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The paper presents a detailed study of rectilinear shear deformation in the framework of
orthotropic nonlinear elasticity, under Dirichlet and mixed boundary conditions. Here
the shear takes place in a slab made of a soft matrix reinforced with two families of exten-
sible fibers, along the bisectrix of the angle between the two privileged directions aligned
with the fibers. An analytic approach coupled to a careful computational treatment reveal
that if the two families of parallel fibers are mechanically equivalent, then only smooth
solutions are possible, whereas if the mechanical differences between the two families of
fibers are pronounced, then strain singularities may develop. For the standard reinforcing
orthotropic model, it is possible to determine the precise conditions for the existence of
singular solutions. For an orthotropic constitutive law used for artery modeling, the exis-
tence of singular solutions can have repercussions in biomechanical applications.

� 2009 Elsevier Ltd. All rights reserved.
1. Introduction

Biological soft tissues exhibit complex mechanical behaviors, which are not easily accounted for by classic elastomeric
constitutive models. The extension of the mathematical models of nonlinear elasticity from rubber to soft tissues continues
to be a challenging area in theoretical biomechanics. For example, the presence of oriented collagen fiber bundles in blood
vessels calls for the consideration of anisotropy in the mathematical modeling of the mechanics of arterial tissues, but the
mathematical theory of nonlinear hyperelastic anisotropic materials is not as developed as the theory of isotropic nonlinear
elasticity. A consultation of the eminent book by Antman [1] shows that, in recent years, there has been very few additions to
the classical works of Adkins [2] or of Ericksen and Rivlin [3] with respect to the solution of boundary value problems in
nonlinear anisotropic elasticity.

It is well known that certain radial anisotropies in linear and nonlinear elasticity problems can give rise to stress singu-
larities which are absent in the corresponding isotropic version of these problems. Lekhnitskii [4] was perhaps the first to
observe this peculiarity, by studying a circular orthotropic plate compressed by a uniformly distributed force along its exter-
nal boundary. Antman and coworkers (see for example [5]) extended in some sense this analysis to radially symmetric equi-
librium states of anisotropic non-linearly elastic bodies. Another example of this extension to nonlinear elasticity is found in
the paper by Kassianidis et al. [6] on the finite azimuthal shear of transversely isotropic materials.

Merodio et al. [7] investigated a simple model for a nonlinear, transversely isotropic, elastic solid and discovered a new kind
of singular behavior, not present in isotropic materials. It occurs for the inhomogeneous rectilinear shear of an incompressible
elastic slab reinforced by a family of parallel fibers. They show that, depending on the reinforcement strength and on the
. All rights reserved.
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fiber orientation with respect to the shearing direction, weak solutions for this simple boundary value problem may be ex-
pected. These solutions are associated with fiber kinking and loss of ellipticity of the field equations. The deformation field is
continuous, but it suffers a jump in the first derivative and a blow-up for the second derivative. Therefore the stress field
suffers a discontinuity of first kind, a phenomenon clearly associated with mechanical instabilities. It also puts into question
the applicability of standard numerical methods to nonlinear anisotropic elasticity, because the obtention of numerical solu-
tions to the governing equations requires the calculation of second-, fourth-, and sometimes higher-order derivatives. In bio-
mechanical applications of the constitutive models of arterial walls, the appearance of stress singularities is an important
mathematical aspect of the theory, because it may be associated with some pathological states of the tissues (such as the
bursting of an aneurysm).

The aim of the present paper is to extend the results of Merodio et al. [7] from transverse isotropy (one family of parallel
fibers) to orthotropy (two families of parallel fibers), often encountered in biological soft tissues. We note that Fosdick and
Royer-Carfagni [8] show that Lekhnitskii’s classical solution predicts the interpenetration of material regions, an unaccept-
able deformation behavior in the classical theory of elasticity. However the solutions proposed in [7] and here are isochoric
and thus satisfy the local injectivity requirement.

The paper is organized as follows. In the next section we write down the governing equations and boundary conditions,
and we discuss the basic mathematical issues at play. Section 3 is devoted to one of the simplest model of nonlinear ortho-
tropic elastic materials (the standard reinforcing model), obtained by adding the classical neo-Hookean strain energy density
to two terms that take into account the reinforcements along the fiber directions. These latter terms are quadratic in the
squared extension along the fibers. We solve the problem of inhomogeneous rectilinear shear along the bisectrix to the fi-
bers, first for Dirichlet boundary conditions and next for mixed boundary conditions. We also provide an energy analysis of
the solutions. In Section 4 we consider a more advanced constitutive model of the biomechanics literature, proposed by Hol-
zapfel et al. [9], where the reinforcement terms in the strain-energy density are exponential, in order to account for a strong
stiffening effect (the artery model).

