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Abstract
In this paper, in the context of the quasi-magnetostatic approximation, we examine incremental motions superim-
posed on a static finite deformation of a magneto-elastic material in the presence of an applied magnetic field. Explicit
expressions are obtained for the associated magneto-acoustic (or magneto-elastic moduli) tensors in the case of an
incompressible isotropic magneto-elastic material, and these are then used to study the propagation of incremental
plane waves. The propagation condition is derived in terms of a generalized acoustic tensor and the results are illus-
trated by obtaining explicit formulas in two special cases: first, when the material is undeformed but subject to a uniform
bias field and, second for a prototype model of magneto-elastic interactions in the finite deformation regime. The
results provide a basis for the experimental determination of the material parameters of a magneto-sensitive elastomer
from measurements of the speed of incremental waves for different pre-strains, bias magnetic fields, and directions of
propagation.
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1. Introduction
This paper is in part motivated by the contributions of Michael Carroll to the subject of wave propagation effects
in electro-elastic and/or magneto-elastic materials, areas to which he made a range of contributions, including
the papers [1–3]. The subject has received new impetus in recent years because of the development of so-
called ‘smart materials’, for which there is a strong interaction between mechanical and electric or magnetic
responses, and, in particular, large deformations can be induced by an electric or a magnetic field, as, for
example, in magneto-sensitive elastomers. The propagation of waves in such materials is therefore clearly of
interest, but there is as yet relatively little literature that is concerned with electro-acoustic or magneto-acoustic
waves in finitely deformed and/or pre-stressed materials. Notable early exceptions are the paper by Yu and
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Tang [4], which examined some limited aspects of waves in an infinite conducting magneto-elastic material
subject to specific initial stresses, and two papers by De and Sengupta [5, 6], in which surface and interfacial
waves in an initially stressed conducting magneto-elastic material were studied. The formulation used in each
case was rather specialized, however.

A review of the state-of-the-art in the propagation of waves in magneto-elastic materials up to 1981 was
provided by Maugin [7], in which paper the general equations governing magneto-elastic waves in deformable
materials were developed, including, inter alia, the effects of finite deformation. Subsequent contributions have
included the analysis of Abd-Alla and Maugin [8], which used the general nonlinear equations of magneto-
acoustics in the study of surface waves, the work of Boulanger [9] on inhomogeneous plane waves, and that
of Hefni et al. [10] on the nonlinear analysis of surface waves in an electrically conducting isotropic magneto-
elastic half-space with a finite and constant magnetic field normal to the sagittal plane.

With this background in mind a general formulation of the equations governing electromechanical inter-
actions in the finite deformation regime was reviewed by Ogden [11] and applied briefly to the analysis of
plane harmonic waves in a non-conducting magneto-elastic material within the quasi-magnetostatic approxi-
mation. This was in part based on and facilitated by the compact Lagrangian (or referential) formulation of the
equations governing magneto-elastostatic interactions established by Dorfmann and Ogden [12]. In the static
context the latter formulation was used in the construction of the constitutive laws and equations governing
linearized incremental deformations superimposed on a finite deformation and an applied magnetic field (often
referred to as a bias field) in a magneto-elastic material by Otténio et al. [13] and employed in studying the
combined effects of finite deformation and a magnetic field on the stability of a half-space. In the present paper
we develop further the analysis in the paper by Ogden [11] by providing a general three-dimensional analysis of
incremental plane waves in an incompressible isotropic magneto-elastic material that is subject to both a finite
deformation and a finite magnetic field.

In Section 2 the basic equations governing static magneto-elastic interactions under finite deformations are
summarized. This is followed in Section 3 by a derivation of the equations governing incremental motions
and the accompanying incremental magnetic field. The incremental constitutive equations involve fourth-order,
third-order, and second-order magneto-elastic ‘moduli’ tensors that embody the material properties, and explicit
expressions are given for these in the case of a general incompressible isotropic magneto-elastic material.

