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a b s t r a c t

We review some pseudo-planar deformations for the equations of incompressible isotropic
nonlinear elasticity first introduced in 1985 by Rajagopal and Wineman. We extend this
class of deformations to compressible isotropic and transverse isotropic materials, and also
consider the influence of gravity. We consider some new approximate solutions and we
discuss the possible relevance of such solutions to the understanding of the complex struc-
ture of the fields equations of nonlinear elasticity, using weakly nonlinear theories.
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1. Introduction

The starting point of our discussion is the 1985 paper by Rajagopal and Wineman entitled New Exact Solutions in Non-
Linear Elasticity. In that paper some new exact solutions to boundary value problems of nonlinear elasticity were established.
These solutions constitute an important breakthrough point in the literature and to appreciate this fact, we have to review
what was going around in Continuum Mechanics and in the field of nonlinear elasticity at the time.

The origins of the modern theory of nonlinear elasticity must be related to the pioneering works of Rivlin, Green, and Ad-
kins just after World War II. These fellows were the first to elaborate a reasonable and general notation to derive the right
balance equations for nonlinear elasticity, and were the first to determine classes of exact solutions in nonlinear elasticity
(for a summary of this earlier work see [15]).1

Then in 1955, Ericksen [11] proved that homogeneous deformations are the only controllable static deformations possible
in every hyperelastic material. A controllable deformation is a deformation that is produced in a material by the application
of surface tractions alone. A controllable deformation that can be effected in every homogeneous isotropic material is re-
ferred to as a universal solution. Ericksen’s result concerning universal deformations has had a profound influence on the
development of nonlinear elasticity. For many years afterwards, there was ‘‘the false impression that the only deformations
possible in an elastic body are the universal deformations” [7]. This is not exactly true and for a list of notable exceptions see
for example the book by Ogden [30]. Currie and Hayes [7] were right to point out that after some initial interest in the search
for exact solutions in nonlinear elasticity, there followed a long period of inactivity concerning this enterprise. The paper by
Currie and Hayes [7] was the seed necessary to revitalize the search for possible solutions beyond universal solutions. The
1984 and 1985 papers by Rajagopal and Wineman were the first relevant new fruits.

In 1979, Ratip Berker proposed some new exact solutions for the Navier–Stokes equations. These are an infinite set of
non-trivial solutions for an incompressible viscous fluid contained between the two parallel infinite plates rotating with
. All rights reserved.
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constant angular velocity around the fixed normal axis. These flows are pseudo-plane flows of the first kind [1]. Rajagopal
was able to extend these solutions to a huge class of non-Newtonian fluids [34] in an elegant note [32]. Rajagopal and
Wineman [37,38] considered the solid mechanics counterpart of the Berker solutions to obtain exact non-universal solutions
for all incompressible isotropic elastic materials. This family of deformations is then generalized in [38] by considering that
the bottom and top plates rotate with different angular velocities. These deformations are admissible solutions for all
Mooney–Rivlin incompressible elastic materials.

Rajagopal has been a fine reader and connoisseur of the Berker encyclopedic article [1] where the pecularities of pseudo-
plane flows are discussed in great detail. Moreover, he established the formal analogy between the Navier–Stokes equations
and the equations determining admissible deformations for neo-Hookean solids, and thus turned the Berker article into a
formidable source of inspiration for new classes of solutions in nonlinear elasticity.

To illustrate why pseudo-plane deformations constitute an interesting class of potential solutions in nonlinear elasticity,
we consider some quantitative details. With material and spatial rectangular Cartesian coordinates (X,Y,Z) and (x,y,z),
respectively, a pseudo-plane deformation is a deformation of the form
x ¼ xðX;Y; ZÞ; y ¼ yðX; Y; ZÞ; z ¼ Z: ð1Þ
An interesting way to generate such a deformation is to consider a plane deformation solution which depends on a certain
number of arbitrary constants, a, b, c, . . ., say, and to replace these constants with functions of Z. For example, by going from
x ¼ xðX;Y; a; b; cÞ; y ¼ yðX; Y; a; b; cÞ; z ¼ Z; ð2Þ
to
x ¼ xðX;Y; aðZÞ; bðZÞ; cðZÞÞ; y ¼ yðX;Y; aðZÞ; bðZÞ; cðZÞÞ; z ¼ Z: ð3Þ
This idea was independently considered also by Hill and Shield [19] but only for neo-Hookean materials. It is in Rajagopal’s
work that it has resulted in many new exact solutions of nonlinear elastic layers. The Berker solution is reconsidered also in
[12]; a non-uniform extension of a slab of Mooney–Rivlin material is considered in [39]; the rectilinear deformation of a gen-
eral incompressible slab is considered in [27]; and not only deformations but also motions of elastic slabs are considered in
[6]. For pseudo-plane deformations and motions of the second kind [1], we refer to [17,22]. In the paper [33], the Berker [2,3]
solution is generalized to the case where the Newtonian flow is contained between the two parallel infinite porous plates.
This suggests a generalization of (1) such that
x ¼ xðX;Y; ZÞ; y ¼ yðX; Y; ZÞ; z ¼ kðZÞ: ð4Þ
This class of deformation is used in [42] to obtain new exact solution for neo-Hookean solids.
Pseudo-planar solutions of the Navier–Stokes equations have not been the only inspiring source of analogies to obtain