The results suggest that orthotropic fiber reinforcement is quite efficient at cancelling the singularities and the shear dis-
continuities encountered in transversally isotropic fiber reinforcement. Indeed we recover the main features discovered by
Merodio et al. [7] (jump in the shear, blow-up of the second derivative of the displacement) but under the condition that one
family of fibers is much stiffer than the other. For the standard reinforcing model, one stiffness modulus must be at least 9.9
times larger than the other; for the artery model, the stiffnesses ratio is even higher, due to exponential terms. In general, the
families of parallel collagen fibers found in arteries are determined experimentally to be mechanically equivalent, suggesting
that singularities do not develop, at least in physiological conditions, for the rectilinear shear of arteries.
2. Basic equations

We consider a composite incompressible slab with thickness L, made of an isotropic matrix reinforced with two families
of parallel extensible fibers (the fibers are all orthogonal to the boundaries of the solid). In the undeformed configuration, we
call ðX1;X2;X3Þ a set of Cartesian coordinates such that the solid is located in the 0 6 X3 6 L region. We denote by E1, E2, E3

the orthogonal unit vectors defining the Lagrangian (reference) axes, aligned with the X1, X2, X3 directions, respectively.
When the solid is sheared in the direction of E1, the particle initially at X moves to its current position x. We call

F ¼ @x=@X the associated deformation gradient tensor, and B ¼ F tF the left Cauchy-Green strain tensor. We then call
(x1; x2; x3) the Cartesian coordinates, aligned with (X1;X2;X3), corresponding to the current position x. In the current config-
uration, the basis vectors are e1, e2, e3, and here they are such that ei � Ei (i ¼ 1;2;3Þ. The deformation is given in all gen-
erality by
x1 ¼ X1 þ Lf ðX3=LÞ; x2 ¼ X2; x3 ¼ X3; ð2:1Þ
where f is a yet unknown function of g � X3=L only. The amount of shear is f 0 ¼ df=dg. The deformation (2.1) is a simple shear
when f 0 is a constant; otherwise it is a rectilinear inhomogeneous shear. The direction of shear is that of e1 ¼ E1 and the plane of
shear is that of ðe1 ¼ E1; e2 ¼ E2Þ.

We find in turn that
F ¼ I þ f 0e1 � E3; B ¼ I þ f 0ðe1 � e3 þ e1 � e3Þ þ ðf 0Þ2e1 � e1: ð2:2Þ
The first principal isotropic strain invariant I1 � trB is given here by
I1 ¼ 3þ ðf 0Þ2; ð2:3Þ
and the second principal isotropic strain invariant, I2 � ½I2
1 � trðB2Þ�=2, is also equal to 3þ ðf 0Þ2.

We call U (W, respectively) the angle between the direction of one family of parallel fibers (the other family, respectively)
and the direction of shear X1. In other words, the unit vectors M and N (say) in the two preferred fiber directions have
components
M ¼ cos UE1 þ sin UE3; N ¼ cos WE1 þ sin WE3 ð2:4Þ
and they are transformed into m ¼ FM and n ¼ Fn in the current configuration,
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m ¼ ðcos Uþ f 0 sin UÞe1 þ sin Ue3; n ¼ ðcos Wþ f 0 sin WÞe1 þ sin Ue3: ð2:5Þ
For the sake of simplicity, in the remainder of the paper, we restrict our attention to the special case where the material is
sheared along a bisectrix of the angle between the two families. Some generality is lost with this assumption, but it still captures
the salient features of sheared soft tissues with two preferred directions.

Hence from now on, W ¼ p�U and the angle between the two preferred directions is p� 2U. In other words, the unit
vectors M and N in the preferred fiber directions have components
M ¼ cos UE1 þ sin UE3; N ¼ � cos UE1 þ sin UE3; ð2:6Þ
in the reference configuration, and they are transformed into
m ¼ ðcos Uþ f 0 sin UÞe1 þ sin Ue3; n ¼ ð� cos Uþ f 0 sin UÞe1 þ sin Ue3; ð2:7Þ
in the current configuration; Fig. 1 is a visualization of the situation in the case of a simple (homogeneous) shear of amount
0.5 and an angle U ¼ 60�. Note that because the reinforcements are not directional, we may without loss of generality restrict
ourselves to the range 0 < U < p.

We now introduce the anisotropic invariants I4 � m �m and I5 � Fm � Fm; in particular we find
I4 ¼ 1þ f 0 sin 2Uþ ðf 0Þ2 sin2 U: ð2:8Þ
Recall that I4 is the squared stretch in the fiber direction [10]. In particular, if I4 > 1 then the fibers aligned with m are in
extension, and if I4 < 1 then they are in compression. Clearly here, when 0 6 U 6 p=2, the quantity I4 � 1 is always positive
and the fibers aligned with m are in extension. On the other hand, when p=2 < U < p, there always exist a certain amount of
shear (explicitly, �2= tan U) above which these fibers are in compression.