Section 4 is devoted to the study of incremental plane waves in an incompressible isotropic magneto-elastic
material on the basis of the equations summarized in Section 3. This is enabled by the introduction of a gener-
alized acoustic tensor that governs the wave speed and the polarization of the mechanical displacement wave.
Some algebraic manipulations enable us to find a symmetric representation of the acoustic tensor, leading to two
possible transverse waves with mutually orthogonal polarizations. The possibility of combining these waves to
form a circularly-polarized wave is also discussed. The magnetic (induction) polarization vector is determined
by a separate equation once the wave speed and mechanical polarization are found. These general results are
then applied in two illustrative cases, for which the generalized acoustic tensor takes on relatively simple forms.
We consider the propagation of plane waves, first in an undeformed material in the presence of a uniform bias
magnetic field, and second in a homogeneously deformed material governed by a magneto-elastic constitutive
law that is based on the Mooney–Rivlin material used in rubber elasticity, again in the presence of a uniform
magnetic field. The latter constitutive law can be considered as a simple prototype model for describing the
properties of magneto-sensitive elastomers. Explicit formulas for the wave speed and polarization vectors are
given and in some situations it is noted that the magnetic (induction) polarization vanishes, i.e. there is no dis-
turbance to the underlying (bias) magnetic field by the mechanical wave. Section 5 contains a brief concluding
discussion.

2. Finite elastic deformations in the presence of a magnetostatic field
We consider a magneto-elastic material, initially at rest in an unloaded and stress-free reference configuration
in the absence of an external magnetic field. We denote this configuration by Br. The material is subjected to
the combined effects of a finite time-independent deformation, described by the deformation gradient tensor
F, and a time-independent magnetic field vector H and associated magnetic induction vector B. The resulting
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current configuration is labelled B. We consider the material to be incompressible, so that det F = 1, and we
denote by ρ its mass density. In the equilibrium configuration B the total Cauchy stress tensor τ satisfies the
equation

divτ = O (1)

in the absence of mechanical body forces, while H and B satisfy the reduced Maxwell equations

curlH = O, divB = 0 (2)

appropriate for magnetostatics, assuming that there are no free currents. In the above and in what follows div
and curl denote the usual vector differential operators (with respect to B).

By defining the total nominal stress by T = F−1τ (for an incompressible material) and the Lagrangian
counterparts of H and B by

H l = FTH , Bl = F−1B, (3)

we may recast Equations (1) and (2) in Lagrangian form as

DivT = O, CurlH l = O, DivBl = 0, (4)

where Div and Curl are the Lagrangian counterparts of div and curl (with respect to Br), remembering that the
incompressibility constraint det F = 1 is in force.

There are many different ways in which the constitutive law for a magneto-elastic material may be for-
mulated, but here we follow the formulation of Dorfmann and Ogden [12], which is based on a total energy
function, denoted by " and defined per unit reference volume and expressed as a function of F and Bl:

" = " (F, Bl) . (5)

Then, T and H l are given by the simple formulas

T = ∂"

∂F
− pF−1, H l = ∂"

∂Bl
, (6)

where p is a Lagrange multiplier necessitated by the incompressibility constraint.
For an incompressible magneto-elastic material which is initially isotropic, it can be shown (see, for exam-

ple, Dorfmann and Ogden [12]) that " is a function of five independent invariants of the deformation and
magnetic induction vector. The five invariants

I1 = trc, I2 = 1
2 [(trc)2 − tr(c2)], I4 = Bl · Bl, I5 = Bl · cBl, I6 = Bl · c2Bl (7)

are typically used, where c = FTF is the right Cauchy–Green deformation tensor. Then, T and H l may be
expanded in the forms

T = −pF−1 + 2"1FT + 2"2(I1FT − cFT) + 2"5Bl ⊗ FBl + 2"6(Bl ⊗ FcBl + cBl ⊗ FBl), (8)

and
H l = 2("4Bl + "5cBl + "6c2Bl), (9)

where "k = ∂"/∂Ik , k = 1, 2, 4, 5, 6. Their Eulerian counterparts are

τ = −pI + 2"1b + 2"2(I1b − b2) + 2"5B ⊗ B + 2"6(B ⊗ bB + bB ⊗ B), (10)

and
H = 2("4b−1B + "5B + "6bB), (11)

where b = FFT is the left Cauchy–Green tensor.

