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Introduction to special issue on stability under finite deformation
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In the botanical gardens of Grenoble, France, there is small bridge, just a few metres long, made
of pre-stressed concrete. The bridge dates back to 1855 and is thought to be the oldest manufactured
pre-stressed structure made with concrete. In general, a pre-stressed bridge span is reinforced by parallel
metallic rods embedded below the horizontal mid-plane and put under tension, so that the slab is bent
slightly upwards. When the bridge is put in place, the span is subjected to its own weight and to external
loads, which ensure that the concrete is compressed everywhere. Without the prestress, the weight and
loads would bend the span downwards, and create a zone of tension, of which concrete cannot sustain
much. This technology thus combines the compressive strength of concrete with the tensile strength of
the metallic rods. We can say that the resulting structure is stabilized by prestress.

Of course, a prestress or a prestrain can conversely lead to the destabilization of a solid. A classic
example is that of the twisting instability of a closed ring: take an elastic straight rod, bend it into a
circle by bringing the two ends together, but give the rod a twist before gluing its ends. For a sufficiently
high twist, the elastic ring is unstable and folds unto itself, by forming an eight-shape curve (with about
two turns of pretwist) or more elaborate shapes (for higher twists), see Fig. 1.

Stability studies are highly important for many engineering materials, be they subjected to small
prestrains such as those imposed on pre-stressed concrete, as well as to finite prestrains, such as those
imposed on elastomers in bridge bearings and engine mountings. These studies have developed into a
fundamental topic of mathematical modelling because they are relevant not only to engineering prob-
lems but also to many biological, biomedical and biomechanical applications (DNA mechanics, cell
stiffness, cellular structures, plant growth, microbial filaments, deformation of arteries and veins, skin
wrinkling, etc.).

The discipline of elastic stability has a long and distinguished history, dating back at least to the
works of Euler. For a comprehensive bibliography and an extensive treatment of most known problems,
we refer, e.g. to the textbook by Bažant & Cedolin (2003). For this introduction to the Special Issue
on ‘Stability under Finite Deformations’, we chose to evoke three seminal papers, which we believe
qualify as pioneering works in this field, and yet seem to be little known and forgotten (to the best of
our knowledge). First, an article by Louis-Augustin Cauchy (1829), which contains the first derivation
of the equations of motion in a solid which is already in a state of stress. According to Truesdell (1966),
Cauchy’s ‘results were not understood and were reported obscurely or even incorrectly by 19th century
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FIG. 1. On the left: Stabilizing a bridge span made of concrete by reinforcing it with steel rods put under tension. Once the
span is put in place and subject to loads, the concrete is compressed everywhere. On the right: Destabilizing a ring by twisting a
polyurethane rod before gluing its two ends together. For a large enough pretwist, the ring folds unto itself in an eight-shape.

expositors’. By the time Rayleigh (1906) modelled the Earth as a solid with initial stress, ‘Cauchy’s
results had long been forgotten’, according to Man & Lu (1987). Second, a most elegant four-page
treatment of the twisted elastic ring instability by Michell (1889–1890). According to Goriely (2006),
this Australian applied mathematician cuts an ‘almost tragic figure’, whose work has only recently begun
to be fully appreciated. In particular, Goriely (2006) found out that Michell’s result on ring instability
has been rediscovered at least three times in the 20th century. Third, a 1940 article by the Belgian
applied mathematician, Maurice Anthony Biot (1940). Although Biot is well remembered for laying
down the foundations of the theory of poroelasticity, it is not so well acknowledged that he can be
credited with the modern derivation of the incremental equations of non-linear elasticity (his results are
beautifully synthesized in his 1965 monograph, now out-of-print (Biot, 1965)). In his 1940 article in
the Journal of Applied Physics, he gave a simple and direct exposition of the incremental equations of
elastodynamics and applied it to the study of the influence of initial stress on seismic waves. It is now
widely accepted that there is a deep connection between wave motion and stability. Jacques Hadamard
established a theorem about this connection for a general elastic medium as early as 1903. We may
summarize crudely the Hadamard theorem1 by stating that if a linear elastic system is stable, then wave
propagation is possible in every direction. The 1940 Biot paper is the modern delineation of Hadamard’s
theorem and proposes a general method of studying the stability of pre-stressed solids by considering
small-amplitude (or incremental) motions of the system in the neighbourhood of a large deformation
equilibrium.

We are now several decades after the Hadamard theorem and the seminal investigation by Biot, and
the connection between stability and incremental motions and deformations is well established. In the
1960s, several important papers on this subject were written by Hayes, Hill, Rivlin, Toupin and many
others. The first fundamental summary on elastic stability appeared in the Handbuch der Physik, by
Knops & Wilkes (1972). A continuous interest in the subject can be recorded through the subsequent

1The original proof of this theorem (Hadamard, 1903) seems to be flawed, as pointed out by Duhem. In any case, Gaetano
Fichera and Carlo Cattaneo were later able to fix the proof, see, e.g. Cattaneo (1972).
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years, and today many problems involving not only incremental but also small-but-finite motions and
deformations of an elastic system in the neighbourhood of a non-linear finite deformation have been
completely resolved. New tools and algorithms have been developed to handle complex situations and
solve highly non-linear problems.