The other anisotropic invariants are I6 � n � n, I7 � Fn � Fn, and I8 � m � n. Here we find that
I6 ¼ 1� f 0 sin 2Uþ ðf 0Þ2 sin2 U: ð2:9Þ
In general, the strain-energy density W of a hyperelastic incompressible solid reinforced with one or two families of parallel
extensible fibers depends on two isotropic deformation invariants: I1 and I2, and on the five anisotropic deformation invari-
ants [10,11]: I4; . . . ; I8. Henceforth we make the assumption that W is the sum of an isotropic part and an anisotropic part. For
the isotropic part, modelling the properties of the elastin matrix, we take the neo-Hookean strain-energy density, with con-
stant shear modulus l. For the anisotropic part, modelling the properties of the extensible collagen fibers, we take the sum of
a function of I4 only and a function of I6 only, say FðI4Þ þ GðI6Þ. Hence we restrict our attention to those solids with strain-
energy density
W ¼ lðI1 � 3Þ=2þ FðI4Þ þ GðI6Þ: ð2:10Þ
Now the Cauchy stress tensor r derived from this strain energy function is (see e.g. Ogden, 1984),
r ¼ �pI þ lBþ 2F 0ðI4Þm�mþ 2G0ðI6Þn� n; ð2:11Þ
where p is a Lagrange multiplier introduced by the constraint of incompressibility, and F 0 � dF=dI4, G0 � dG=dI4.
Because shear is a plane strain deformation, and because the fibers lie in the plane of shear, it is a simple matter to find

the directions of principal stresses. One is normal to the plane of shear, and the two others are in the (e1; e3) plane, at the
angles u and uþ p=2 from the direction of shear, where u 2�0;p=4� is defined by
tan 2u ¼ 2ðe1 � re3Þ=ðe1 � re1 � e3 � re3Þ: ð2:12Þ
Here we find that
e1 � re3 ¼ lf 0 þ 2F 0ðI4Þm1m3 þ 2G0ðI6Þn1n3; ð2:13Þ
where mi � m � ei and ni � n � ei are found from (2.7).
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The equilibrium equations, div r ¼ 0 (in the absence of body forces) reduce to
@p
@x1
¼ d

dx3
lf 0 þ 2F 0ðI4Þm1m3 þ 2G0ðI6Þn1n3
� �

;

@p
@x2
¼ 0;

@p
@x3
¼ d

dx3
lf 0 þ 2F 0ðI4Þm2

3 þ 2G0ðI6Þn2
3

� �
;

ð2:14Þ
where the expressions in brackets are independent of x1 and x2. It follows that
p ¼ pðx1; x2Þ ¼ C0x1 þ 2F 0ðI4Þm2
3 þ 2G0ðI6Þn2

3 þ D; ð2:15Þ
where C0, D are arbitrary constants of integration, is a suitable pressure field. A single governing equation remains to be
solved for the shear deformation, namely
d
dg

lf 0 þ 2F 0ðI4Þm1m3 þ 2G0ðI6Þn1n3
� �

¼ C0L: ð2:16Þ
We consider two specific boundary value problems (BVPs). In the reference configuration, the slab of thickness L in the X3

direction and of infinite dimensions in the other directions is bonded to two infinite rigid plates located at X3 ¼ 0 and
X3 ¼ L. A constant pressure gradient is applied in the x1 direction and drives the deformation of the slab. The overall goal
of our investigation is to solve (2.16) subject (i) to the Dirichlet boundary conditions: f ð0Þ ¼ 0; f ð1Þ ¼ 0, and (ii) to the mixed
boundary conditions: f ð0Þ ¼ 0; f 0ð1Þ ¼ K1, where K1 is a prescribed constant. In Case (i), we have a classical two-point bound-
ary value problem which, for an isotropic medium, may be reduced to a Cauchy problem by using symmetry considerations.
In our anisotropic case it may happen that, once the second-order differential equation (2.16) is rewritten in normal form,
the corresponding right handside is neither continuous nor Lipschitzian with respect to f 0. Then standard methods for the
study of the existence and uniqueness of the solution may not apply any longer; moreover, the solution may develop sin-
gularities. In Case (ii), the BVP is simpler to solve, but it is also possible to have non-smooth solutions. We point out that
enforcing the boundary condition f 0ð1Þ ¼ K1 is equivalent to prescribing the shear stress T12 on the upper face of the slab.