 at NUI, Galway on August 19, 2011mms.sagepub.comDownloaded from 



Destrade and Ogden 597

3. Superimposed incremental motions
Superimposed on the static state described above we now consider an infinitesimal incremental motion for
which the displacement, denoted u = u(x, t), is accompanied by an increment in the magnetic induction field
and hence, via the constitutive equations (6) and, as appropriate, their isotropic specializations, induced incre-
ments in T and H l. Here we are considering the quasi-magnetostatic approximation, so that time derivatives
of the magnetic field and any electric field are neglected. Let a superposed dot indicate an increment. Then,
the increments in F, T , Bl, and H l are denoted by Ḟ, Ṫ , Ḃl, and Ḣ l, respectively. We now refer these to the
configuration B by the push-forward operations ḞF−1 ≡ L ≡ gradu, FṪ ≡ Ṫ0, FḂl ≡ Ḃl0, and F−TḢ l ≡ Ḣ l0,
wherein the symbols with the attached subscript 0 and the displacement gradient L are defined.

The incremental forms u and Ḃl0 of the basic independent variables satisfy the incremental incompressibility
condition and the incremental counterpart of (2)2, which are, respectively,

divu = 0, divḂl0 = 0, (12)

while, on taking the increments of (6) and using the push-forward operations indicated above, we obtain the
incremental constitutive laws

Ṫ0 = A0L + C0Ḃl0 − ṗI + pL, Ḣ l0 = CT
0 L + C0Ḃl0, (13)

where A0, C0, and C0 are, respectively, fourth-, third-, and second-order tensors that depend on the material
properties. Note that A0 is a generalization of the elasticity tensor in conventional elasticity theory, C0 is a
generalization of the inverse of the permeability tensor in magnetostatics, while C0 is a generalized magneto-
elastic coupling tensor. The (Cartesian) components of these tensors are defined by

A0piqj = FpαFqβ

∂2"

∂FiαFjβ
, C0ip|q = FpαF−1

βq
∂2"

∂BlβFiα
, C0ij = F−1

αi F−1
βj

∂2"

∂BlαBlβ
, (14)

where F−1
αi = (F−1)αi and the usual summation convention for repeated indices is used. We note the symmetries

A0piqj = A0qjpi, C0ip|q = C0pi|q, C0ij = C0ji. (15)

Particular care is needed in using C0pi|q since it could also be written C0q|pi by interchanging the partial deriva-
tives in (14)2. The vertical bar is used to separate the pair of indices associated with the deformation gradient
and the single index associated with the magnetic induction. See Otténio et al. [13] for a derivation of these
expressions in the purely static context, albeit in a different notation.

The incremental equation of motion is
DivṪ = ρu,tt, (16)

where ,t is the material time derivative, and the incremental form of Equation (4) is CurlḢ l = O. When
expressed in push-forward form on use of (13) and the incompressibility condition (12) these give

div(A0L + C0Ḃl0) − grad ṗ + LTgradp = ρu,tt, curl(CT
0 L + C0Ḃl0) = O. (17)

For an isotropic material the components (14) can be expressed in terms of the derivatives of " with respect
to the invariants (7). Using the results of Otténio et al. [13] we find in turn

A0piqj = 2
{
"1δijbpq + "2

[
2bipbjq − biqbjp − bijbpq + I1δijbpq − δij(b2)pq

]
+ "5δijBpBq

+ "6
[
δij(bB)pBq + δij(bB)qBp + bpqBiBj + bjpBiBq + biqBjBp + bijBpBq

]}

+ 4
{
"11bipbjq + "22(I1b − b2)ip(I1b − b2)jq + "12

[
bip(I1b − b2)jq + bjq(I1b − b2)ip

]

+ "15
(
bipBjBq + bjqBiBp

)
+ "25

[
BiBp(I1b − b2)jq + BjBq(I1b − b2)ip

]