new solutions in nonlinear elasticity from existing solutions in fluid mechanics. By considering the celebrated Jeffrey and
Hamel convergent and divergent flows in intersecting planes [1], Rajagopal and co-workers have produced interesting defor-
mations admissible in nonlinear elasticity [14,44,35,36,26]. This class of deformations has also been considered by Klingbeil
and Shield [20], but Rajagopal has been able to flip the coin of Continuum Mechanics to transfer his fluid mechanics expertise
to solid mechanics.

The aim of this note is to push a little further the ideas of Rajagopal and investigate what happens to pseudo-planar solu-
tions in the compressible case of nonlinear isotropic and anisotropic elasticity. Hence in Section 3.1, we use (4) to study rec-
tilinear shear deformations coupled to an axial deformation of an elastic slab in the framework of compressible materials.
We show that if we take into account the weight of the elastic slab, then the rectilinear shear solutions are non-trivial. It
is usual in nonlinear elasticity theory to assume that the weight of an elastic structure is negligible when compared to elastic
forces, but here we find that for certain fields of application such as geophysics, this is not necessarily the case, especially for
thick layers. Then for incompressible materials (Section 3.2), we derive a universal relation that went unnoticed by McLeod
et al. [27] and which proves very useful in simplifying the analysis of the problem (For universal relations in the framework
of rectilinear shear see [40]). We use this class of deformations further in Section 4 to generalize some results to the case of
the rectilinear shear of a transversely isotropic elastic material. In [10] we considered orthotropic materials were the fibers
are arranged in a special plane; here, the fibers may have a general orientation in space.

In order to make progress and obtain exact solutions in nonlinear elasticity, a special constitutive assumption must be
enforced. Indeed only Ericksen’s universal solutions are valid irrespective of the choice of the strain energy density function.
Sometimes the constitutive assumptions that have been considered in the literature were followed only for reasons of math-
ematical convenience. This approach has generated a huge number of strain energy density functions that have no real con-
nection with experimental evidence. Here we use a different approach, using the so-called wealkly nonlinear theory of
elasticity. The strain energy associated with the classical linear theory of elasticity is of second-order in the Green strain; here
to investigate the nonlinear behavior of elastic materials, we use strain energies that are of the third and fourth-order in the
strain. In such a way we are able to bring out some interesting general features of nonlinear elastic materials. For example,
we show in Section 4 that the coupling among the various mode of deformations occurs at lower-order of non-linearity for
anisotropic materials than for isotropic materials.
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2. Governing equations

We call x(X) the current position of a particle which was located at X in the reference configuration. Two kinematic quan-
tities associated with this motion are the deformation gradient and the left Cauchy–Green strain tensor,
2 In n
classica
Fosdick
F ¼ @x=@X; B ¼ FFT ; ð5Þ
respectively. In Section 3, we consider hyperelastic, isotropic materials, and so we introduce the strain energy density
W = W(I1, I2, I3), where I1 and I2 are the first and second principal invariants of B, respectively, given by
I1 ¼ tr B; I2 ¼
1
2

I2
1 � trðB2Þ

h i
; ð6Þ
and I3 = J2 where J = detF. The general representation formula for the Cauchy stress tensor T reads
T ¼ b0I þ b1Bþ b�1B�1; ð7Þ
where
b0 ¼ 2J�1½I2W2 þ I3W3�; b1 ¼ 2J�1W1; b�1 ¼ �2JW2; ð8Þ
and W1 � @W/@I1, W2 � @ W/@I2, W3 � @W/@I3.
If the material is incompressible then the only admissible deformations are isochoric, i.e. J = 1 at all times, so that I3 � 1,

