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Within the context of finite deformation elasticity theory the problem of deforming an
open sector of a thick-walled circular cylindrical tube into a complete circular cylindrical
tube is analyzed. The analysis provides a means of estimating the radial and circumferen-
tial residual stress present in an intact tube, which is a problem of particular concern in
dealing with the mechanical response of arteries. The initial sector is assumed to be
unstressed and the stress distribution resulting from the closure of the sector is then
calculated in the absence of loads on the cylindrical surfaces. Conditions on the form of
the elastic strain-energy function required for existence and uniqueness of the deformed
configuration are then examined. Finally, stability of the resulting finite deformation is
analyzed using the theory of incremental deformations superimposed on the finite defor-
mation, implemented in terms of the Stroh formulation. The main results are that convex-
ity of the strain energy as a function of a certain deformation variable ensures existence
and uniqueness of the residually-stressed intact tube, and that bifurcation can occur in
the closing of thick, widely opened sectors, depending on the values of geometrical and
physical parameters. The results are illustrated for particular choices of these parameters,
based on data available in the biomechanics literature.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction

Residual stresses have a very important role in the mechanical functioning of arteries and the existence of residual stres-
ses is well documented, as in, for example, Chuong and Fung [1], Vaishnav and Vossoughi [25] and Fung [5]; see also the
review by Humphrey [15]. They are demonstrated by the simple device of cutting radially a short ring of an artery, the result
of the cut being the springing open of the ring into a sector, thereby releasing some residual stresses; in general, some resid-
ual stress remains, however, as shown by Vossoughi et al. [26] and Greenwald et al. [7]; see also the review by Rachev and
Greenwald [21]. A crude estimate of the circumferential residual stresses is obtained by measuring the resulting angle of the
sector into which the ring deforms, although it has to be said that reliable quantitative data remain elusive. This so-called
opening angle method has been analyzed in some detail by several authors, including, for example, Delfino et al. [2], Zidi
et al. [27], Rachev and Hayashi [22], Holzapfel et al. [13], Ogden and Schulze-Bauer [19], Matsumoto and Sato [16], Ogden
[18], Raghavan et al. [23] and Olsson et al. [20]. The typical approach is to assume that the (unloaded) opened sector is free
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of stress and circular cylindrical and then to construct a deformation that brings the sector into an intact tube and to calcu-
late the resulting radial and circumferential (residual) stress distributions. This has been done for a single layer and for two-
layered tubes. In general this method does not account for any stress or deformation in the axial direction. However, in real-
ity, not only does the ring open into a sector, but the length of the arterial segment tends to change and there are also resid-
ual stresses in the axial direction, although quantitative information about axial residual stresses is distinctly lacking. A
recent 3D analysis by Holzapfel and Ogden [14] is the first attempt to calculate the combination of radial, circumferential
and axial residual stresses. The purpose of the present paper is to provide an analysis of the opening angle method, with
particular reference to the questions of existence and uniqueness of the residually-stressed configuration and its stability.

In Section 2 we review the description of the geometry of the deformation which first takes the sector into an intact cyl-
inder, allowing for a possible length change, and then allows inflation under internal pressure combined with axial load
while maintaining circular cylindrical symmetry. The corresponding stress components and equilibrium equations are then
summarized in respect of an isotropic elastic material whose properties are described in terms of a strain-energy function.
The existence and uniqueness of the resulting configuration is then examined in Section 3, under the assumption that the
strain energy is convex as a function of a suitably chosen deformation variable. The Mooney–Rivlin and the Fung strain ener-
gies obey this assumption, and we use them, as well as some experimental data on arteries, to illustrate the analysis. Section
4 is devoted to an analysis of the stability of the residually stressed tube (in the absence of lateral loads) on the basis of the
theory of small incremental deformations superimposed on a finite deformation, and for this purpose an appropriate version
of the Stroh formulation is adopted. For simplicity of illustration, attention is restricted to prismatic incremental deforma-
tions. We then treat numerically the case of tubes made of solids with the Mooney–Rivlin strain energy, and compare the
predictions to some simple experiments we performed with silicone rubber.

2. Problem formulation

2.1. Geometry of the deformation

We consider an annular sector of a circular cylindrical tube with geometry defined by
A 6 R 6 B; �ð2p� aÞ=2 6 H 6 þð2p� aÞ=2; 0 6 Z 6 L; ð1Þ
where A and B are the radii of the inner and outer faces, respectively, of the sector, L is its length, and (R,H,Z ) denote the
cylindrical coordinates of a point in the material, with corresponding orthonormal basis vectors (ER,EH,EZ). Here a 2 (0,2p) is
the so-called opening angle. The sector is assumed to be unstressed in this reference configuration, which we denote by B0.

The sector is then deformed into an intact (circular cylindrical) tube so that the plane faces originally at H = ±(p � a/2) are
joined perfectly together and there is an accompanying uniform axial stretch kz = l/L > 1, where l is the deformed length of
the tube. We refer to this new configuration as the residually-stressed configuration, which we denote by Br . In this config-
uration there is no traction on the curved surfaces of the tube, but in general axial loads are required to maintain the defor-
mation since it turns out that the axial stress depends on the radius r and cannot therefore be set to zero pointwise on the
ends of the tube. Finally, the tube is subjected to a uniform internal pressure of magnitude P per unit deformed area and is
maintained in a new circular cylindrical configuration, which we refer to as the loaded configuration, denoted Bl; the three
separate configurations are depicted in Fig. 1.