For transversally isotropic materials, Case (i) has been studied by Merodio et al. [7] and a mixed BVP similar to Case (ii)
has been considered for azimuthal shear by Kassianadis et al. [6].
3. The standard reinforcing model

3.1. Normal form of the BVP

The standard reinforcing model for solids with two family of fibers is a special case of (2.10). Its strain-energy density is
W ¼ lðI1 � 3Þ=2þ lE1ðI4 � 1Þ2=4þ lE2ðI6 � 1Þ2=4; ð3:1Þ
where lE1 and lE2 are the extensional moduli in the fiber directions. The BVPs based on (2.16) are now
d
dg

f 0 þ E1ðI4 � 1Þm1m3 þ E2ðI6 � 1Þn1n3½ � ¼ C0L=l ð3:2Þ
with the boundary conditions (i): f ð0Þ ¼ 0; f ð1Þ ¼ 1 and (ii): f ð0Þ ¼ 0; f 0ð1Þ ¼ K1. We begin our study with the Dirichlet
boundary conditions, Case (i).

The differential equation may be rewritten as
d
dg

f 0 þ cf 0 sin2 U½2 cos2 Uþ 3bðf 0Þ sin U cos Uþ ðf 0Þ2 sin2 U�
n o

¼ C0L=l; ð3:3Þ
where we introduced the dimensionless material constants c and b, defined as
c ¼ E1 þ E2; b ¼ ðE1 � E2Þ=ðE1 þ E2Þ: ð3:4Þ
The quantity c gives a measure of the collagen/elastin strength ratio, and the quantity b gives a measure of the orthotropy. If
c ¼ 0, then the material is isotropic. If b ¼ �1, then either E1 ¼ 0 or E2 ¼ 0 and the solid is transversally isotropic (there is
only one active family of parallel fibers); if b ¼ 0, then E1 ¼ E2 and the two families of fibers are said to be mechanically
equivalent.

In its normal form, the BVP Case (i) reads
d2f
dg2 ¼

a
Dðf 0;UÞ ; f ð0Þ ¼ f ð1Þ ¼ 0; ð3:5Þ
where a � C0L=l is a dimensionless measure of the pressure gradient and where the denominator D is defined as
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Dðf 0;UÞ ¼ 1þ c sin2 U½2 cos2 Uþ 6b cos U sin Uðf 0Þ þ 3 sin2 Uðf 0Þ2�: ð3:6Þ
First we note that when b ¼ 1, the whole analysis is consistent with that of Merodio et al. [7] for a transversally isotropic
slab. Also, when b ¼ 0, the governing equation coincides with that obtained for the rectilinear inhomogeneous shear of
the isotropic solid slab with strain-energy density W ¼ ðlþ 2c sin2 U cos2 UÞðI1 � 3Þ=2þ ðc sin4 UÞðI1 � 3Þ2=4. It follows that
when the two families of fibers are mechanically equivalent, only smooth solutions exist and no singularity may develop.

Next we take b – 0 and notice that D is a quadratic in the amount of shear f 0. If its discriminant is negative, then no sin-
gularity may develop. The denominator D has real roots when
3b2 � 2
� �

c sin2 2U� 4 P 0: ð3:7Þ
Therefore a necessary condition for the appearance of singularities is that
b2 > 2=3: ð3:8Þ
Assume that the fibers along M are stiffer than those along N. Then E1 > E2 and this inequality means that
E1=E2 > 5þ 2

ffiffiffi
6
p
’ 9:9. Hence we are certain that singularities do not develop when the fibers along M are less than 9.9

times stiffer than the fibers along N.

3.2. Orthogonal fibers: U ¼ p=4

Here we focus on the special case where one family of fibers is orthogonal to the other family (U ¼ p=4). Then the denom-
inator D in (3.6) reduces to
Dðf 0;p=4Þ ¼ 1þ ðc=4Þ 2þ 6bðf 0Þ þ 3ðf 0Þ2
h i

: ð3:9Þ
Clearly, whether f 00 develops singularities or not depends among other things on the sign of the quantity ð3b2 � 2Þc� 4. Fig. 2
displays on the left the curve where this quantity is zero in the (b; c) plane. When it is negative, the existence and uniqueness
of a smooth solution are guaranteed by general theorems and standard numerical procedures of integration can be imple-
mented. For instance, we take b ¼ 0:5, c ¼ 3:0, and a ¼ 1:0;5:0;10:0 in turn, and obtain the displacements displayed on the
right of Fig. 2, using the finite difference method implemented into MAPLE.