and W = W(I1, I2) only. In this case,
T ¼ �pI þ 2W1B� 2W2B�1; ð9Þ
where p is the yet indeterminate Lagrange multiplier introduced by the constraint of incompressibility.
The link with linear elasticity is made by defining l, the infinitesimal shear modulus, as
l ¼ 2ðW1 þW2ÞjI1¼I2¼3;I3¼1: ð10Þ
In Section 4, we consider a special class of hyperelastic anisotropic materials, namely transversely anisotropic materials, i.e.
with a single preferred direction. We call M a unit vector along this direction in the reference configuration and we introduce
the anisotropic invariant
I4 � M � CM � 1 ¼ m �m� 1; ð11Þ
where C = FTF is the right Cauchy-Green strain tensor, and m = FM.
We restrict our attention to compressible, transversely isotropic materials for which W = W(I1, I2, I3, I4). Then the constitu-

tive Eq. (7) is replaced by
T ¼ b0I þ b1Bþ b�1B�1 þ b4m�m; ð12Þ
where b4 = 2J�1W4, W4 = @W/@I4. For incompressible, transversely isotropic materials with W = W(I1, I2, I4), the representation
formula (9) is replaced with
T ¼ �pI þ 2W1B� 2W2B�1 þ 2W4m�m: ð13Þ
The balance equation of linear momentum, in the absence of body forces, reads
div T ¼ 0: ð14Þ
If we consider the presence of body forces such as gravity,2 for example, then we have
div T þ qg ¼ 0; ð15Þ
where qg is the weight per unit of volume of the body in the current configuration and q is the current mass density. By the
conservation of mass,
q0 ¼ Jq; ð16Þ

where q0 is the mass density in the reference configuration.

3. Rectilinear shear and axial stretch

Among the class of deformations in (4) a special status is detained by the deformations
x ¼ AX þ BY þ f ðZÞ; y ¼ CX þ DY þ gðZÞ; z ¼ hðZÞ; ð17Þ
onlinear elasticity we do not know of exact solutions taking into account the presence of gravity. In linear elasticity and in incremental elasticity, a
l exact solution taking gravity into account is the stretching of a bar by its own weight, see the book by Timoshenko and Goodier [45] and the article by
and Shield [13], respectively.



M. Destrade, G. Saccomandi / International Journal of Engineering Science 48 (2010) 1202–1211 1205
where A, B, C, D are constants and f, g, h are functions of Z alone. These deformations consist of two shearing deformations f(Z)
and g(Z) in the Z-direction, combined to an inhomogeneous stretch h(Z) along the Z-axis, and superimposed on a plane
homogeneous deformation.

The class of deformations (17) is not universal, but it reduces the balance equations to a system of three ordinary differ-
ential equations for any choice of the strain energy density. Moreover, at A = D = 1, B = C = 0, it is the static counterpart to the
usual longitudinal and transverse wave motions propagating along the Z-axis and polarized along the three reference axes.
For the choices h(Z) = kZ, A = D = k�1/2, B = C = 0, where k is a constant, we obtain an isochoric deformation first considered in
a dynamical context by Carroll [5], and then by Rajagopal and co-workers. In those papers, the material was incompressible,
while here we are considering both compressible and incompressible materials. Another interesting case occurs for the
choices
A ¼ D ¼ cos X; B ¼ � sin X; C ¼ sin X; hðZÞ ¼ kZ; ð18Þ
where X and k are constants. Here we recover the field studied by Rajagopal and Wineman [37,38], describing the deforma-
tion of a nonlinear elastic layer contained between two infinite parallel rigid plates, each of which undergoes the same finite
rotation.

Considering now the class of deformations (17) in all generality, we find
½F�ij ¼
A B f 0

C D g0

0 0 h0

2
64

3
75; ½F�1�ij ¼ J�1

Dh0 �Bh0 Bg0 � Df 0

�Ch0 Ah0 Cf 0 � Ag0

0 0 AD� BC

2
64

3
75; ð19Þ
where J = (AD � BC)h0 and the prime denotes differentiation with respect to Z. Also,
½B�ij ¼
A2 þ B2 þ f 02 AC þ BDþ f 0g0 f 0h0

AC þ BDþ f 0g0 C2 þ D2 þ g02 g0h0

f 0h0 g0h0 h02

2
64

3
75 ð20Þ
and
½B�1�11 ¼ J�2ðC2 þ D2Þh02;
½B�1�12 ¼ �J�2ðAC þ BDÞh02 ¼ ½B�1�21;

½B�1�13 ¼ J�2½ðAC þ BDÞg0 � ðC2 þ D2Þf 0�h0 ¼ ½B�1�31;