Let (r,h,z) denote cylindrical coordinates in either the residually-stressed configuration Br or the pressurized configura-
tion Bl, with corresponding orthonormal basis vectors (er,eh,ez). The deformation may be described by the equations
r ¼ rðRÞ; h ¼ kH; z ¼ kzZ; ð2Þ

from which we may calculate the deformation gradient tensor F = Gradx as
F ¼ r0er � ER þ ðkr=RÞeh � EH þ kzez � EZ ; ð3Þ
where the prime denotes differentiation and
k � 2p
2p� a

; k > 1 ð4Þ
is a measure of the opening angle. The left Cauchy–Green tensor is then calculated as
B ¼ FFT ¼ r02er � er þ ðkr=RÞ2eh � eh þ k2
z ez � ez; ð5Þ
and it follows immediately that the principal axes of B are er, eh, and ez. The corresponding principal stretches are
k1 ¼ r0; k2 ¼
kr
R
; k3 ¼ kz: ð6Þ
Arterial wall tissue is generally considered to be essentially incompressible, so that the constraint detF = 1 is enforced. For
the present deformation this constraint yields
r2 ¼ R2 � A2

kkz
þ a2; ð7Þ



α

Fig. 1. Depiction of the three configurations: (a) unstressed open sector (configuration B0), with the opening angle a shown as p/2; (b) residually stressed
and stretched tube (configuration Br); (c) tube in (b) subject to internal pressure P (configuration Bl).
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where a � r(A) is the radius of the inner surface of the tube in configuration Bl. Similarly, we define b � r(B) for the outer
surface. It then follows from (6) that the principal stretches become
k1 ¼
R

kkzr
; k2 ¼

kr
R
; k3 ¼ kz: ð8Þ
Notice from (7) that if a2kkz = A2 then the principal stretches are constants. In other words, the deformation is homoge-
neous, of the form
r ¼ R=
ffiffiffiffiffiffiffi
kkz

p
; h ¼ kH; z ¼ kzZ ð9Þ
with principal stretches k1 ¼ 1=
ffiffiffiffiffiffiffi
kkz

p
; k2 ¼

ffiffiffiffiffiffiffiffiffi
k=kz

p
; k3 ¼ kz.

2.2. Stress components and equilibrium

Henceforth we restrict the analysis to homogeneous, incompressible, isotropic hyperelastic solids. The strain-energy
function is then a symmetric function of the principal stretches, which we write as W(k1,k2,k3), subject to the constraint
k1k2k3 = 1. For such materials the Cauchy stress tensor r is coaxial with B and for the considered deformation the principal
Cauchy stress components are
rrr ¼ �qþ k1
@W
@k1

; rhh ¼ �qþ k2
@W
@k2

; rzz ¼ �qþ k3
@W
@k3

; ð10Þ
where q is a Lagrange multiplier introduced by the constraint of incompressibility, and k1, k2, k3 are given by (8).
Because the stretches are independent of h and z, the h and z components of the equilibrium equation ensure that q is also

independent of h and z. The only non-trivial equation remaining is the radial equation
d
dr

rrr þ
1
r
ðrrr � rhhÞ ¼ 0: ð11Þ
With this equation we associate the boundary conditions
rrrðaÞ ¼ �P; rrrðbÞ ¼ 0; ð12Þ
where P is the internal pressure in configuration Bl and the outer boundary is free of traction.
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At this point it is convenient to introduce the notations
xa � kkz
a2

A2 ; x � kkz
r2

R2 ; xb � kkz
b2

B2 ; e � B2

A2 � 1 > 0; ð13Þ
e being a measure of the thickness of the initial annular sector. Then it follows easily that
xb ¼
eþ xa

eþ 1
: ð14Þ
For any fixed value of the axial stretch kz we may now regard W as a function of x through the stretches, which are given
in terms of x by
k1 ¼
1ffiffiffiffiffiffiffiffiffi
kkzx

p ; k2 ¼

ffiffiffiffiffi
kx
kz

s
; ð15Þ
together with k3 = kz, and we write cW ðxÞ ¼Wð1=
ffiffiffiffiffiffiffiffiffi
kkzx

p
;
ffiffiffiffiffiffiffiffiffiffiffiffi
kx=kz

p
; kzÞ.

From (10) it then follows that
rhh � rrr ¼ k2
@W
@k2
� k1

@W
@k1
¼ 2xcW 0ðxÞ: ð16Þ
Noting that
r
dx
dr
¼ 2xð1� xÞ; ð17Þ
we may integrate Eq. (11) and apply the boundary conditions (12), and thus conclude that
P ¼
Z xb

xa

cW 0ðxÞ
1� x

dx: ð18Þ
This equation, together with (14), enables the location of the deformed inner radius to be determined for given values of the
pressure P, the thickness (as measured by e), the opening angle (as measured via k), and the axial stretch kz. For completeness
we compute the corresponding stress distribution, given by
rrr ¼
Z x

xb

cW 0ðsÞ
1� s

ds; rhh ¼ rrr þ 2xcW 0ðxÞ; rzz ¼ rrr þ k3
@W
@k3
� k1

@W
@k1

: ð19Þ
In the special case of the homogeneous deformation (9), we have x � 1 and we find from (16) that
rhh � rrr ¼ 2cW 0ð1Þ ¼ constant; ð20Þ
so that we can integrate the equation of equilibrium (11) to give
rrr ¼ 2cW 0ð1Þ lnðr=bÞ; ð21Þ
where the boundary condition (12)2 has been used. The boundary condition (12)1 then yields
P ¼ cW 0ð1Þ lnðb=aÞ ¼ cW 0ð1Þ lnðB=AÞ: ð22Þ
This is the pressure that needs to be applied inside the tube in order to produce a homogeneous deformation through the
tube wall. We note that in this case, both rrr, given by (21), and rhh, given by
rhh ¼ P½1þ lnðr=bÞ�= lnðb=aÞ; ð23Þ
have logarithmic variations. Hence, in the case of homogeneous deformation, the stress is a slowly varying function of the
radial coordinate.

