the appropriate specialization of (81). However, since σ2 is real and, in general,
γ̂ is complex, this cannot be satisfied unless Re(ω) = 0 or δ = 0. In the purely
elastic case the corresponding special solution is σ2 = ±2γ [11].

From (78) it follows that

2β̂ − α̂− γ̂ = 2β − α− γ − iεω. (82)

Now, in the context of elasticity, materials for which 2β−α−γ = 0 form a special
class and lead to simplifications in the analysis. Similar simplifications occur here
if we focus on viscoelastic solids for which

2β = α + γ, ε = 0, (83)

and we assume henceforth that the material model is specialized in accordance
with (83). Then, (77) factorizes to give

(s2 − 1)[γ̂s2 − (α̂− Ω̂)] = 0. (84)

One root consistent with the restrictions (74), (75) is s = 1 and we refer to this as
s1.

There are two possibilities for the second root,

s2 = ±
√

α̂− Ω̂
γ̂

. (85)

A test must be conducted by computing ks2 for each possibility and checking
whether the localization requirement (75) is satisfied. Here the square root symbol
designates the complex number with square equal to (α̂ − Ω̂)/γ̂ and positive real
part. In any case, the dispersion equation (81) can be re-cast as a cubic in s2,
namely

s3
2 + s2

2 + (3− 2σ̂2)s2 − (1− σ̂2)2 = 0, (86)
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where σ̂2 = σ2/γ̂. Note that this cubic is not obtained by a squaring process, in
contrast to the cubic obtained by Currie et al. [6]. It does not contain spurious
roots a priori and it is therefore legitimate to check the validity of each of its three
roots against conditions (74), (75), and (76) once k (or ω) has been deduced from
(85) for a given ω (or k).

However, the behaviour of the roots is highly dependent on the material param-
eters and on the pre-stress and pre-strain, and little can be concluded in general.
In order to make progress and provide an illustrative example, we first special-
ize the analysis further to a Mooney–Rivlin solid with Newtonian viscosity, with
constitutive equation

T = −pI + (C1 + C2I1)B − C2B
2 + νD, (87)

where C1, C2, and ν are positive constants. Then the parameters α, γ, β, δ, ε of
(40) reduce to

α = (C1 + C2λ
2
3)λ

2
1, γ = (C1 + C2λ

2
3)λ

2
2, 2β = (C1 + C2λ

2
3)(λ

2
1 + λ2

2),
δ = 0, ε = 0, (88)

making it clear that this solid belongs to the class (83). The quantity µ ≡ C1 +C2

is its static shear modulus and ν is its dynamic viscosity. Next, we specialize the
pre-deformation and pre-stress to a plane strain with no normal load,

λ1 = λ, λ2 = λ−1, λ3 = 1, σ2 = 0, (89)

where λ is the stretch ratio in the x1 direction. By taking ν = 0, this set-up allows
for direct comparison with the purely elastic Mooney–Rivlin case, for which Biot [3]
showed that the critical compressive stretch for surface instability is λcr = 0.5437.
Also, s2 is now a root of the cubic s3

2+s2
2+3s2−1 = 0, independent of the material

parameters and the pre-deformation. Explicitly, s2 is among the three solutions
of this cubic, which are

s0
2 = 0.2956, s±2 = −0.6478± 1.721 i, (90)

and the dispersion equation is deduced from (85) as

s2 = ±
√

λ2 − iων/µ− ρω2/(µk2)
λ−2 − iων/µ

. (91)

Despite the strong simplifying assumptions made here, the possibilities for
solutions to the surface stability problem remain rich and varied because of the
possible complex nature of the wave number and of the frequency.

5.1. Real frequency, complex wave number

First we take ω real (ω > 0). Then there is neither growth nor decay in time.
In other words, taking ω real is not appropriate for the study of stability. Nev-
ertheless, we may investigate the possibility of a surface wave existing, i.e. a



526 M. Destrade, R. W. Ogden and G. Saccomandi ZAMP

0

1

2

3

0.2 0.4 0.6 0.8 1
0

1

2

3

0.2 0.4 0.6 0.8 1

A,µ

ρ

k
Re E

λ

A, k
Im E

λ

ω
µ

ρ ω

Figure 1. Dimensionless slowness and damping factor for a surface wave with real frequency in
a Mooney–Rivlin viscoelastic solid subject to plane strain. The analysis shows that the
half-space becomes unstable when compressed by more than about 46% (vertical asymptote)
and this confines the validity of the curves to the right of the vertical dashed line.

solution in the form (73) satisfying all four conditions (74), (75). When we choose
s2 = s0

2 = 0.2956 as the root from (90), we find that these conditions are equivalent
to

Re
(√

µ

ρ

k

ω

)
> 0, Im

(√
µ

ρ

k

ω

)
> 0. (92)

Figure 1 shows the variations of these quantities with respect to λ for several
values of the dimensionless parameter νω/µ. In the first figure, the dashed curve
represents the (non-dimensional) slowness in the purely elastic case (ν = 0), with
a vertical asymptote at the critical stretch λcr = 0.5436 where the speed drops
to zero. The introduction of viscosity removes this singularity and a surface wave
may propagate for the whole compressive range, unless of course the half-space
becomes unstable (see below). In the second figure there is no curve at ν = 0
because the purely elastic wave is not damped [13].

When we take either s2 = s±2 as the root from (90), we find that the conditions
(74), (75) cannot be satisfied simultaneously. Hence, there is only one possibility
for a surface wave to propagate over a deformed viscoelastic Mooney–Rivlin solid,
that which tends to the Rayleigh surface wave solution when the viscosity tends
to zero. This is in accord with the results of Romeo [26] in linear elasticity (no
finite pre-deformation).

5.2. Complex frequency, complex wave number

When we allow both the frequency and the wave number to be complex, we find
that the imaginary part of ω is negative only in the range where λ2−λ−2s2

2 ≥ 0, for



Vol. 60 (2009) Waves in a pre-stressed viscoelastic solid 527

s2 = s0
2 = 0.2956; the other two roots s±2 of (90) do not yield any conclusion with

respect to stability analysis. When λ2 − λ−2s2
2 < 0, i.e. when λ < λcr = 0.5436,

the imaginary part of ω is positive, indicating instability. When λ = λcr = 0.5436,
both the real and imaginary parts of ω are zero, as can be checked from the
dispersion equation (91). The conclusion is then that the half-space becomes
unstable when the complex speed ω/k is zero, just as in the purely elastic case.
This is in accord with the correspondence principle of Biot [4].
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