½B�1�22 ¼ J�2ðA2 þ B2Þh02;
½B�1�23 ¼ J�2½ðAC þ BDÞf 0 � ðA2 þ B2Þg0�h0 ¼ ½B�1�32;

½B�1�33 ¼ J�2½ðBg0 � Df 0Þ2 þ ðAg0 � Cf 0Þ2 þ ðAD� BCÞ2�: ð21Þ
The principal invariants follow as
I1 ¼ A2 þ B2 þ C2 þ D2 þ f 02 þ g02 þ h02;

I2 ¼ ðAD� BCÞ2 þ ðDf 0 � Bg0Þ2 þ ðAg0 � Cf 0Þ2 þ ðA2 þ B2 þ C2 þ D2Þh02;
I3 ¼ ðAD� BCÞ2h02: ð22Þ
Now we may compute the Cauchy stress components for compressible solids from (7) as
T11 ¼ b0 þ b1ðA
2 þ B2 þ f 02Þ þ b�1J�2ðC2 þ D2Þh02;

T22 ¼ b0 þ b1ðC2 þ D2 þ g02Þ þ b�1J�2ðA2 þ B2Þh02;
T33 ¼ b0 þ b1h02 þ b�1J�2½ðBg0 � Df 0Þ2 þ ðAg0 � Cf 0Þ2 þ ðAD� BCÞ2�;
T12 ¼ b1ðAC þ BDþ f 0g0Þ � b�1J�2½ðAC þ BDÞh02;
T13 ¼ b1f 0h0 þ b�1J�2½ðAC þ BDÞg0 � ðC2 þ D2Þf 0�h0;
T23 ¼ b1g0h0 þ b�1J�2½ðAC þ BDÞf 0 � ðA2 þ B2Þg0�h0: ð23Þ
For incompressible solids, we may use the same formulas, by replacing b0 with �p, b1 with W1, and b�1 with W2.

3.1. The compressible case

Now we write down the balance equations in the absence of body forces, Eq. (14). They reduce to
T 013 ¼ 0; T 023 ¼ 0; T 033 ¼ 0; ð24Þ
and they may readily by integrated as
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T13 ¼ ~k1; T23 ¼ ~k2; T33 ¼ ~k3; ð25Þ
where ~k1, ~k2, ~k3 are constants. This is a non-homogeneous quadratic system of three equations with constant coefficients for
the three unknowns f0, g0, h0. Once solved, it yields f0, g0, h0 as constants, showing that the only possible solutions are the trivial
homogeneous solutions. This is in contrast with the dynamic counterpart of these deformations (see [9]).

Next, consider the case where the gravity body force is present, so that qg has component�qg =�q0J�1g along the Z-direction.
Then the balance Eqs. (15) reduce to
T 013 ¼ 0; T 023 ¼ 0; T 033 ¼ q0ðAD� BCÞ�1g; ð26Þ
and they may readily by integrated as
T13 ¼ ~k1; T23 ¼ ~k2; T33 ¼ q0ðAD� BCÞ�1gZ þ ~k3; ð27Þ
where ~k1;
~k2;

~k3 are constants. In contrast to (25), this differential system admits non-homogeneous solutions.
Take the case A = D = 1, B = C = 0. Then, the governing Eqs. (27) reduce greatly, to
½b1 � b�1ðh
0Þ�2�f 0h0 ¼ ~k1;

½b1 � b�1ðh
0Þ�2�g0h0 ¼ ~k2;

b0 þ b1ðh
0Þ2 þ b�1ðh

0Þ�2½1þ ðf 0Þ2 þ ðg0Þ2� ¼ q0gZ þ ~k3: ð28Þ
To set down a boundary value problem, we consider a slab of finite thickness H along Z and of infinite extent otherwise. Then
we scale the lengths with respect to H and the b’s with respect to l, the infinitesimal shear modulus defined in (10). The non-
dimensional version of the system (28) is thus written in the domain 0 6 Z 6 1, as
Q1f 0 ¼ k1; Q 1g0 ¼ k2; ðQ 1 þ Q 2Þh
0 ¼ ðq0gH=lÞZ þ k3; ð29Þ
where
Q1 ¼ 2ðW1 þW2Þ=l; Q 2 ¼ 2ðW2 þW3Þ=l; ki ¼ ~ki=l: ð30Þ
Notice that when f0 – 0, g0 – 0, we can deduce from (29)1,2 that f0 is proportional to g0, thus reducing the dimension of the
system of ordinary differential equations. Notice also that we can differentiate (29) with respect to Z, to get the equivalent
form of the governing equations,
ðQ 1f 0Þ0 ¼ 0; ðQ1g0Þ0 ¼ 0; ½ðQ 1 þ Q 2Þh
0�0 ¼ ðq0gH=lÞ: ð31Þ
It is possible to impose Dirichlet boundary conditions by prescribing the displacements at the bottom and the top of the slab,
or Neumann boundary conditions by imposing the values of shear stresses T12, T13 and of the normal stress T33 on the faces of
the slab. Mixed boundary conditions are also possible.