It is clear that in general rzz depends on r. In the case of homogeneous deformations this follows immediately from (21)
and (19)3. Thus, we emphasize that the pointwise end condition rzz = 0 cannot be adopted and the residually stressed con-
figuration Br is not load free. In some situations it may be possible to enforce the condition that the resultant axial load van-
ishes, but here we merely consider that the axial stretch is fixed, so that the axial load has to be adjusted accordingly to
accommodate this.

2.3. Convexity of the strain-energy function

Because we are considering an incompressible isotropic elastic material, the strain-energy function can also be written as
W ¼ fW ðI1; I2Þ, where I1, I2 are the first and second principal invariants of the Cauchy–Green deformation tensor B. Expressed
in terms of the principal stretches these are
I1 ¼ k2
1 þ k2

2 þ k2
3; I2 ¼ k2

1k
2
2 þ k2

1k
2
3 þ k2

2k
2
3: ð24Þ
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From (8) we then have explicitly
I1 ¼
R

kkzr

� �2

þ kr
R

� �2

þ k2
z ¼

1
kkzx

þ kx
kz
þ k2

z ;

I2 ¼
1
k2

z

þ R
kr

� �2

þ kkzr
R

� �2

¼ kz

kx
þ kkzxþ k�2

z : ð25Þ
The function cW 0ðxÞ, occurring in the integrand of (18), can therefore be written as
cW 0ðxÞ ¼ k2x2 � 1
kkzx2

@fW
@I1
þ k2

z
@fW
@I2

 !
: ð26Þ
Assuming that the standard empirical inequalities @fW=@I1 > 0, @fW=@I2 P 0 hold, an immediate conclusion is that indepen-
dently of the form of fW ðI1; I2Þ
cW 0ðxÞ ¼ 0() x ¼ xm � 1=k ¼ ð2p� aÞ=ð2pÞ: ð27Þ
We assume here and henceforth that cW ðxÞ is a strictly convex function, i.e. cW 00ðxÞ > 0. It follows that for any given value of
kz, x = xm � 1/k yields the unique minimum of the strain energy function. Further, by (24) we have
I1ðxmÞ ¼ 2k�1
z þ k2

z ; I2ðxmÞ ¼ 2kz þ k�2
z ; ð28Þ
and the minimum value of the strain energy is therefore independent of the measure of the opening angle k � 2p/(2p � a).
From Eqs. (11), (16), and (17) we have
drrr

dx
¼
cW 0ðxÞ
1� x

; ð29Þ
and consequently, the radial stress rrr also has a unique extremum, a minimum, at x = xm. The corresponding relation for the
hoop stress rhh is derivable from (19) and has the form
drhh

dx
¼
cW 0ðxÞ
1� x

þ 2cW 0ðxÞ þ 2xcW 00ðxÞ: ð30Þ
In contrast to the radial stress, the determination of its singular point(s) depends on the form of the strain energy function.
Clearly, the hoop stress is increasing at x = xm, the radius where the radial stress is at a minimum. At that point, according to
(19)2 and (27), rhh = rrr and, by (8), k1 = k2; thus the in-plane principal stresses and the stretches are equal there. We refer to
the surface defined by x = xm as the neutral surface. The associated radius (r or R) depends, in general, on both kz and k.

Another consequence of (26) and convexity is that
cW 0ðxÞ < 0 for 0 < x < xm � 1=k;cW 0ðxÞ > 0 for x > xm � 1=k:

(
ð31Þ
Application of these conditions to the tube, however, depends on whether xa > xb or xb > xa. It is easy to show from (14) that
either (i) xa > xb > 1 or (ii) 1 > xb > xa. In case (i) we have xm = 1/k < 1 so xm does not lie within the required range and there is
no neutral surface in this case. In case (ii) we require xb > xm > xa. Thus, (31) can be made more explicit:
cW 0ðxÞ < 0 for xa < x < xm � 1=k;cW 0ðxÞ > 0 for 1 > xb > x > xm � 1=k:

(
ð32Þ
This will be used in the next section to determine existence and uniqueness of the unloaded, residually-stressed configuration.
In closing this section, we note that convexity of cW ðxÞ is a common feature of many standard strain-energy functions,

including the Mooney–Rivlin model,
fW MR ¼
C
2
ðI1 � 3Þ þ D

2
ðI2 � 3Þ; C > 0; D P 0; ð33Þ
where the material constants C and D have dimensions of stress, the Gent model
fW G ¼ �
lJm

2
ln 1� I1 � 3

Jm

� �
; l > 0; Jm > 0; ð34Þ
and the Fung model
fW F ¼
l
2c

ecðI1�3Þ � 1
� �

; l > 0; c > 0; ð35Þ
where l is the shear modulus in the unstressed configuration and Jm and c are dimensionless constants. Convexity may easily
be checked. For instance, cW 00

MRðxÞ ¼ ðC þ Dk2
z Þ=ðkkzx3Þ which is clearly positive. Similar, but longer, expressions can be found

for cW 00
G and cW 00

F, which are also strictly positive.
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3. Existence and uniqueness of the residually-stressed configuration

Here and henceforth, we study the residually-stressed tube in configuration Br . Setting P = 0 in (18) yields
0 ¼
Z xb

xa

cW 0ðxÞ
1� x

dx; xb ¼
eþ xa

eþ 1
: ð36Þ
This equation determines an inner radius of the unloaded residually-stressed tube, measured by xa, for a given measure k of
the opening angle and given axial stretch kz.

Two questions need to be answered.

(i) Does Eq. (36) have a positive solution xa? In other words, is it always possible to close a cylindrical sector in the way
indicated when no load is applied to its curved faces?

(ii) If a solution exists, is it unique?