When ð3b2 � 2Þc� 4 P 0, there is a chance that singularities may develop within the thickness of the slab and we now
investigate this possibility. First we consider the case where this discriminant is equal to zero, when c ¼ 4=ð3b2 � 2Þ. Then
D ¼ 3
3b2 � 2

ðf 0 þ bÞ2 ð3:10Þ
and integrating (3.5) once gives
ðf 0 þ bÞ3 ¼ að3b2 � 2Þðg� g0Þ þ b3; ð3:11Þ
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where g0 2 ð0;1Þ is a point in the thickness of the slab where f 0 ¼ 0 (its existence is ensured by the continuity and differen-
tiability of f, coupled to the boundary conditions f ð0Þ ¼ f ð1Þ ¼ 0). Solving for f 0 gives
Fig. 3.
the case
in the fi
The cur
f 0ðgÞ ¼ 	 b3 þ að3b2 � 2Þðg� g0Þ
� �1=3 � b; ð3:12Þ
where the sign agrees on the sign of the radical. Integrating further, and imposing f ð0Þ ¼ 0, we obtain
f ðgÞ ¼ 3
4að3b2 � 2Þ

b3 þ að3b2 � 2Þðg� g0Þ
� �4=3 � b3 � að3b2 � 2Þg0

� �4=3
n o

� bg: ð3:13Þ
To solve the BVP entirely, it remains to determine g0 2 ð0;1Þ. It is fixed by the second boundary condition: f ð1Þ ¼ 0, i.e. it is a
solution to the equation
b3 þ að3b2 � 2Þð1� g0Þ
� �4=3 � b3 � að3b2 � 2Þg0

� �4=3 ¼ 4abð3b2 � 2Þ=3: ð3:14Þ
Now, collecting (3.5), (3.10), (3.11), we see that f 00 blows up at g ¼ gS given by
að3b2 � 2ÞðgS � g0Þ þ b3 ¼ 0: ð3:15Þ
The final condition to impose for this singularity is that it occurs within the thickness of the slab: 0 6 gS 6 1, i.e.
0 6 g0 �
b3

að3b2 � 2Þ
6 1: ð3:16Þ
In Fig. 3 we graph the curves defining the pairs (g0;a) such that the second boundary condition (3.14) is satisfied, for several
values of b. We limit the display to the range g0 < 0:5 because the curves are antisymmetric with respect to the point ð0:5;0Þ.
For visual reasons, the upper bound is taken as amax ¼ 40:0. The other limit of each curve is imposed by the inequalities
(3.16), specifically here the lower one. The corresponding transitional behavior is dictated by the equality
g0 ¼ ðg0Þtrans �
b3

að3b2 � 2Þ
: ð3:17Þ
When this holds, the corresponding transitional level of pressure gradient is found from (3.14) as
a ¼ ðaÞtrans �
64b3

27ð3b2 � 2Þ
: ð3:18Þ
Substituting back above gives
ðg0Þtrans ¼ 27=64 ¼ 0:421875: ð3:19Þ
Hence all the curves stop at the vertical barrier g0 ¼ 0:421875, irrespective of the value of b.
For all values of a and g0 such that the point (a;g0) belongs to one of these curves, a singularity develops within the thick-

ness for the second derivative of the displacement. For instance at the points ( ðaÞtrans; ðg0Þtrans), the exact solution (3.13) and
its derivatives reduce to
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f ðgÞ ¼ b g4=3 � g
� �

; f 0ðgÞ ¼ b ð4=3Þg1=3=3� 1
� �

; f 00ðgÞ ¼ ð4=9Þbg�2=3; ð3:20Þ
and f 00 clearly blows up on the g ¼ 0 face of the slab. For Fig. 4 we take b ¼ 0:875 and three points on the corresponding curve
of Fig. 3, namely (a ¼ 5:3489;g0 ¼ ðg0Þtrans), (a ¼ 10:0;g0 ¼ 0:33120), and (a ¼ 15:0;g0 ¼ 0:30871). For the first combination,
f 00 blows up on the slab face g ¼ 0; for the second and third combinations, it blows up within the thickness of the slab.

Next we consider the case where the discriminant of the f 0 quadratic in (3.9) is positive: ð3b2 � 2Þc� 4 > 0, and focus now
on finding singularities for f 0, the amount of shear. Integrate the BVP (3.5), (3.9) once to get
gðf 0Þ ¼ aðg� g0Þ; ð3:21Þ
where g0 is a constant of integration, and g is the following cubic,
gðxÞ :¼ 1þ c
2

� �
xþ 3bc

4
x2 þ c

4
x3 ð3:22Þ
with a local maximum (resp. minimum) at x1 (resp. x2) defined as
x1;2 ¼ �b	