Now we specialize the analysis to the Murnaghan strain energy density:
W ¼ kþ 2l
8

J2
1 þ

l
2

J2 þ
lþ 2m

24
J3

1 þ
m
4

J1J2 þ
n
8

J3; ð32Þ
where k and l are the Lamé coefficients of second-order elasticity, and l, m, n are the Murnaghan third-order constants. Here,
J1, J2, J3 are another set of independent invariants, related to the principal invariants of strain through:
J1 ¼ I1 � 3; J2 ¼ 2I1 � I2 � 3; J3 ¼ I3 � I2 þ I1 � 1: ð33Þ
For this strain energy,
Q1 ¼ 1þ kþ 2lþm
2l

J1 þ
lþ 2m

4l
J2

1 þ
m
2l

J2;

Q1 þ Q2 ¼
kþ 2l

2l
J1 þ

lþ 2m
4l

J2
1 þ

m
2l

J2: ð34Þ
To work out an explicit example, we take the deformation to be in the form f(Z) = u(Z), g(Z) = 0, h(Z) = Z + w(Z), for some func-
tions u, w of Z, so that the mechanical displacement is x � X = [u,0,w]t. Then we find that
J1 ¼ 2w0 þ ðu0Þ2 þ ðw0Þ2; J2 ¼ ðu0Þ
2
; J3 ¼ 0: ð35Þ
We also impose the displacements boundary conditions f(0) = 0,h(0) = 1, h(1) = ‘, equivalent to
uð0Þ ¼ 0; wð0Þ ¼ 0; wð1Þ ¼ ‘� 1: ð36Þ
First of all we make the connection with the solution of linear elasticity. There, u = u0, w = w0, say, where u0 and w0 are infin-
itesimal quantities, in the sense that u2

0;w
2
0 and higher powers are negligible when compared to ju0j and jw0j. At that order of

approximation, (31) reduces to
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u000 ¼ 0; w000 ¼
qgH

kþ 2l
; ð37Þ
with solution:
u0 ¼ k1Z; w0 ¼
qgH

2ðkþ 2lÞ ðZ � 1ÞZ þ ð‘� 1ÞZ; ð38Þ
where the integration constant k1 is to be determined later on, from the the stress boundary condition imposed on T13(1). It is
clear that there is a limitation to this solution in the sense that the expression for w0 must stay within the so-called ‘‘elastic
limit”, and this is not guaranteed for slabs with large thickness H. In real world applications where gravity plays a significant
role (such as geophysics), it could well be the case that a nonlinear correction is required to account for the effects of a large
layer thickness.

We now move on to the next order of elasticity theory, that is the one encompassed by the strain energy (32). To obtain a
solution for the boundary value problem, we use a simple perturbation method, by expanding the displacement as
u = u0 + u1 + � � �,w = w0 + w1 + � � �, say, in the same spirit as the method of successive approximations introduced by Signorini
[43], and later studied by many authors (see for example, Lindsay [24]). Here, u0, w0 are given by (38), ju1j and jw1j are of the
same order as u2

0 and w2
0, and higher- orders are neglected. From (31) we obtain the following system of equations,
u01 þ
kþ 2lþm

l
u00w00

� �0
¼ 0;

w01 þ
kþ 2lþm

l
ðu00Þ

2 þ 3kþ 6lþ 2lþ 4m
2l

ðw00Þ
2

� �0
¼ 0: ð39Þ
Clearly now, each component of the next order solution involves a combination of the longitudinal deformation (through w0)
and the shear deformation (through u0). Owing to the form (38) of the lower-order solutions, these equations reduce to
u001 þ
kþ 2lþm
lðkþ 2lÞ k1qgH ¼ 0;

w001 þ
3kþ 6lþ 2lþ 4m

2lðkþ 2lÞ qgH
qgH

2ðkþ 2lÞ ð2Z � 1Þ þ ð‘� 1Þ
� �

¼ 0: ð40Þ
Hence, the rectilinear shear is no longer a simple shear deformation. Here we have, according to (40)1, a quadratic variation
of u with Z,
u ¼ k1Z � kþ 2lþm
kþ 2l