First consider the possible existence of a homogeneous residually-stressed configuration, when the deformation is in the
form (9), which is equivalent to assuming that xa = 1. Then, by (22), vanishing of P is equivalent to cW 0ð1Þ ¼ 0. According to
(27) this leads to k = 1, which is not admissible since k > 1. Thus, there cannot be a homogeneous residually-stressed state of
deformation, i.e. a residually-stressed configuration is necessarily inhomogeneous. This, of course, is well known in general,
as shown by, for example, Hoger [12]; see also the discussion in Ogden [18].

Assume now that xa > 1. Then, as indicated following (31), we must have xa > xb > 1 > xm, and hence, according to (31), the
integrand in (36) has the same sign over the entire range of integration, and there is therefore no solution to (36) for xa > 1.

For a solution xa of (36) to exist, it must lie in the range 0 < xa < 1. If either xa < xb < xm or xm < xa < xb then there is again no
solution to (36), because the integrand is one-signed over the range of integration. Thus, we must have the ordering
xa < xm < xb and (32) is applicable. Expressing xb in terms of xa by means of (36)2 in this latter inequality yields the following
range of values for xa:
½1� ðk� 1Þe�xm < xa < xm: ð37Þ
Then, to ensure that the solution xa to (36) is positive, we enforce the inequality e < 1/(k � 1), i.e.
B2

A2 <
k

k� 1
¼ 2p

a
; ð38Þ
which prescribes a maximum ratio of outer to inner radius for the original annular sector for a given opening angle, or equiv-
alently a maximum value of the opening angle for a given radius ratio.

Now, addressing question (i) above is equivalent to determining whether the function f defined over the range (37) by
f ðyÞ ¼
Z ðeþyÞ=ðeþ1Þ

y

cW 0ðxÞ
1� x

dx; ½1� ðk� 1Þe�xm < y < xm; ð39Þ
has a zero. First we examine the value of f(y) at the upper bound of the range, which is
f ðxmÞ ¼
Z ðeþxmÞ=ðeþ1Þ

xm

cW 0ðxÞ
1� x

dx; ð40Þ
and this is positive because
xm <
eþ xm

eþ 1
< 1; ð41Þ
so that the integrand in (40) is always positive over the range of integration. Next, we examine f(y) at the lower bound of the
range (37); after some simplification, we find that
f ½1� ðk� 1Þe�xmð Þ ¼
Z xm

½1�ðk�1Þe�xm

cW 0ðxÞ
1� x

dx; ð42Þ
which is strictly negative because
½1� ðk� 1Þe�xm < xm < 1; ð43Þ
so that the integrand in (40) is negative over the whole range of integration. Because f is continuous we conclude that there
exists at least one solution y = xa of the equation f(y) = 0 in the range (37).

The answer to question (ii) can be found by computing f0(y), which yields
f 0ðyÞ ¼
cW 0 ðeþ yÞ=ðeþ 1Þð Þ � cW 0ðyÞ

1� y
: ð44Þ
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Because cW 0 is a monotonic increasing function, and because of the ordering
y <
eþ y
eþ 1

< 1; ð45Þ
it follows that f0(y) > 0 for all y in the range (37). Thus the answer to question (ii) is also positive.
In conclusion, an annular sector can always be closed into a tube with an accompanying axial stretch if its strain-energy

function fW ðxÞ is strictly convex and its thickness is small enough, as prescribed by (38).

3.1. Thin-walled tubes

We have shown in the previous section that if the strain-energy function is strictly convex, then a unique residually-
stressed configuration exists for all such energy functions and for any given opening angle and axial stretch. The dimensions
of this residually-stressed tube depend on the form of the strain-energy function, the initial geometry of the unstressed sec-
tor, and the value of the axial stretch. For thin tubes, some general statements can be made about the form of the residually-
stressed configuration, as follows.

Expanding f(y) in (39) as a Maclaurin series in the thickness parameter e, substituting into the equation f(xa) = 0, and
retaining only the leading-order term, yields the equation
cW 0ðxaÞ ¼ 0; ð46Þ
which, by (27), has the unique solution xa = xm = 1/k. Thus, thin tubes have the nice property that the residually-stressed con-
figuration Br corresponds to the minimum of the strain energy.

Moving on to thicker tubes, we expand Eq. (36) to the next order in e and this yields
cW 0ðxaÞ þ
1
2
e ð1� xaÞcW 00ðxaÞ � cW 0ðxaÞ
h i

¼ 0: ð47Þ
Then we look for xa in the neighborhood of xm, setting xa ¼ xm½1þ edþOðe2Þ�, say. Substitution of this into the equation
above yields
xmdþ 1
2

1� 1
k

� �� �cW 00ðxmÞ ¼ 0; ð48Þ
but cW 00 > 0, so that xmd = �(k � 1)/(2k), and hence
xa ¼ xm 1� eðk� 1Þ=2þOðe2Þ
� �

; ð49Þ
showing that a thicker initial sector leads to a smaller inner radius of the residually-stressed tube (a result independent of
the particular form of strain-energy function within the considered class).

