
Third- and fourth-order elasticities of biological soft tissues (L)
Michel Destrade and Michael D. Gilchrist
School of Electrical, Electronic, and Mechanical Engineering, University College Dublin, Belfield, Dublin
4, Ireland

Raymond W. Ogden
Department of Mathematics, University of Glasgow, University Gardens, Glasgow G12 8QW, Scotland,
United Kingdom

�Received 13 October 2009; revised 3 February 2010; accepted 4 February 2010�

In the theory of weakly nonlinear elasticity, Hamilton et al. �J. Acoust. Soc. Am. 116, 41–44 �2004��
identified W=�I2+ �A /3�I3+DI2

2 as the fourth-order expansion of the strain-energy density for
incompressible isotropic solids. Subsequently, much effort focused on theoretical and experimental
developments linked to this expression in order to inform the modeling of gels and soft biological
tissues. However, while many soft tissues can be treated as incompressible, they are not in general
isotropic, and their anisotropy is associated with the presence of oriented collagen fiber bundles.
Here the expansion of W is carried up to fourth order in the case where there exists one family of
parallel fibers in the tissue. The results are then applied to acoustoelasticity, with a view to
determining the second- and third-order nonlinear constants by employing small-amplitude
transverse waves propagating in a deformed soft tissue.
© 2010 Acoustical Society of America. �DOI: 10.1121/1.3337232�
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I. INTRODUCTION

Due to their high fluid content, many soft biological tis-
sues and gels exhibit nearly incompressible behavior: they
are constrained to undergo essentially volume-preserving de-
formations and motions. This has long been known and, in
fact, can be traced back to the experiments of Swam-
merdam1,2 in 1758. Mathematically, the internal constraint of
incompressibility is expressed by imposing the condition
det F=1 at all times, where F is the deformation gradient. In
exact nonlinear isotropic elasticity theory, the strain-energy
density W is written in fullest generality as a function of I, II,
and III, the first three principal invariants of the right
Cauchy–Green strain tensor C=FTF, which are defined by

I = tr C, II = 1
2 ��tr C�2 − tr�C2��, III = det C = �det F�2.

�1�

It is then easy to enforce incompressibility, which requires
that III=1 at all times and hence that W=W�I , II� only.

In weakly nonlinear isotropic elasticity theory, W is ex-
panded in terms of invariants of the Green–Lagrange strain
tensor E= 1

2 �C−I�, either using the set

i1 = tr E, i2 = 1
2 ��tr E�2 − tr�E2��, i3 = det E �2�

�this is the choice of Murnaghan3� or the set

I1 = tr E, I2 = tr E2, I3 = tr E3 �3�

�this is the choice of Landau and Lifshitz4�. In each case the
respective terms are of orders 1, 2, and 3 in E.

Then, in third-order elasticity theory, W is expanded as a
linear combination of i1, i2, i3, i1i2, and i1

3 �or, equivalently,
I1, I2, I3, I1I2, and I1

3� and higher-order terms are neglected;
thus, five elastic constants are required to describe third-

order solids. �Note that some authors refer to this as second-
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order elasticity since the stress is second order in the strain; a
similar comment applies to fourth-order versus third-order
elasticity.� In fourth-order elasticity theory, terms linear in i1

4,
i2
2, i1i3, and i1

2i2 �or, equivalently, I1
4, I2

2, I1I3, and I1
2I2� are also

retained; thus, nine elastic constants are required to describe
fourth-order solids. Now, however, it is slightly more com-
plicated to enforce incompressibility because the constraint
involves a combination of invariants of E, rather than a
single invariant of C. Nevertheless, this can be achieved be-
cause of obvious connections between the sets �1�–�3�. This
was done long ago by Rivlin and Saunders5 in 1951 and by
Ogden6 in 1974, for third- and fourth-order incompressible
solids, respectively. In particular, these authors showed that
the number of elastic constants drops from 5 to 2 for third-
order solids, and from 9 to 3 for fourth-order solids com-
pared with the compressible case.