qgH
2l

k1Z2; ð41Þ
and, according to (40)2, a cubic variation of w with Z, which we do not reproduce for brevity.
In his treatment of gravity seismic waves Biot [4] gives qg/l as being of the order of 2 � 10�6 m�1 for the Earth. This

means that the nonlinear correction above is of the same order as the linear solution when H � 1000 km, or about one-sixth
of the Earth radius. The value chosen by Biot is typical of common rocks such as granite, but it is unlikely to be representative
of material properties at such depths. For softer grounds such as mud or sediments, qg/l is much larger, of the order of
2.5 � 10�4 m�1 say [18], indicating that H � 8 km for the nonlinear correction to be of the same order as the linear solution.
At such depth however, consolidation has occurred and the medium is much stiffer than near the surface. The conclusion of
these estimates is that on physical grounds, we do not need to push the Murnaghan expansion to fourth-order, because
third-order nonlinear effects are simply a small correction to the linear solution.

Nonetheless, simple shear deformations are an important component of most geophysical applications. For example, they
form the basis of an explanation of the folding phenomenon [25]. Similarly, the determination of shear strength, viscosity,
and internal friction data for deep crust and upper mantle rock and mineral analogues under geophysically realistic condi-
tions of very high temperatures and pressures is required in order to interpret earthquake origins, seismic signal generation,
and explosions (see [31] and references therein) as well as the rheological evolution of the microstructure of mantle mate-
rials [23]. It is clear that in order to have a realistic geophysical picture, it is necessary to conduct a numerical investigation of
Eq. (31), and to include the effects of very high temperatures and pressures. We note that under these circumstances, the
constitutive properties of geophysical materials should quite softer than those indicated by Biot [4], leading to a critical H
much more smaller than the one we obtained above in our crude estimation. This means that the effect of gravity, and
the corresponding inhomogeneous correction predicted by the Murnaghan theory, might both have to be taken into account
after all.
3.2. The incompressible case

Here we go back to the incompressible case, a case already examined by McLeod et al. [27]. The aim of this subsection is to
show that the use of a universal relation reduces the problem to a simple formulation.
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In the incompressible case the deformation (17) must be isochoric. Here, we follow the choice of Carroll [5] and of Mcleod
et al. [27], by taking h(Z) = kZ, A = D = k�1/2, B = C = 0. We study the equations of equilibrium in the absence of body forces. In
contrast with the compressible case, non-trivial (non-homogeneous) solutions are possible, due to the effects of the Lagrange
multiplier p. Indeed, the first two equations of equilibrium lead to @p/@x = c1, @p/@y = c2, where c1 and c2 are constants.
Assuming that c1c2 – 0 excludes the possibility of trivial homogeneous deformations. Then, the determining equations for
the rectilinear shear deformation f(Z) and g(Z) are
Q1f 0 ¼ c1Z þ k1; Q 1g0 ¼ c2Z þ k2; ð42Þ
while the third equation, corresponding to (26), determines the unknown Lagrange multiplier p. We recall that gravity is a
conservative external force: it would change the form of p but would not influence the shearing deformations, which is why
we did not include it in this section.

We note that McLeod et al. [27] did not make use of the following universal relation
g0 ¼ c2Z þ k2

c1Z þ k1
f 0; ð43Þ
obtained directly from (42). With this universal relation, the discussion of boundary value problems is greatly simplified, as
we now see for the most general case of fourth-order incompressible elasticity,
W ¼ l tr ðE2Þ þA

3
tr ðE3Þ þD ðtr ðE2ÞÞ2; ð44Þ
where E = (FTF � I)/2 is the Green strain tensor, and l, A, and D are second, third-, and fourth-order elasticity constants,
respectively [16,29]. For convenience, we work with the equivalent strain energy density
WðI1; I2Þ ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ þ C20ðI1 � 3Þ2; ð45Þ
where C10, C01, and C20 are constants. At the same degree of approximation in the Green strain E, it covers (44) with the iden-
tifications [8]:
l ¼ 2ðC10 þ C01Þ; A ¼ �8ðC10 þ 2C01Þ; D ¼ 2ðC10 þ 3C01 þ 2C20Þ ð46Þ
and at C20 = 0, it also covers the Mooney–Rivlin case of McLeod et al. [27]. Then the determining Eq. (42) reduce to a coupled
system for the shear modes:
½aþ bðf 02 þ g02Þ�f 0 ¼ c1Z þ k1;