+ "55BiBjBpBq + "66
[
(bB)iBp + (bB)pBi

] [
(bB)jBq + (bB)qBj

]

+ "16
[
bipBq(bB)j + bipBj(bB)q + bjqBp(bB)i + bjqBi(bB)p

]

+ "26
[
(I1b − b2)ip

[
(bB)jBq + (bB)qBj

]
+ (I1b − b2)jq

[
(bB)iBp + (bB)pBi

]]

+ "56
[
BiBpBq(bB)j + BiBpBj(bB)q + BjBqBp(bB)i + BjBqBi(bB)p

]}
, (18)
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C0ip|q = 2
{
"5(δpqBi + δiqBp) + "6

[
δiq(bB)p + δpq(bB)i + bpqBi + biqBp

]}

+ 4
{
"14bip(b−1B)q + "24(I1b − b2)ip(b−1B)q + "45BiBp(b−1B)q

+ "46
[
(bB)iBp + (bB)pBi

]
(b−1B)q + "15bipBq + "25(I1b − b2)ipBq

+ "55BiBpBq + "56
[
(bB)iBpBq + (bB)pBiBq + (bB)qBiBp

]
+ "16bip(bB)q

+ "26(I1b − b2)ip(bB)q + "66
[
(bB)iBp + (bB)pBi

]
(bB)q

}
, (19)

and

C0ij = 2
[
"4(b−1)ij + "5δij + "6bij

]
+ 4

{
"44(b−1B)i(b−1B)j + "45

[
(b−1B)iBj

+ (b−1B)jBi
]
+ "46

[
(b−1B)i(bB)j + (b−1B)j(bB)i

]
+ "55BiBj

+ "56
[
(bB)iBj + (bB)jBi

]
+ "66(bB)i(bB)j

}
, (20)

where "jk = ∂2"/∂Ij∂Ik , j, k ∈ {1, 2, 4, 5, 6}.

4. Plane waves
We now consider the basic (underlying) configuration to be uniform, consisting of a homogeneous deformation
and a uniform magnetic field, so that p is also uniform, the term in gradp in the equation of motion (17)1

vanishes, and the tensors A0, C0, C0 are constants. Moreover, we focus on the propagation of bulk infinitesimal
homogeneous plane waves whose direction of propagation is defined by the unit vector n. We denote the wave
speed by v. Thus, we seek solutions of the incremental equations (17) in the form

u = mf (n · x − vt), Ḃl0 = qg(n · x − vt), ṗ = P(n · x − vt), (21)

where m and q are constant unit vectors in the directions of linearized polarizations for the mechanical and
magnetic induction parts of the wave, respectively, and f , g, and P are single-variable functions of the argument
n · x − vt.

4.1. Magneto-acoustic tensors

On use of Equations (21) the Equations (12) yield

m · n = 0, q · n = 0, (22)

showing that both the incremental displacement and magnetic induction are transverse to the direction of
propagation.

The incremental equations (17) can now be put in the form

Q(n)mf ′′ + R(n)qg′ − P′n = ρv2mf ′′, n ×
[
R(n)Tmf ′′ + C0qg′] = O, (23)

where a prime signifies differentiation with respect to the considered argument and the components of Q(n),
the acoustic tensor, and of R(n), the magneto-acoustic tensor, are given by

[Q(n)]ij = A0piqjnpnq, [R(n)]ij = C0ip|jnp. (24)

Note that, by (15), Q(n) is a symmetric second-order tensor, but in general R(n) is not symmetric.
Now, by taking the dot product of (23)1 with n we obtain an expression for P′, which is

P′ = [n · Q(n)m]f ′′ + [n · R(n)q]g′. (25)

Also, by noting that it follows from (23)2 that

R(n)Tmf ′′ + C0qg′ = αn, (26)
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for some scalar α, and taking the dot product of this with n we obtain

α = [n · R(n)Tm]f ′′ + (n · C0q)g′. (27)

Substituting the expressions for P′ and α back into Equations (23)1 and (26), respectively, we find