3.2. Examples

We now return to the case of tubes with finite thickness. In the preceding analysis, e � (B/A)2 � 1 was used as the thick-
ness parameter. It gives a measure of the thickness of the unloaded, unstressed annular sector B0. It follows easily from sim-
ple kinematics that the thickness ratio of the residually-stressed tube in configuration Br ; ê say, is related to e by
ê � b
a

� �2

� 1 ¼ e
xa
> e: ð50Þ
To make further progress, the strain-energy function has to be specified.
First, we consider the Mooney–Rivlin model (33). For this material, it is found that the defining Eq. (36) for the residually-

stressed state is independent of the material constants C and D and does not depend explicitly on the axial stretch kz; it is
given by
ln
eþ xa

xa

� �
� k2 ln eþ 1ð Þ þ eð1� xaÞ

xaðeþ xaÞ
¼ 0; ð51Þ
or, equivalently, in terms of ê,
ln êþ 1ð Þ � k2 ln 1þ êxað Þ þ ê
êþ 1

1� xa

xa

� �
¼ 0: ð52Þ
The constants in these equations now need to be specified. Matsumoto and Sato [16] measured the inner and outer radii of
five tubular segments of bovine thoracic aortas, with mean values of a = 11.48 mm and b = 17.45 mm, respectively, yielding
ê ¼ 1:310. On cutting these segments longitudinally, they found an average opening angle of a = 139�, which yields k = 1.629.
Substituting these values into (52) and solving the equation numerically yields xa = 0.5157. This value and (50)2 then yield
e = 0.6759 which, incidentally, is indeed smaller than 1/(k � 1) = 1.590, in line with the requirement (38). Finally, the outer



Fig. 2. Variation of the non-dimensional radial stress rrr and hoop stress rhh through an arterial wall modeled as a Mooney–Rivlin material. The tube is in a
residually-stressed configuration. The opening angle is taken as a = 139�.
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value of x is determined as xb = 0.7110 by (36)2, and the radial stress reaches its minimum at x = xm = 0.6139. In Fig. 2, we
plot the variations of the resulting (residual) stresses rrr and rhh, divided by the quantity ðC þ Dk2

z Þ=ðkkzÞ, as a function of x.
These figures are entirely consistent with those produced by other authors, as in, for example, Ogden [18], Raghavan et al.
[23] and Olsson et al. [20].

For our second example, we use data from an article by Delfino et al. [2], who consider measurements made on human
carotid arteries. In their experimental, theoretical, and numerical investigation of the mechanical behavior of arteries, Delf-
ino et al. [2] model the arterial wall as a homogeneous, hyperelastic, isotropic solid, exhibiting residual stress and strain-
stiffening effects. They use the opening angle method to account for the former and the Fung model for the latter. They report
the following typical values: a = 3.1 mm, b = 4.0 mm, and a = 100�. These give here ê ¼ 0:6649 and k = 1.385. Delfino et al. [2]
go on to fit pressure measurements to the predictions of the Fung strain energy density (35) and find the following material
parameters: l = 44.2 kPa, c = 8.35. It follows that xa can be determined by solving (36), which reads here as
0 ¼
Z xb

xa

cW 0
FðxÞ

1� x
dx; xb ¼

ðêþ 1Þxa

êxa þ 1
: ð53Þ
Numerically, we find that xa = 0.6701. We may then deduce the expected value for the radius of the opened sector to be
A ¼ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kkz=xa

p
¼ 4:673 mm. This comes within less than 5% of the experimentally measured radius, which is 4.41 mm [2].

4. Stability of the residually-stressed configuration

In the absence of body forces the equilibrium equation can be written quite generally as
DivS ¼ 0; ð54Þ
where S is the nominal stress tensor and Div is the divergence operator with respect to B0. For an elastic material with strain-
energy function W(F) and subject to the incompressibility constraint detF � 1, the nominal stress is given by
S ¼ @W
@F
� qF�1; ð55Þ
where q is again the Lagrange multiplier associated with the constraint. In terms of the Cauchy stress tensor r the equilib-
rium equation has the equivalent form divr = 0 and we note the connection r = FS. It was the specialization of the latter form
of the equilibrium equation to the cylindrical geometry that was used in Section 2.2. In considering the stability of the con-
figuration Br it is convenient to work in terms of the incremental form of the equilibrium equation (54) and the incremental
form of the constitutive equation (55), which we now summarize.



1220 M. Destrade et al. / International Journal of Engineering Science 48 (2010) 1212–1224
4.1. Incremental equations

Let u be a small displacement from the configuration Br and let _S be the associated increment in S. The (linearized) incre-
mental form of the constitutive equation (55) is written as
_S ¼ A _F þ q _F � _qF�1; ð56Þ
where _F and _q are the increments in F and q, respectively, and A is the fourth-order tensor of fixed-reference elastic moduli,
defined by
A ¼ @2W
@F@F

; Aaibj ¼
@2W

@Fia@Fjb
: ð57Þ
The incremental form of the equilibrium equation is then
Div _S ¼ 0: ð58Þ
Let x denote the position vector of a point in Br . Then, by updating the reference configuration from B0 to Br , we may write
the incremental equilibrium equation in Eulerian form as
div _S0 ¼ 0; ð59Þ
where
_S0 ¼ A0Cþ qC� _qI ð60Þ
is the push forward F _S of _S, C is the displacement gradient gradu, I is the identity tensor, and A0, the push-forward of A, is
the tensor of instantaneous moduli, whose components are given by A0piqj ¼ FpaFqbAaibj. For full details of these connections,
see [17]. The incremental incompressibility condition is then
trC � divu ¼ 0: ð61Þ
In the configuration Br it is appropriate to work in terms of cylindrical polar coordinates r, h, z and their associated basis
vectors er, eh, ez. Let (u,v,w) be the components of u. Then the matrix of components of C with respect to this basis is
u;r ðu;h � vÞ=r u;z
v ;r ðuþ v ;hÞ=r v ;z

w;r w;h=r w;z

264
375 ð62Þ
and the incremental incompressibility condition becomes
u;r þ
uþ v ;h

r
þw;z ¼ 0: ð63Þ
Referred to principal axes of B the non-zero components of A0 are [17]:
A0iijj ¼ kikjWij;

A0ijij ¼ ðkiWi � kjWjÞk2
i =ðk

2
i � k2

j Þ; i – j;

A0ijji ¼ A0jiij ¼ A0ijij � kiWi; i – j;