½aþ bðf 02 þ g02Þ�g0 ¼ c2Z þ k2; ð47Þ
where the scalars a and b are defined as
a ¼ 1þ ðk2 þ 2k�1 � 3Þb; b ¼ 2
C20

C10 þ C01
¼ 1þ

A
2 þD

l
: ð48Þ
We consider the following boundary conditions f(0) = f(1) = 0 and g(0) = g(1) = 0. Using symmetry arguments (see
Saccomandi [41] for details), it may then be shown that k1 and k2 are such that
½aþ bðf 02 þ g02Þ�f 0 ¼ c1 Z � 1
2

� �
;

½aþ bðf 02 þ g02Þ�g0 ¼ c2 Z � 1
2

� �
: ð49Þ
Using now the universal relation, which reads f0 = (c1/c2) g0, the problem is reduced to that of a classical rectilinear shear
deformation
aðg0Þ þ b 1þ c2
1

c2
2

� �
ðg0Þ3 ¼ c2 Z � 1

2

� �
; gð0Þ ¼ gð1Þ ¼ 0: ð50Þ
Note that at C20 = 0 we recover the solution of McLeod et al. [27] for the Mooney–Rivlin material:
gðZÞ ¼ c2

2
ZðZ � 1Þ: ð51Þ
Now we perform a perturbation scheme, as in the previous section. Hence we take g in the form g = v0 + v1 + v2 + � � �, say,
where v0 is infinitesimal, v1 is of order v2

0, v2 is of order v3
0, etc., and we take the stretch in the form k = 1 + e + e2 + � � �, where

the elongation e is infinitesimal. Then we find that the quantity a expands as a = 1 + 3b e2 + � � � and b remains the same. We
also find that the single ordinary differential Eq. (50) gives in turn,
v 00 ¼ c2 Z � 1
2

� �
; so that v0ðZÞ ¼

c2

2
ZðZ � 1Þ; ð52Þ



M. Destrade, G. Saccomandi / International Journal of Engineering Science 48 (2010) 1202–1211 1209
then
v 01 ¼ 0; so that v1 ¼ 0; ð53Þ
showing that we were right to push the expansion of W to the fourth-order, and finally, the nonlinear correction,
v 02 ¼ �b 1þ c2
1

c2
2

� �
ðv 00Þ

3 þ 3e2ðv 00Þ
� �

: ð54Þ
We thus find the solution for g as
gðZÞ ¼ c2

2
ZðZ � 1Þ 1� b

4
ðc2

1 þ c2
2Þð2Z2 � 2Z þ 1Þ þ 12e2

h i
þ � � �

� �
; ð55Þ
and for f, by integrating the universal relation, as f(Z) = (c1/c2)g(Z). Thanks to the successive approximation solutions, and to
the universal relation, we have been able to understand the role of higher order non-linearity and the coupling between the
two shear components of the pseudo-planar deformation.

4. Rectilinear shear in anisotropic materials

Let us consider a material reinforced with fibers aligned with the direction M = M1E1 + M2E2 + M3E3, where the constants
M1, M2, M3 are of the form
M1 ¼ sin h sin /; M2 ¼ sin h cos /; M3 ¼ cos h; ð56Þ
with h, the elevation and /, the azimuthal angle.
We restrict our attention to the incompressible case and the isochoric motions
x ¼ X þ f ðZÞ; y ¼ Y þ gðZÞ; z ¼ Z: ð57Þ
Then m = FM has components
½m�i ¼ M1 þ f 0M3;M2 þ g0M3;M3½ �T ; ð58Þ
so that
I4 ¼ m �m� 1 ¼ ðf 0Þ2 þ ðg0Þ2
h i

M2
3 þ 2ðf 0M1 þ g0M2ÞM3: ð59Þ
The representation formula (13) gives the following shear stress components
T13 ¼ 2ðW1 þW2Þf 0 þ 2W4M3ðM1 þ f 0M3Þ;
T23 ¼ 2ðW1 þW2Þg0 þ 2W4M3ðM2 þ g0M3Þ: ð60Þ
In passing we note that although W may be linear in I1 and I2 (as in the Mooney–Rivlin model), it may not be linear in I4,
because otherwise there would be non-zero shear stresses in the reference configuration. The balance Eqs. (14) reduce
now to
�px þ T 013ðZÞ ¼ 0; �py þ T 023ðZÞ ¼ 0; T 033ðZÞ ¼ 0: ð61Þ
The third equation here can be solved by an appropriate choice for p. The first and second equations are compatible when
T 013 ¼ 2c1; T 023 ¼ 2c2; ð62Þ
where c1 and c2 are constants. Integrating, we obtain
ðW1 þW2Þf 0 þW4M3ðM1 þ f 0M3Þ ¼ c1Z þ c3;