Î(n)Q(n)mf ′′ + Î(n)R(n)qg′ = ρv2mf ′′, Î(n)RT(n)mf ′′ + Î(n)C0qg′ = O, (28)

where Î(n) = I − n ⊗ n is the symmetric projection tensor on to the plane normal to n and is therefore the
two-dimensional identity tensor in that plane. It has the properties

Î(n)2 = Î(n), Î(n)n = O, Î(n)m = m, Î(n)q = q. (29)

Using these properties we may rewrite (28) as

Q̂(n)mf ′′ + R̂(n)qg′ = ρv2mf ′′, R̂(n)Tmf ′′ + Ĉ0(n)qg′ = O, (30)

where
Q̂(n) ≡ Î(n)Q(n)̂I(n), R̂(n) ≡ Î(n)R(n)̂I(n), Ĉ0(n) ≡ Î(n)C0̂I(n) (31)

are the projections of the (three-dimensional) tensors Q(n), R(n), and C0, respectively, on to the two-
dimensional vector space normal to n.

Let us assume that the incremental permeability tensor is positive definite and hence that its inverse C0

is also positive definite. It follows that Ĉ0(n) is positive definite on the two-dimensional space normal to n.
Equation (30)2 then yields

qg′ = −Ĉ0(n)−1R̂(n)Tmf ′′, (32)

and hence, on substitution of this into (30)1, we obtain the equation

"̂(n)m = ρv2m, (33)

where
"̂(n) ≡ Q̂(n) − R̂(n)Ĉ0(n)−1R̂(n)T, (34)

which is a generalized acoustic tensor, sometimes referred to as the Green–Christoffel or simply Christoffel
tensor.

We remark that the Christoffel tensor "̂(n) in the eigenvalue problem (33) is symmetric, which ensures that
the eigenvalues ρv2 are real and that the corresponding eigenvectors m are mutually orthogonal in the plane
normal to n. Moreover, since "̂(n) is a two-dimensional operator there are at most two such eigenvalues. The
eigenvalues are guaranteed to be positive (and hence the wave speeds real) if the inequality

m · "̂(n)m > 0 (35)

holds for all unit vectors n, m such that n · m = 0. This is a generalization of the so-called strong ellipticity
condition arising in pure elasticity theory, which, for an incompressible material, takes the form m ·Q̂(n)m > 0.
Note that since the eigenvalues ρv2 correspond to specific eigenvectors m for a given n their positiveness does
not in general ensure that (35) holds for all unit vectors m satisfying n · m = 0.

By way of application of the above analysis we consider two examples: first, we investigate the propagation
of waves in an undeformed magneto-elastic material in the presence of a finite applied magnetic field (often
referred to as a bias field); second, when there are both a finite deformation and a bias field present, we special-
ize the general analysis above to a prototype model that is appropriate for the description of magneto-sensitive
elastomers.
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4.2. Results for an undeformed material subject to a bias field

When the material is undeformed (F = I) but subject to a uniform magnetic field the components of the moduli
tensors are greatly simplified. For the tensor of elastic moduli we obtain

A0piqj = α1δipδjq + α2δijδpq + α3δiqδjp + α4
(
δipBjBq + δjqBiBp

)
+ α5δijBpBq

+ α6(δpqBiBj + δjpBiBq + δiqBjBp) + α7BiBjBpBq, (36)

where the coefficients α1, . . . , α7 are constants given by

α1 = 4("11 + 4"22 + 4"12 + "2), α2 = 2("1 + "2), α3 = −2"2, α5 = 2("5 + 3"6),
α4 = 4("15 + 2"25 + 2"16 + 4"26), α6 = 2"6, α7 = 4("55 + 4"56 + 4"66), (37)

all the derivatives of " being evaluated for F = I . Similarly, for the tensor C0, we find