Recently, Hamilton et al.,7 unaware of these previous
contributions, rediscovered the latter result, and wrote W in
the form

W = �I2 +
A

3
I3 + DI2

2, �4�

where �, A, and D are the respective second, third-, and
fourth-order elasticity constants of weakly nonlinear incom-
pressible isotropic elasticity. Subsequently, several papers8–23

have been devoted to the study of the theoretical and experi-
mental implications of this expansion for linearized and non-
linear waves and vibrations in incompressible solids. Experi-
ments have been conducted on isotropic gels and phantoms
to measure the nonlinear elastic coefficients, and good
progress has been achieved in the understanding and imple-
mentation of elastographic techniques.12–14,16,17

Now, the ultimate goal of elastography is the imaging of

biological soft tissues, and it is therefore important to be able
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to evaluate �, A, and D experimentally. At the same time, it
must be kept in mind that soft tissues are anisotropic solids,
in contrast to gels and phantoms. This anisotropy is due to
the presence of oriented collagen fiber bundles, which are
three orders of magnitude stiffer than the surrounding tissue
in which they are embedded �this surrounding tissue consists
of a network of elastin fibers, smooth muscle cells, and pro-
teoglycans, inter alia, which collectively form an essentially
isotropic “matrix”�. The natural conclusion of this consider-
ation is that there is a need for expansions of W up to the
third or, depending on the context, fourth order for incom-
pressible anisotropic solids. For the particular application
considered in Sec. III of the present paper, however, it suf-
fices to pursue the analysis only up to the third order.

II. FOURTH-ORDER TRANSVERSELY ISOTROPIC
SOLIDS

Here we consider soft tissues with one preferred direc-
tion, associated with a family of parallel fibers of collagen.
We denote by A the unit vector in that direction when the
solid is unloaded and at rest. The theory of Spencer24 tells us
that in all generality, W is a function of at most five invari-
ants in exact nonlinear compressible elasticity theory. One
valid choice for these quantities is

W = W�I1, I2, I3, I4, I5� where I4 � A · EA, I5 � A · E2A .

�5�

Now we expand W up to terms of order 4 in the Green–
Lagrange strain. This involves a linear combination of the
following quantities:

order 2: I1
2, I2, I4

2, I5, I1I4,

order 3: I1
3, I1I2, I3, I1I4

2, I1I5, I1
2I4, I2I4, I4

3, I4I5,

order 4: I1
4, I1

2I2, I1I3, I2
2, I1I4

3, I1
2I5, I1

2I4
2, I1

3I4, I2I4
2,

I2I5, I4
4, I5

2, I1I2I4, I1I4I5, I3I4. �6�

Note that the first-order terms are omitted from the list be-
cause they give rise to constant stresses. Hence there are 29
elastic constants for fourth-order, transversely isotropic,
compressible solids.

In incompressible solids, however, the isotropic invari-
ants are not independent. They are connected by the incom-
pressibility condition, which can be written in terms of the
invariants �2� exactly as6 i1=−2i2−4i3, or equivalently, in
terms of the invariants �3�, as

I1 = I2 −
4

3
I3 − I1

2 + 2I1I2 −
2

3
I1

3, �7�

so that the number of independent quantities in Eq. �6� is
greatly reduced. For instance, I1

2 is of fourth order, and I1I2

= I2
2 and I1

3=0 at fourth order. This allows the list to be short-
ened to

order 2: I2, I4
2, I5,

order 3: I3, I2I4, I3, I4I5,
4
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order 4: I2
2, I2I4

2, I2I5, I4
4, I5

2, I3I4, �8�

which are associated with 13 elastic constants in toto.
For third-order, transversely isotropic, incompressible,

nonlinear elastic solids, for example, the strain-energy den-
sity is thus expressible in the form

W = �I2 +
A

3
I3 + �1I4

2 + �2I5 + �3I2I4 + �4I4
3 + �5I4I5, �9�

where �, �1, and �2 are second-order elastic constants and
A, �3, �4, �5, and �6 are third-order elastic constants. A
lengthier expansion is required at fourth order, which re-
quires a linear combination of the six additional terms listed
in Eq. �8�. We do not include these here. Indeed, it suffices
for our present purposes to restrict attention to second- and
third-order terms in W since at this order the speed of infini-
tesimal plane waves depends linearly on the strain through
the third-order constants, even for the specialization to an
isotropic material.

III. ACOUSTOELASTICITY

We now consider the propagation of small-amplitude
plane body waves in a deformed soft tissue with one family
of parallel fibers. We assume that the solid has been pre-
stressed by the application of the Cauchy stress �, say, giv-
ing rise to a predeformation with corresponding deformation
gradient F.

Let u=u�x , t� denote the mechanical displacement asso-
ciated with the wave motion, � the �constant� mass density,
and p the incremental Lagrange multiplier due to the incom-
pressibility constraint. Then the incremental equations of
motion and of incompressibility read25

A0piqjuj,pq − p,i = ��2ui/�t2, �10a�

ui,i = 0, �10b�

respectively, where the comma signifies partial differentia-
tion with respect to the current coordinates x�xi and A0 is
the fourth-order tensor of instantaneous moduli, with compo-
nents

A0piqj = Fp�Fq��ij
�W

�E��

+ Fp�Fq�Fj�Fi�
�2W

�E�� � E��

.