ðW1 þW2Þg0 þW4M3ðM2 þ g0M3Þ ¼ c2Z þ c4; ð63Þ
where c3, c4 are constants.
First, consider the case of a single shearing deformation: f0 – 0, g0 = 0, say. Then the second equation above results in
W4M3M2 ¼ c2Z þ c4; ð64Þ
which cannot be satisfied in general because W4 is not constant. Therefore a shearing deformation in a single direction is not
compatible with a general orientation of the fiber arrangement. Next, consider the combination of two shearing deforma-
tions f0g0 – 0. Clearly then, the governing Eq. (63) are compatible with a general fiber distribution in space. This observation
also holds when the angles h and / in (56) depend on Z: h = h(Z) and / = /(Z). This has of course important biomechanical
implications, because it is well established that collagen fiber bundles change their orientation in soft tissues [21].
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Now consider the standard reinforcing model for the Mooney–Rivlin solid,
W ¼ C10ðI1 � 3Þ þ C01ðI2 � 3Þ þ 1
4
cðI4 � 1Þ2; ð65Þ
where C10, C01, c are constants. Then the governing Eq. (63) read
lf 0 þ c½ðf 02 þ g02ÞM2
3 þ ðM1f 0 þM2g0ÞM3�M3ðM1 þ f 0M3Þ ¼ c1Z þ c3;

lg0 þ c½ðf 02 þ g02ÞM2
3 þ ðM1f 0 þM2g0ÞM3�M3ðM2 þ g0M3Þ ¼ c2Z þ c4; ð66Þ
where l = 2(C10 + C01). The isotropic version (at M3 = 0) of this system is a non-homogeneous linear decoupled system of
equations for f0 and g0, which may be solved for one shear deformation independently of the other. Clearly, the anisotropy
gives a coupled, nonlinear (cubic) system of equations for the shear deformations. We may say that anisotropic materials
are more sensitive than isotropic materials to nonlinear effects. For a detailed investigation of this type of sensitivity, we
refer to the works of Merodio et al. [28] and Destrade et al. [10].

5. Concluding remarks

We revisited a class of deformations previously studied into details by Rajagopal and co-workers over several papers. This
class of deformation is the pseudo-planar version of some homogeneous deformations, composed of two inhomogeneous
rectilinear shears superimposed onto an homogenous deformation.

First, we extended the class of deformations from incompressible to compressible materials, by introducing the possibil-
ity of an inhomogeneous axial stretch. In that case, the class of deformations is clearly not isochoric. In the presence of a body
force such as gravity the solutions to the problem under investigation are not trivial i.e. we have non-homogeneous defor-
mations. In the linearized case, the axial stretch and the rectilinear shear functions are uncoupled, but in the weakly non-
linear theories of elasticity, the situation becomes more intricate. At the order above linear elasticity (i.e. third-order
elasticity), we saw that the rectilinear shears are coupled to the axial stretch, although the two rectilinear shears do not
interact with each other. Presumably, we would find a fully coupled situation at the next order (fourth-order elasticity),
but it was not necessary to go that far, because we computed that those effects are negligible for commonly used values
of physical constants. This situation nonetheless revealed an important feature of the structure of the equations of nonlinear
compressible elasticity. Indeed, volume variations are very important in the general nonlinear theory. Therefore a special
mathematical compressible model which supports isochoric deformations must be seen as the exception rather than the
rule, and must be handled with care because it might give false information about the physics of compressible elastic
materials.

In the incompressible case we noticed an important universal relation, which allowed us to simplify the qualitative anal-
ysis of the determining equations for the rectilinear shear unknowns. We provided a simple approximate solution of this
problem.

Then we considered what happens in the framework of anisotropic materials, where lower-order coupling appears be-
tween the shearing deformations. This coupling is due to the presence of preferred fiber directions and may thus have inter-
esting underpinnings in biomechanical applications. Therefore it is possible to learn a lot from a simple semi-inverse
problem about the complex structure of nonlinear elasticity.

We conclude with an open problem. For the incompressible Mooney–Rivlin material, Rajagopal and Wineman [38] found
solutions to the balance equations within the class described by (17), with (18) in force when X = wZ + wo, i.e. when the an-
gles of rotation of the two bounding planes of the slab are different. We ask whether there exists a special class of compress-
ible materials for which this is possible?
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