C0ip|q = γ1(δpqBi + δiqBp) + γ2BiBpBq + γ3δipBq, (38)

where

γ1 = 2("5 + 2"6), γ2 = 4("45 + 2"46 + "55 + 3"56 + 2"66),
γ3 = 4("14 + 2"24 + "15 + 2"25 + "16 + 2"26), (39)

and, for C0,
C0ij = c1δij + c2BiBj, (40)

where
c1 = 2("4 + "5 + "6), c2 = 4("44 + 2"45 + 2"46 + "55 + 2"56 + "66). (41)

Now, on substitution of these expressions into the definitions (31), we find that all three tensors Q̂(n), R̂(n),
and Ĉ0(n) have the same structure, and are given by

Q̂(n) = q1̂I + q2B̂ ⊗ B̂, R̂(n) = (B · n)(γ1̂I + γ2B̂ ⊗ B̂), Ĉ0(n) = c1̂I + c2B̂ ⊗ B̂, (42)

where B̂ = ÎB and

q1 = 2("1 + "2) + 2("5 + 3"6) (B · n)2 , q2 = 2"6 + 4("55 + 4"56 + 4"66) (B · n)2 . (43)

We can easily derive the inverse of Ĉ0(n) as

Ĉ0(n)−1 = 1
c1

Î − c2

c1
(
c1 + c2B̂ · B̂

) B̂ ⊗ B̂, (44)

and then the Christoffel tensor is obtained as

"̂(n) = âI + bB̂ ⊗ B̂, (45)

where

a = q1 − γ 2
1

c1
(B · n)2 , b = q2 − γ 2

2

c2
(B · n)2 − (c1γ2 − c2γ1)2

c1c2
(
c1 + c2B̂ · B̂

) (B · n)2 . (46)

This decomposition yields the two eigenvalues

ρv2 = a, ρv2 = a + b B̂ · B̂. (47)

When these eigenvalues are substituted into the Equation (33) we obtain the associated eigenvectors m. For
ρv2 = a we obtain either B̂ · m = 0 or b = 0, while for ρv2 = a + b B̂ · B̂ there are three possibilities: b = 0 or
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B̂ = O or, provided B̂ '= O and B̂ · m '= 0, m is aligned with B̂. These options are embraced by the following
discussion.

The first special case to consider is that of a wave travelling in a direction orthogonal to the magnetic
induction vector, so that B · n = 0. Then, by (42)2, R̂(n) = O, and it follows from (30)2 that g′ = 0. Thus, in
this case there is no incremental magnetic field, and the two wave speeds reduce to

ρv2 = 2("1 + "2), ρv2 = 2("1 + "2) + 2 "6 B̂ · B̂. (48)

If B̂ '= O these are distinct provided "6 '= 0. If "6 = 0 then circularly-polarized waves are possible, as will be
discussed in the next section. Note that if B = O then ρv2 = 2("1 + "2) ≡ µ is a repeated root corresponding
to the classical elastic shear wave, where µ is the shear modulus of the material.

The second special case concerns wave propagation in the direction of the applied magnetic induction vec-
tor, so that B̂ = O and n · B '= 0. The two eigenvalues of the Christoffel tensor are then the same, leading
to the conclusion that a circularly-polarized wave can always propagate in the direction of B in an unde-
formed magneto-elastic material. Moreover, g′ '= 0 and the incremental mechanical motion is coupled with an
incremental magnetic field, except in the special case for which "5 + 2"6 = 0.

A third special case can arise if b = 0, as indicated above, which can obtain under specific constitu-
tive assumptions, an example of which is discussed in the following section: circularly-polarized waves can
propagate in any direction in such a magneto-elastic material in the undeformed configuration.

In the general case, for which n·B '= 0, n×B '= O, b '= 0, there are two linearly-polarized transverse waves,
which may be combined to form an elliptically-polarized (but not circularly-polarized) wave. One is polarized
in the direction of n×B and travels with speed [a/ρ]1/2; the other is polarized in the direction B̂ = B− (B ·n)n
and travels with speed [(a + bB̂ · B̂)/ρ]1/2. The existence of these waves is guaranteed if the strong ellipticity
condition (35) holds. For the present specialization (35) reduces to

["̂(n)m] · m = a + b(B̂ · m)2 > 0 for all unit vectors m, n such that m · n = 0, (49)

where a and b depend on n through the product B · n. By choosing m so that B̂ · m = 0 and m = B̂/|B̂| in turn
it follows, in particular, that

a > 0, a + bB̂ · B̂ > 0. (50)

In each case, g′ '= 0 and the polarization of the incremental magnetic induction vector is aligned with that of
the incremental mechanical wave, i.e. q = ±m. In this particular example it is easy to show that the inequalities
(50) imply the strong ellipticity inequalities (49).