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3b2 � 2Þc� 4

3c

s
: ð3:23Þ
For g1 � gðx1Þ and g2 � gðx2Þ, we find
g1;2 ¼ �
1
6

2ð2þ bÞ þ cð1� bÞð3b� 2Þ½ � � c
2
ð3b2 � 2Þc� 4

3c

" #3=2

: ð3:24Þ
Clearly, a systematic procedure to establish a one-to-one correspondence between x and g everywhere (or equivalently, be-
tween f 0 and g) runs into difficulties in the interval x1 6 x 6 x3, where x3 is the root of gðxÞ ¼ g1 other than x1, see Fig. 5a. To
address this problem, we take the stance that f 0 jumps from a low value to a higher one. In order to jump following the abso-
lute minima of the energy, we consider in turn the Maxwell rule convention of equal area, see Fig. 5b, and the Maximum delay
convention, see Fig. 5c. (This discussion and the following computations clarify also some misprints and unclear points con-
tained in Merodio et al., 2007.) We propose to track these two possible solutions by a suitable numerical approach. This
hands-on approach is required because usual numerical methods sometimes fail in finding good approximations. In fact,
commercial code solvers issue a warning here about possible failure in the numerical convergence and are unable to provide
a satisfactory solution in this region. Note that the non-monotonous behavior does not necessarily occur within the slab
thickness and that some parameter values allow a monotonous variation of f 0, devoid of jumps (such is for instance the case
when g1 P 1). We focus on those parameter values which do give a jump inside the slab.

The main difficulty in solving the Dirichlet BVP is that we do not have an analytical access to the value of the integration
constant g0 in (3.21). Therefore we do not know the singularity location gS.

We tackle the Dirichlet BVP by a shooting method, combined with the bisection method, in the following manner.
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We start considering gð0Þ0 (say) as an initial guess for g0. Then let Kð0Þ0 � f 0ð0Þ; it is the real root to the cubic gðKð0Þ0 Þ ¼ �agð0Þ0 .
It is now possible to reformulate the BVP as an initial value problem (IVP), and to solve it numerically on two subintervals of
½0;1� (that process is detailled later, in the simpler case of the mixed BVP). Next we compute f ð1Þ and measure how different
it is from the second boundary condition f ð1Þ ¼ 0: if jf ð1Þj 6 tol is not satisfied, for a prescribed numerical tolerance ‘‘tol”,
then we adjust the approximate value of g0 from gð0Þ0 to gð1Þ0 and so on, from gðk�1Þ

0 to gðkÞ0 , until the criterion of convergence
is reached, following the indications given by the bisection method. In the process we also get access to gðkÞS , a numerical
approximation of the singularity point gS.

In Fig. 6, we report the numerical solutions for c ¼ 10:0, a ¼ 10:0, and in turn, b ¼ 1:0 and b ¼ 0:95, with tol ¼ 1e-6 as the
tolerance for the stopping criterium in the bisection method. The values identified by the bisection method for the integra-
tion constants are as follows. When b ¼ 1:0 (transverse isotropy), we find g0 ¼ 0:2423 for the Maxwell rule solution and
g0 ¼ 0:21725 for the Maximum delay solution; when b ¼ 0:95 (orthotropy), we find g0 ¼ 0:13818 for the Maxwell rule solu-
tion and g0 ¼ 0:05014 for the Maximum delay solution. It is worth noting that the two kinds of solutions not only jump at
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different singular points, but also present different slopes, before and after these singular points. Moreover, we checked that
the solutions obtained for b ¼ 1:0 (transverse isotropy) are consistent with those obtained by Merodio et al. [7], using a
different numerical method, based on a quadrature approach.

We now consider the mixed BVP, Case (ii),
Fig. 7.
solution
for b ¼
d2f
dg2 ¼

a
Dðf 0;UÞ ; f ð0Þ ¼ 0; f 0ð1Þ ¼ K1; ð3:25Þ
which turns out to be simpler to analyze and to solve numerically than the Dirichlet BVP.
The main features uncovered in the previous analysis still apply. Hence the uniqueness of the solution is not guaranteed

for all parameter values, because the energy can have two minima and is in general not a convex function, leading to a jump
in the derivative of the displacement. The analysis for the mixed boundary conditions is almost identical to that of the Dirich-
let boundary conditions, with the difference that it is now possible to identify a priori the location of the singularity.

In order to jump following the absolute minima of the energy, again we consider in turn the Maxwell rule convention of
equal area, and the Maximum delay convention, because commercial solvers also fail here.

Starting from the first integral (3.21) and (3.22) of Eq. (3.3),
we find from the second boundary condition f 0ð1Þ ¼ K1 that
g0 ¼ 1� gðK1Þ=a: ð3:26Þ
Then let K0 � f 0ð0Þ; it is the real root to the cubic
gðK0Þ ¼ �ag0 ¼ gðK1Þ � a: ð3:27Þ
Now we can reformulate the BVP as an IVP, which we solve numerically in two steps. First on the subinterval ½0;gS�, with
initial conditions: f ð0Þ ¼ 0, f 0ð0Þ ¼ K0; we call fS and KS the computed values of f and f 0 at g ¼ gS, the slab thickness where
the jump takes place. Next we solve numerically the second part of the IVP, this time on the subinterval ½gS;1�, with initial
values: f ðgSÞ ¼ fS, f 0ðgSÞ ¼ KS. To compute the value of gS, the singularity thickness, we proceed as follows.