ð64Þ
(no sums on repeated indexes here), where Wj � @W/@kj and Wij � @2W/oki@kj.
In the present situation the cylindrical axes are principal axes of B and the above apply with i and j running over values r,

h, and z. The components _S0ij are then easily obtained from (60) and (62). Explicit expressions for the incremental equations
of equilibrium for a thick-walled tube in cylindrical polar coordinates can be found in Haughton and Ogden [10]. Here, how-
ever, for purposes of illustration and for simplicity we now specialize the incremental equations so that w = 0 and u and v are
independent of z, so that we consider prismatic incremental deformations. The equilibrium equation (59) reduces to two
component equations, which can be written as
ðr _S0rrÞ;r þ _S0hr;h � _S0hh ¼ 0; ðr _S0rhÞ;r þ _S0hh;h þ _S0hr ¼ 0; ð65Þ
and from (60) we obtain
_S0rr ¼ ðA0rrrr þ qÞu;r þA0rrhh
uþ v ;h

r
� _q;

_S0rh ¼ A0rhrhv ;r þ ðA0rhrh � rrrÞ
u;h � v

r
;

_S0hr ¼ A0hrhr
u;h � v

r
þ ðA0hrhr � rhhÞv ;r;

_S0hh ¼ ðA0hhhh þ qÞuþ v ;h

r
þA0rrhhu;r � _q;

ð66Þ
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and the incremental incompressibility equation (63) reduces to
u;r þ
uþ v ;h

r
¼ 0: ð67Þ
Note that use has been made of the connections
A0rhhr þ q ¼ A0rhrh � rrr ¼ A0hrhr � rhh; ð68Þ
for which Eqs. (10) and (64) have been utilized.
Note also that the components of incremental traction on a surface r = constant are _S0rr and _S0rh.

4.2. Stroh formulation

We now consider solutions of the form
fu; v; _qg ¼ fUðrÞ;VðrÞ;QðrÞgeinh; ð69Þ
where U, V, and Q are functions of r only, so that the solutions are single valued, and n = 0,1,2,3, . . . is the circumferential
number. It follows that the components _S0ij have a similar structure and we therefore write
_S0ij ¼ RijðrÞeinh; ð70Þ
say, where Rij, i, j 2 {r,h} are functions of r only. Then we obtain
Rrr ¼ ðA0rrrr þ pÞU0 þ 1
r
A0rrhhðU þ inVÞ � Q ;

Rrh ¼ ArhrhV 0 þ 1
r
ðArhrh � rrrÞðinU � VÞ;

Rhr ¼
1
r
A0hrhrðinU � VÞ þ ðA0hrhr � rhhÞV 0;

Rhh ¼
1
r
ðA0hhhh þ pÞðU þ inVÞ þ A0rrhhU0 � Q ;

ð71Þ
and the incremental incompressibility condition (67) yields
U0 ¼ �1
r

U � i n
r

V : ð72Þ
From (71) we obtain
V 0 ¼ � in
r
ð1� rÞU þ 1

r
ð1� rÞV þ Rrh

a
; ð73Þ
where we have introduced the notations
a ¼ A0rhrh; r ¼ rrr=a: ð74Þ
By using the above and then eliminating Rhr, Rhh, and Q from the equilibrium equations in favor of U, V, Rrr, and Rrh, the two
equilibrium equations yield expressions for (rRrr)0 and (rRrh)0 in terms of U, V, Rrr, and Rrh. Then, by introducing the four-
component displacement-traction vector g defined by
g ¼ ½U;V ; i rRrr; i rRrh�T ; ð75Þ
we may cast the governing equations in the Stroh form [24]
d
dr

gðrÞ ¼ i
r

GðrÞgðrÞ; ð76Þ
where the matrix G has the Stroh structure,
G ¼

i �n 0 0
�nð1� rÞ �ið1� rÞ 0 �1=a

j11 ij12 �i �nð1� rÞ
�ij12 j22 �n ið1� rÞ

26664
37775; ð77Þ
where
j11 ¼ 2bþ 2að1� rÞ þ n2 c� að1� rÞ2
h i

;

j12 ¼ n 2bþ cþ að1� r2Þ
� �

;

j22 ¼ c� að1� rÞ2 þ 2n2½bþ að1� rÞ�;

ð78Þ
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and the notations c and b are defined by
Fig. 3.
to the e
and un
closed
c ¼ A0hrhr ; 2b ¼ A0rrrr þA0hhhh � 2A0rrhh � 2A0rhhr : ð79Þ
Note that j11 + j22 = (n2 + 1)j12/n. Note also that this form of the Stroh formulation is entirely consistent with previous
forms obtained in the bending of blocks [4,3], or the compression of tubes [6], the only differences being in the actual expres-
sions of the moduli.

The above coefficients may also be conveniently expressed in terms of cW ðxÞ through the connections
a ¼ 2xcW 0ðxÞ
k2x2 � 1

; c ¼ k2x2a; b ¼ 2x2cW 00ðxÞ þ xcW 0ðxÞ � a; ð80Þ
and r is given by (19)1 and (74).
We may now devise a numerical strategy to find out whether a given open sector remains stable once closed into a tube,

as follows. The prescribed geometrical quantities are the measure of the initial sector thickness e, the measure of the opening
angle k, and the axial stretch kz. The prescribed physical quantity is the strain energy density cW ðxÞ. These quantities are re-
quired to determine xa and xb from (36). Then we integrate numerically the incremental equations (76), written as
d
dx

gðxÞ ¼ i
2xð1� xÞGðxÞgðxÞ; ð81Þ
(using (17)), and we check whether (stability) or not (instability) the inner and outer faces of the tube are left free of incre-
mental traction, i.e. whether or not
gðxaÞ ¼ ½UðxaÞ;VðxaÞ;0; 0�T ; gðxbÞ ¼ ½UðxbÞ;VðxbÞ;0;0�T : ð82Þ
This two-point boundary-value problem may run into numerical stiffness problems, especially for thick sectors, and we use
the compound matrix method [11,4] and the impedance matrix method [4] to take care of these.