4.3. Results for a Mooney–Rivlin magneto-elastic material

For the second illustration of the general results we focus on a prototype form of the total energy function ",
which we refer to as the Mooney–Rivlin magneto-elastic material. This is given by

" = 1
2 C(I1 − 3) + 1

2 D(I2 − 3) + 1
2κI4 + 1

2νI5, (51)

where C, D, κ , and ν are constants. Using (18), (19), (20), (24), and (31), specialized in respect of (51), we
obtain the expressions

Q̂(n) =
[
C(n · bn) + ν(B · n)2] Î + Db̂−1, R̂(n) = ν(B · n)̂I , Ĉ0(n) = κ b̂−1 + ν̂I , (52)

where the hat denotes the projection of a tensor on to the two-dimensional vector space normal to n.
In order to proceed we need the inverse of Ĉ0(n). This is obtained by using the two-dimensional Cayley–

Hamilton theorem in the form

Ĉ0(n) − [trĈ0(n)]̂I + [det Ĉ0(n)]Ĉ0(n)−1 = O, (53)
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which yields

Ĉ0(n)−1 = ν + κi1
ν2 + νκi1 + κ2i2

Î − κ

ν2 + νκi1 + κ2i2
b̂−1, (54)

where i1 = tr(b̂−1) and i2 = det(b̂−1). On substituting the expressions (52) into (34) we obtain the appropriate
specialization of the generalized acoustic tensor as

"̂(n) = Cn · (bn)̂I + Db̂−1 + νκ(B · n)2

ν2 + νκi1 + κ2i2
(κi2̂I + νb̂−1). (55)

Next, we take the dot product of Equation (33) with k ≡ n × m, where (m, k, and n) forms an orthonormal
basis. This yields the condition

m · b̂−1k = m · b−1k = 0, (56)

which means that m and k are along the principal axes of the elliptical section of the ellipsoid x · b−1x = 1
cut by the plane n · x = 0 (see Boulanger and Hayes [14]). This is exactly the same situation as for the purely
elastic Mooney–Rivlin material: two transverse waves may propagate in any direction n in the deformed solid,
one polarized along m, the other along k.

Finally, on taking the dot product of Equation (33) with m and using (55) gives the squared wave speed, say
v2

m, via

ρv2
m = C(n · bn) + νκ2i2

ν2 + νκi1 + κ2i2
(B · n)2 +

[
D + ν2κ(B · n)2

ν2 + νκi1 + κ2i2

]
(m · b−1m), (57)

which is easily shown to be an eigenvalue of (33) in the considered specialization. This expression can be
simplified by noting that (56) implies

i1 = m · b̂−1m + k · b̂−1k = m · b−1m + k · b−1k,

i2 =
(

m · b̂−1m
) (

k · b̂−1k
)

=
(
m · b−1m

) (
k · b−1k

)
, (58)

and hence we obtain

ρv2
m = C(n · bn) + D(m · b−1m) + νκ(m · b−1m)

ν + κ(m · b−1m)
(B · n)2 . (59)

Here we note that we recover the result for the purely elastic case given by Boulanger and Hayes [14] not
only when there is no applied magnetic induction (B = O), but also when the wave propagates in the plane
normal to the magnetic induction (B · n = 0). We also recover, by setting D = 0, the expression established
by Ogden [11] for a neo-Hookean magneto-elastic material. Equation (59) provides a theoretical basis for
determining the material constants by measuring the wave speed under different pre-strains and bias fields and
hence an assessment of the magneto-acoustoelastic effects.