�11�

This expression is exact, while to compute the derivatives of
W with respect to Eq. �9�, the following quantities are
needed:

�I2

�E��

= 2E��,
�2I2

�E�� � E��

= ������ + ������,

�I3

�E��

= 3E��E��,

�2I3 =
3

����E�� + ���E�� + ���E�� + ���E��� ,

�E�� � E�� 2
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�I4

�E��

= A�A�,
�2I4

�E�� � E��

= 0,

�I5

�E��

= A�A�E�� + A�A�E��,

�2I5

�E�� � E��

=
1

2
�A�A���� + A�A���� + A�A����

+ A�A����� . �12�

Let us now consider the propagation of homogeneous
plane body waves, in the form

u = aeik�n·x−vt�, p = ikPeik�n·x−vt�, �13�

where a is the unit vector in the direction of linear polariza-
tion, k is the wave number, v is the phase speed, and P is a
scalar. Then the incremental incompressibility condition
�10b� gives a ·n=0, and the wave is thus transverse. The
incremental equations of motion �10a� can be written in the
form

Q�n�a − Pn = �v2a, where �Q�n��ij = A0piqjnpnq.

�14�

Taking the dot product of this equation with n gives an ex-
pression for P. Substituting this back into Eq. �14� and using
the orthogonality of the propagation and polarization vectors,
we end up with the symmetric eigenvalue problem,

�I − n � n�Q�n��I − n � n�a = �v2a �15�

for the wave speed and polarization for any given direction
of propagation. The wave speed v is given simply by �v2

=A0piqjnpnqaiaj.
As a simple example of the application of the above

equations, consider the case where a sample of soft tissue is
under uniaxial tension or compression with the direction of
tension parallel to the fibers. We denote by e the elongation
of the sample in the direction �x1, say� of the uniaxial stress
and discard all terms equal to or higher than e2 in the expan-
sions. In particular, we obtain the approximations

F = diag�1 + e,1 − e/2,1 − e/2� ,

E = diag�e,− e/2,− e/2� . �16�

Also, we find that there are only 15 nonzero components of
A0 in the �x1 ,x2 ,x3� coordinate system because, in this spe-
cial case, the principal axes of stress and strain are aligned.
Now let � be the angle between the direction of propagation
and the x1 axis. Then the secular equation, which gives the
wave speed in terms of the elastic moduli, has the same form
as in the isotropic case,26 with the difference that the moduli
depend not only on the isotropic elastic constants � and A
but also on the anisotropic elastic constants �1, �2, �3, �4,
and �5. It reads26

�v2 = �� + � − 2��cos4 � + 2�� − ��cos2 � + � , �17�

where
� = A01212, 2� = A01111 + A02222 − 2A01122 − 2A01221,
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� = A02121. �18�

Lengthy, but straightforward, calculations reveal that

2� − � − � = 2�1 + 2�4�1 + 3�2 + 3�3 + 3�4 + 2�5�e ,

2�� − �� = 2�1 + �3� + 10�1 + 8�2 + 6�3 + 6�4 + 4�5�e ,

4� = 4� + 2�2 + �A + 2�2 + 4�3 + 2�5�e . �19�

Clearly, Eq. �17� provides a direct means of evaluating the
elastic constants by measuring the transverse wave speed for
a variety of e and � combinations.

IV. CONCLUSION

We have shown that seven elastic constants are required
to describe third-order incompressible solids with one family
of parallel fibers, and we have indicated that these constants
may be determined by using the acoustoelastic effect. We
have also noted that 13 constants are needed for fourth-order
solids.

In closing this letter, we remark that although many bio-
logical soft tissues exhibit transverse isotropy �one family of
parallel fibers�, many more must be modeled as orthotropic
materials �two families of parallel fibers�. Then, the list of
invariants is increased from 4 �I1 , I2 , I4 , I5� to 7, with the
following three additions:

I6 � B · EB, I7 � B · E2B, I8 � �A · EB�A · B , �20�

where B is the unit vector in the direction of the second
family of parallel fibers. In that case, an expansion of W up
to third or fourth order yields such a large number of elastic
constants to be determined, that it defeats its own usefulness.
We would argue that it is more advantageous to turn to the
exact nonlinear theory, where constitutive anisotropic models
have been successfully evaluated against experimental test
data to capture well the mechanics of orthotropic soft tissues.
For instance, the Holzapfel–Gasser–Ogden model for
arteries27 is now implemented in many finite element analy-
sis software packages. It requires the experimental determi-
nation of only three elastic constants per layer of arterial
wall.
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