4.3. Example: Mooney–Rivlin tubes

Motivated by simple experimental observations on sectors made of silicone rubbers, see Fig. 2, we now focus on tubes
made of solids with the Mooney–Rivlin strain-energy density (33). We find that
a ¼ ðCk�1
z þ DkzÞ

1
kx
; c ¼ ðCk�1

z þ DkzÞkx; 2b ¼ aþ c; ð83Þ
Annular sectors made with rubber silicone; Height: 6 cm; Inner radius: A = 3.5 cm; Outer radius: B = 7.2 cm. Two rectangles of acrylic glass are glued
nd faces of the sectors in order to bend them. On the left: an unstressed open sector with opening angle a = p/3 is closed into a residually stressed

stretched tube, and its inner curved face remains free of wrinkles. On the right: an open sector with opening angle a = 2p/3 is bent but cannot be
without the appearance of axial wrinkles on its inner face, one of which is marked by an arrow.



Fig. 4. Instability of a closed tube with Mooney–Rivlin strain energy: critical opening angle acr versus initial radii ratio B/A, for different mode numbers n.
The lowest curve – the bifurcation curve – corresponds to modes n = 8, 9, 10 (almost indistinguishable one from another). The curves of all other modes are
situated above this (n = 2, 3 are shown). The annular silicone sector on the left in Fig. 3 and the opened artery of Section 3.2 correspond to stable geometries
(Points (a) and (c)). The annular silicone sector on the right in Fig. 3 gives a point above the bifurcation curve, Point (b).
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and
r ¼ x
2
ð1� k2Þ ln x� 1

xb � 1

� �
� ln

x
xb

� �
þ 1

x
� 1

xb

� �
: ð84Þ
In the latter equation, xb is determined by solving (51) for xa, a calculation which is done independently of C, D, and kz.
It is now clear upon inspection of the incremental equations (81) that once we normalize the third and fourth compo-

nents of g with respect to the quantity ðCk�1
z þ DkzÞ, we end up with a completely non-dimensional system of differential

equations which is independent of the material parameters C and D and of the axial stretch kz. Only three parameters are
then required to determine the stability of closed-up Mooney–Rivlin tubes, namely the following geometrical quantities:
B/A, the ratio of the initial outer to inner radii; a, the opening angle; and n, the mode number.

Fig. 4 shows the variations of the critical opening angle acr (in degrees) with B/A, for different values of n. The lowest curve
represents the bifurcation curve, below which all tubes are stable. In our numerical investigation, we found that this corre-
sponds to the n = 9 curve, although the n = 8 and n = 10 curves are almost indistinguishable from it. It follows that when a
closed-up Mooney–Rivlin tube buckles, it presents at least eight wrinkles on its inner curved face. When the initial sector is
thin, B/A ? 0, it can be bent into a tube without buckling, so that acr ? 360� in that limit, for all mode numbers. This is con-
sistent with the observation that thin rectangular plates with a neo-Hookean strain energy can be bent into full circles with-
out encountering bifurcation [9].

The radii ratio of the silicone sectors in Fig. 3 is B/A = 2.06. We see that an opening angle of a = 120� is below the bifur-
cation curve, so that the corresponding sector can be closed into a tube in a stable manner; see Point (a) in Fig. 4. For an
opening angle of a = 240�, we are above the bifurcation curve (see Point (b) in Fig. 4), and wrinkles are thus predicted. Finally,
the data of Matsumoto and Sato [16], fitted to the Mooney–Rivlin strain energy, give B=A ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ xaê

p
¼ 1:29; see Section 3.2.

In that case, their measured opening angle of a = 139� is clearly below the bifurcation curve, see Point (c) in Fig. 4, and the
artery can be ‘‘closed” in a stable manner.

5. Conclusion

We have proved that the opening angle method gives a unique solution to the equations of equilibrium provided the
strain energy density of the solid is a convex function of the geometrical quantity x = 2pkz(r2/R2)/(2p � a), where kz is the
axial pre-stretch, a is the opening angle, and R, r are the initial and current radial coordinates, respectively. The convexity
is indeed met by many standard strain energy densities including the Mooney–Rivlin, Fung, and Gent models. We have also
provided an analysis of incremental prismatic deformations superimposed on the finite deformation in order to assess the
stability of the intact tube formed by the closing of the sector.
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The results are valid for homogeneous isotropic solids and are thus highly relevant to the mechanical modeling of the
closing of annular sectors into tubes made of rubber-like materials. This correlation was confirmed by our toy experiments
with sectors made of soft silicone. With respect to biomechanics, where the opening angle method is a tool widely used for
the estimation of residual stresses in arteries, we note that there are many articles in the literature where arterial walls are
modeled as being homogeneous and isotropic, as, for example, in Humphrey et al. [8] or Delfino et al. [2]. However, it is now
well established and accepted that arteries are inhomogeneous and anisotropic solids, due, in particular, to a layered struc-
ture and the presence of collagen fiber bundles. The impact of such inhomogeneity and anisotropy on our results remains to
be assessed.

Acknowledgements

This work is supported by a Senior Marie Curie Fellowship awarded by the Seventh Framework Programme of the Euro-
pean Commission to the first author, and by an E.T.S. Walton Award given to the third author by Science Foundation Ireland.
This material is based upon works supported by the Science Foundation Ireland under Grant No. SFI 08/W.1/B2580.

We are most grateful to Stephen Kiernan for taking the pictures of Fig.3.