In the case of the Maxwell rule convention of equal area, the singularity occurs at the inflection point of the function g.
Solving g00ðKSÞ ¼ 0 gives KS ¼ �b and then, gðKSÞ ¼ b½cðb2 � 1Þ=2� 1�. Then gS is found by solving the equation
gðKSÞ ¼ gðK1Þ þ aðgS � 1Þ: ð3:28Þ
In the case of the Maximum delay convention, the singularity occurs at the local maximum of the function g. Hence KS ¼ x1

given by (3.23); then gðKSÞ ¼ g1 given by (3.24), and gS is found from (3.28) for gS.
Fig. 7 shows the numerical solutions obtained with this numerical technique for the values c ¼ 10:0, a ¼ 10:0, K1 ¼ 0:5,

and in turn, b ¼ 1:0 (transverse isotropy) and b ¼ 0:95 (orthotropy). In the figure on the left, we report the numerical
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approximation for f ðgÞ and in the figure on the right, the approximations for the amount of shear f 0ðgÞ, clearly showing that
the jumps of the derivatives occur at different singular points. For that example, we find g0 ¼ 0:48125 when b ¼ 1:0 and
g0 ¼ 0:44375 when b ¼ 0:95.

3.3. Non-orthogonal fibers: U–p=4

Extending the results and techniques developed at U ¼ p=4 to the case U–p=4 (non-orthogonal fibers) poses no partic-
ular problem. Rather than detailing the process, we refer the reader to the paper by Merodio et al., [7] where the extension is
done in the case b ¼ 1 (transverse isotropy).
4. Orthotropic biomechanical model

We now investigate briefly whether the analysis conducted for the standard reinforcing model can be extended to a
strain-energy density often encountered in the biomechanics literature, namely the model proposed by Holzapfel et al.
[9] to describe the behavior of an orthotropic artery, and widely used since, for instance to model porcine aortic tissue, pas-
sive basilar artery, cornea, etc. We present it in the form
W ¼ l
2
ðI1 � 3Þ þ lE1

2k1
exp k1ðI4 � 1Þ2

h i
� 1

n o
þ lE2

2k2
exp k2ðI6 � 1Þ2

h i
� 1

n o
; ð4:1Þ
where k1, k2 are dimensionless constants. Eq. (2.16) is then rewritten as
d
dg

f 0 þ E1ðI4 � 1Þ exp k1ðI4 � 1Þ2
h i

m1m3 þ E2ðI6 � 1Þ exp k2ðI6 � 1Þ2
h i

n1n3

n o
¼ C0L=l: ð4:2Þ
The BVP can be put in the form (3.5), where now
Dðf 0;UÞ ¼ 1þ sin U E1C1ðf 0;UÞ exp k1ðI4 � 1Þ2
h i

þ E2C2ðf 0;UÞ exp k2ðI6 � 1Þ2
h in o

; ð4:3Þ
and the functions C1 and C2 are defined as
C1 ¼ 2k1f 02 f 0 sin Uþ cos Uð Þ f 0 sin2 Uþ sin 2U
� �2

2f 0 sin2 Uþ sin 2U
� �

þ 3ðf 0Þ2 sin3 Uþ 3f 0 sin U sin 2Uþ cos U sin 2U;

ð4:4Þ
and
C2 ¼ 2k2f 02 f 0 sin U� cos Uð Þ f 0 sin2 U� sin 2U
� �2

2f 0 sin2 U� sin 2U
� �

� 3ðf 0Þ2 sin3 Uþ 3f 0 sin U sin 2Uþ cos U sin 2U:

ð4:5Þ
To simplify the algebra we restrict our discussion to the special case where the families of fibers are at right angle, U ¼ p=4.
Our objective is to find out if there exist special values f 0 ¼ ðf 0Þ
 say, such that Dððf 0Þ
;p=4Þ ¼ 0. Now C1 and C2 reduce to
C1ðf 0;p=4Þ ¼
ffiffiffi
2
p

4
f 02ðf 0 þ 1Þ2ðf 0 þ 2Þ2k1 þ ð3f 02 þ 6f 0 þ 2Þ
n o

;

C2ðf 0;p=4Þ ¼
ffiffiffi
2
p

4
f 02ðf 0 � 1Þ2ðf 0 � 2Þ2k2 þ ð3f 02 � 6f 0 þ 2Þ
n o

:

ð4:6Þ
In the biomechanical applications of the model (4.1), it is often assumed that the two families of fibers are mechanically
equivalent, so that E1 ¼ E2 and k1 ¼ k2. In that case, some long but simple computations show that f 0 � 0 is a minimum
for the function D. Because Dð0;p=4Þ ¼ 1þ E1–0, we conclude that singularities may not develop (This result may be ex-
tended to any angle U quite easily).