We remark that vk , the speed of the other wave propagating in the same direction, has a similar expression
to (59), with m replaced by k. Using (57), we find that the difference in the squared wave speeds is given by

ρ(v2
m − v2

k) =
[

D + ν2κ(B · n)2

ν2 + νκi1 + κ2i2

]
(m · b−1m − k · b−1k). (60)

This expression provides an indication of the directions of the acoustic axes, along which circularly-polarized
waves propagate. They correspond to a double root of the Christoffel tensor, when vm = vk , which is clearly
equivalent to m · b−1m = k · b−1k. This condition means that the acoustic axes are along the normals to the
planes of central circular section of the x · b−1x = 1 ellipsoid. Note that, for a general ellipsoid, amongst all the
planes through its center only two cut the ellipsoid in a circle; these are the planes of central circular section.
The directions of the acoustic axes are thus dictated entirely by geometrical nonlinearities since they depend
only on the pre-strain and not on any of the material parameters C, D, κ , or ν. We refer to Boulanger and
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Figure 1. Depiction of the circles of central circular section on the ellipsoid x · b−1x = 1 with the left Cauchy–Green deformation
tensor b diagonal with entries in the proportion 4: 9: 1. The acoustic axes, along which circularly-polarized bulk waves may propagate,
are the normals to the two circles in the case of a Mooney–Rivlin magneto-elastic material, independently of the values of its four
material parameters.

Hayes [14] for a detailed discussion of acoustic axes in the purely elastic case, which coincide with the acoustic
axes in the present situation. See Figure 1 for an illustration.

Note that in the undeformed specialization, b = I , and then

ρv2
m = ρv2

k = C + D + νκ

ν + κ
(B · n)2 , (61)

in agreement with the results of the previous section (since b = 0 here).
To complete the picture, we must determine the incremental magnetic induction, using (32). We obtain

(ν2 + νκi1 + κ2i2)g′q = −ν(B · n)
[
(ν + κi1)m − κ b̂−1m

]
f ′′. (62)

In the special case for which the wave propagates in a direction normal to the magnetic induction, B · n = 0
and hence g′ = 0, i.e. there is no incremental magnetic induction field. Otherwise, we see from the above that
q is parallel to m since, according to (56), the only non-zero component of b̂−1m is along m. Thus, q = ±m,
i.e. the mechanical and magnetic polarizations are aligned.

5. Concluding remarks
In Section 4 we have derived an explicit expression for the Green–Christoffel tensor governing the propagation
of small-amplitude magneto-elastic waves in a magneto-sensitive hyperelastic solid subject to a finite pre-strain
and a magnetic bias field. Although the acoustic tensor for an incompressible material is not symmetric a priori,
it is always possible to obtain an equivalent, symmetric representation, by projecting all tensors on to the vector
space normal to the direction of propagation. This has been established in general for internally constrained
elastic solids by Scott and Hayes [15], and we were able to extend the symmetrization process to the present
context of magneto-elastic coupling. As a consequence, the resulting Christoffel tensor is two-dimensional, and
the propagation of waves is governed by a symmetric second-order eigenvalue problem, which can always be
solved explicitly and entirely.

The two examples of the application of this eigenvalue problem presented here provide a theoretical basis
for determining the material constants by measuring the wave speed under different pre-strains and bias fields
and hence an assessment of the magneto-acoustoelastic effects. The following protocol can be employed. First,
apply a magnetic bias but maintain the solid in an undeformed state; then, Equation (47) gives a direct way of
evaluating the constants a and b. A revealing specialization occurs when the wave propagates along a normal to
the applied magnetic induction vector. Then, the speeds of the two transverse waves should be distinct according
to (48) unless "6 = 0. If they are equal, then the prototype (51) is a candidate for the modelling of the material
in question, and its material parameters C, D, κ , and ν can be determined by using formula (59) under varying
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values for n, b, and B. In particular, the directions of the acoustic axes should not change when |B| varies at
fixed n, b, and B/|B|. Otherwise, a different, more sophisticated candidate must be considered in order to model
the material properties.
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