References

[1] C.J. Chuong, Y.C. Fung, On residual stress in arteries, J. Biomech. Eng. 108 (1986) 189–192.
[2] A. Delfino, N. Stergiopulos, J.E. Moore, J.-J. Meister, Residual strain effects on the stress field in a thick wall finite element model of the human carotid

bifurcation, J. Biomech. 30 (1997) 777–786.
[3] M. Destrade, M.D. Gilchrist, J.A. Motherway, J.G. Murphy, Bimodular rubber buckles early in bending, Mech. Mater. 42 (2010) 469–476.
[4] M. Destrade, A. Nì Annaidh, C.D. Coman, Bending instabilities of soft biological tissues, Int. J. Solids Struct. 46 (2009) 4322–4330.
[5] Y.C. Fung, Biomechanics: Mechanical Properties of Living Tissue, second ed., Springer, New York, 1993.
[6] A. Goriely, R. Vandiver, M. Destrade, Nonlinear Euler buckling, Proc. Roy. Soc. A 464 (2008) 3003–3019.
[7] S.E. Greenwald, J.E. Moore, A. Rachev, T.P.C. Kane, J.-J. Meister, Experimental determination of the distribution of residual strains in the artery wall, J.

Biomech. Eng. 119 (1997) 438–444.
[8] J.D. Humphrey, H.R. Halperin, F.C.P. Yin, Small indentation superimposed on a finite equibiaxial stretch: implications for cardiac mechanics, J. Appl.

Mech. 58 (1991) 1108–1111.
[9] D.M. Haughton, Flexure and compression of incompressible elastic plates, Int. J. Eng. Sci. 37 (1999) 1693–1708.

[10] D.M. Haughton, R.W. Ogden, Bifurcation of inflated circular cylinders of elastic material under axial loading. II. Exact theory for thick-walled tubes, J.
Mech. Phys. Solids 27 (1979) 489–512.

[11] D.M. Haughton, A. Orr, On the eversion of compressible elastic cylinders, Int. J. Solids Struct. 34 (1997) 1893–1914.
[12] A. Hoger, On the residual stress possible in an elastic body with material symmetry, Arch. Ration. Mech. Anal. 88 (1985) 271–290.
[13] G.A. Holzapfel, T.C. Gasser, R.W. Ogden, A new constitutive framework for arterial wall mechanics and a comparative study of material models, J.

Elasticity 61 (2000) 1–48.
[14] G.A. Holzapfel, R.W. Ogden, Modelling the layer-specific 3D residual stresses in arteries, with an application to the human aorta, J. Roy. Soc. Interface 7

(2010) 787–799.
[15] J.D. Humphrey, Cardiovascular Solid Mechanics, Cells, Tissues, and Organs, Springer-Verlag, New York, 2002.
[16] T. Matsumoto, M. Sato, Analysis of stress and strain distribution in the artery wall consisted of layers with different elastic modulus and opening angle,

JSME Int. J. C45 (2002) 906–912.
[17] R.W. Ogden, Non-Linear Elastic Deformations, Ellis Horwood, Chichester, 1984. Reprinted by Dover, New York, 1997.
[18] R.W. Ogden, Nonlinear elasticity, anisotropy and residual stresses in soft tissue, CISM Courses and Lectures Series, vol. 441, Springer, Wien, 2003

(Lecture Notes, CISM Course on the Biomechanics of Soft Tissue in Cardiovasular Systems), pp. 65–108.
[19] R.W. Ogden, C.A.J. Schulze-Bauer, Phenomenological and structural aspects of the mechanical response of arteries, in: J. Casey, G. Bao (Eds.), Mechanics

in Biology, AMD-vol. 242/BED-vol. 46, The American Society of Mechanical Engineers, New York, 2000, pp. 125–140.
[20] T. Olsson, J. Stålhand, A. Klarbring, Modeling initial strain distribution in soft tissues with application to arteries, Biomech. Model. Mechanobiol. 5

(2006) 27–38.
[21] A. Rachev, S.E. Greenwald, Residual strains in conduit arteries, J. Biomech. 36 (2003) 661–670.
[22] A. Rachev, K. Hayashi, Theoretical study of the effects of vascular smooth muscle contraction on strain and stress distributions in arteries, Ann. Biomed.

Eng. 27 (1999) 459–468.
[23] M.L. Raghavan, S. Trivedi, A. Nagaraj, D.D. McPherson, K.B. Chandran, Three-dimensional finite element analysis of residual stress in arteries, Ann.

Biomed. Eng. 32 (2004) 257–263.
[24] A.L. Shuvalov, A sextic formalism for three-dimensional elastodynamics of cylindrically anisotropic radially inhomogeneous materials, Proc. Roy. Soc.

Lond. A459 (2003) 1611–1639.
[25] R.N. Vaishnav, J. Vossoughi, Estimation of residual strains in aortic segments, in: C.W. Hall (Ed.), Biomedical Engineering II: Recent Developments,

Pergamon Press, New York, 1983, pp. 330–333.
[26] J. Vossoughi, Z. Hedjazi, F.S. Boriss, Intimal residual stress and strain in large arteries, Proceedings of the ASME Bioengineering Conference, Bed-vol. 24,

The American Society of Mechanical Engineers, New York, 1993, pp. 434–437.
[27] M. Zidi, M. Cheref, C. Oddou, Finite elasticity modelling of vascular prostheses mechanics, Eur. Phys. J. Appl. Phys. 7 (1999) 271–275.


	On deforming a sector of a circular cylindrical tube into an intact tube: Existence, uniqueness, and stability
	Introduction
	Problem formulation
	Geometry of the deformation
	Stress components and equilibrium
	Convexity of the strain-energy function

	Existence and uniqueness of the residually-stressed configuration
	Thin-walled tubes
	Examples

	Stability of the residually-stressed configuration
	Incremental equations
	Stroh formulation
	Example: Mooney–Rivlin tubes

	Conclusion
	Acknowledgements
	References