Despite these developments, we have to acknowledge that the study of stability issues in solid me-
chanics is still in a status of underdevelopment with respect to what has been done and achieved in fluid
mechanics. The aim of this Special Issue is to display some of the current advances in this field and we
have indeed been fortunate to obtain nine outstanding papers.

Two of these papers are concerned with classical stability problems of non-linear elasticity theory.
Biscari & Omati study the so-called Knowles material, a well-used constitutive model of finite elastic-
ity, able to account for shear stiffening or shear softening by the adjustment of a single parameter. By
widening the range of acceptable values for the material parameters, the authors show that the Knowles
model encompasses a wide array of generalized neo-Hookean materials, including the popular Gent
and Fung models. Hence, several problems of non-linear elasticity can be solved under the same um-
brella, as the authors demonstrate with their study in the stability of a thin spherical shell under large
inflation. Pucci & Saccomandi use the framework of non-linear viscoelasticity of differential type to
show that finite-amplitude shearing motions superimposed on an unsteady simple extension are admis-
sible motions. The amplitude of the shear motions may then be determined by solving a non-linear
non-autonomous differential equation for which limit cycles are possible. The authors then relate their
results to the classicMelde string experiment of parametric resonance.

This Special Issue also proposes two expert treatments of some non-linear stability problems in
structural mechanics. Wang & Dai study the bifurcations of the uni-axial compression of an incom-
pressible 2D rectangular block, with welded boundary conditions. Via a series-asymptotic expansion
method, they determine two coupled non-linear ordinary differential equations governing the lead-
ing order of the axial strain and shear strain. Then they obtain the critical stress values for buckling
of the plate and the post-bifurcation solutions for the first three modes. Roccabianca, Gei & Bigoni
solve explicitly the finite-plane strain bending problem for a multi-layered incompressible thick plate.
Their bending solution is then employed to investigate possible incremental bifurcations. The analy-
sis reveals that a multi-layered structure can behave in a completely different way from a homoge-
neous plate. The authors also compare their theoretical predictions with very revealing experimental
data.

Three papers are devoted to stability issues of non-linear solid biomechanics. Goriely & Vandiver
are interested in arterial wall mechanics. They model arteries as incompressible two-layer cylindrical
structures that are residually stressed through differential growth. When these structures are loaded by
an axial force and internal pressure, a buckling instability is possible, which may eventually lead to
arterial tortuosity. The authors also investigate the potential role of axial residual stress in regulating
stress in arteries and preventing such buckling instabilities. Dervaux & Ben Amar examine the struc-
tural heterogeneity of stratified media that lose their initial symmetry when they grow. Mismatching
expansions between distinct layers act as a geometrical constraint that leads to the emergence of wavy
patterns. This instability may explain the formation of biological patterns, such as fingerprints. Study-
ing a locally growing thin sheet bound to a soft semi-infinite substrate, the authors show that in two
dimensions, bending effects select the shape of the growing sheet, therefore preventing the fabrication
of an arbitrary surface. Pearce & Fu consider the localized bulging/necking of an inflated hyperelastic
membrane tube with closed ends, a problem that may be relevant to the modelling of aortic aneurysm
formation. The initiation pressure for the onset of localized bulging is simply the limiting pressure in
uniform inflation when the axial force is held fixed. It is then possible to compute analytically how, as

 by on July 27, 2010 
http://im

am
at.oxfordjournals.org

D
ow

nloaded from
 

http://imamat.oxfordjournals.org


478 M. DESTRADE AND G. SACCOMANDI

inflation continues, the initial bulge grows continually in diameter until it reaches a critical size and then
propagates in both directions. The authors also study the stability of the solutions with respect to axially
symmetric perturbations, by using the compound matrix method to compute the Evans function.

Finally, two papers fall into the realm of multi-physics and coupled field theories. Dorfmann &
Ogden devote a paper to the mechanics of electroactive elastomers, which are capable of large defor-
mations when subject to an applied electrical field. They study the propagation of small-amplitude elec-
tromechanical waves in a non-linear electroelastic material subject to a bias in the quasi-electrostatic
approximation. The authors derive the general incremental equations and apply them to the study of
surface waves in a homogeneously deformed half-space of incompressible isotropic material with an
applied static electric field normal to the surface. They then make the link with surface stability issues.
In the paper by Liu & Quintanilla, it is possible to appreciate how some modern mathematical tools can
be used to study stability. The authors consider the system of governing equations for homogeneous,
isotropic, pre-stressed elastic plates, within a particular theory of thermo-elasticity. Using the theory
of semigroups of differential operators, they show that the solutions for this model must be analytic, a
theorem which is fundamental to the establishment of general stability results.

We hope that the readers will enjoy this collection of papers and will feel inspired. Many important
and interesting problems remain to be solved in this field, and a lot of work is still required in order to
establish complete and rigorous mathematical results. Nonetheless, things are moving at a fast pace, and
beautiful and interesting results are coming through.

We thank the Editorial Board and the editorial staff of the IMA Journal of Applied Mathematics
for the professional assistance during the realization of this Special Issue, especially our good friend
Yibin Fu.
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