When E1–E2, things are more complex. For instance, consider the values of Dðf 0;p=4Þ when f 0 ¼ �1;0;1 in turn:
Dð�1;p=4Þ ¼ 1� E1ek1=4 þ ð36k2 þ 11ÞðE2=4Þe3k2=2;

Dð0;p=4Þ ¼ 1þ ðE1 þ E2Þ=2;

Dð1;p=4Þ ¼ 1þ ð36k1 þ 11ÞðE1=4Þe3k2=2 � E2ek2=4:

ð4:7Þ
Therefore, because Dð0;p=4Þ > 0, it is sufficient to choose
expðk1=4ÞE1 > 1þ 36k2 þ 11
4

expð9k2=4ÞE2 ð4:8Þ
to obtain the existence of at least one ðf 0Þ
 such that Dððf 0Þ
;p=4Þ ¼ 0. This inequality suggests that singularities occur only
for huge differences between the fiber stiffnesses, and are unlikely to be observed at all for realistic values of the parameters.
Take for example the case where k1 ¼ k2 ¼ k (say). Then b defined in (3.4) gives a measure of the orthotropy: when b ¼ 1, the
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solid is reinforced with one family of parallel fibers, and when b < 1, there are two families of parallel fibers at play. To gen-
erate the graphs in Fig. 8, we take k ¼ 0:1 and b ¼ 1:0, 0:9, 0:875, and 0.82 in turn. At b ¼ 1:0, the shear variations are pro-
nounced but regular. As soon as b < 1 (two families of fibers), the shear variations are quickly smoothed down, highlighting
the stabilizing effect of orthotropy.

We now evoke some possible applications of our results to biomechanics. Indeed, we know that arterial tissue adapts to
physiological and pathological stimuli though rearrangement of the microstructure. Arterial remodeling is induced by chron-
ically altered mechanical forces; if for some pathological reason, the remodeling of the fibers introduces some disparity in
the various directions in the stiffness of the fibers, then it may happen that E1–E2 and that some ‘‘dangerous” mechanical
behavior develops. However, from a mathematical point of view the solutions of the BVPs suggest that the artery model
is much more stable than the standard reinforcing model, due to the presence of exponential terms in the determining
equations.
5. Concluding remarks

We extended the results of Merodio et al. [7] from transverse isotropy to orthotropy. The most important finding is that
orthotropic materials may develop singular solutions only if there is a significant difference between the mechanical stiff-
nesses of the two families of fibers. We quantified this result rigorously for the standard reinforcing model, where a neces-
sary condition for the formation of singular solutions is that b2 > 2=3, which means that one family of fibers must be at least
9.9 times stiffer than the other family.

When we consider the arterial strain-energy density (4.1), analytical results are no longer possible, but the methodology
used to study the standard reinforcing material is still applicable. In this case a huge difference between E1 and E2 is neces-
sary to possibly introduce a singularity. However, if the fibers are mechanically equivalent, as is usual for biological soft tis-
sues, then singular solutions are avoided altogether. Therefore biological networks, such as the collageneous structure of
arterial walls, are the right structure to prevent the formation of the singularities described here.

From a theoretical point of view, our results demonstrate the complexity of finite anisotropic elasticity and deliver some
exact solutions, which are scarce in the literature on finite inhomogeneous deformations of orthotropic materials.

It is important to note that we have barely scratched the surface of the collection of problems associated with the recti-
linear shear of solids reinforced by two families of parallel fibers. Primo, we relied on strong—and perhaps, reductive—con-
stitutive assumptions, namely that the strain-energy density can be split into the sum of an isotropic part and an anisotropic
part, and that this latter part is also the sum of two parts, each depending on only one anisotropic invariant. Although there is
now a good body of experimental data supporting the adequacy of the standard reinforcing model (3.1) and of the biome-
chanics arterial model (4.1), the importance or insignificance of other constitutive arguments must also be evaluated, such as
the role played by other invariants [12] or by the angular distribution of fiber directions [13–15]. Secondo, we limited our
study to a shear occurring along the bisectrix of the two families of parallel fibers, and did not study the influence of other
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orientations. Intuitively, it is expected that this is the direction where the coupled reinforcing effect of the fibers is at its
strongest. Nevertheless we were able to show that if one family of fibers is much stiffer than the other for the standard rein-
forcing model, then singularities might develop in the thickness of the clamped slab, in the form of discontinuities in the
shear or in the strain gradient.
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