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SUMMARY

Finite element simulations of rubbers and biological soft tissue usually assume that the material being
deformed is slightly compressible. It is shown here that, in shearing deformations, the corresponding normal
stress distribution can exhibit extreme sensitivity to changes in Poisson’s ratio. These changes can even lead
to a reversal of the usual Poynting effect. Therefore, the usual practice of arbitrarily choosing a value of
Poisson’s ratio when numerically modelling rubbers and soft tissue will, almost certainly, lead to a signifi-
cant difference between the simulated and actual normal stresses in a sheared block because of the difference
between the assumed and actual value of Poisson’s ratio. The worrying conclusion is that simulations based
on arbitrarily specifying Poisson’s ratio close to 1=2 cannot accurately predict the normal stress distribution
even for the simplest of shearing deformations. It is shown analytically that this sensitivity is caused by
the small volume changes, which inevitably accompany all deformations of rubber-like materials. To min-
imise these effects, great care should be exercised to accurately determine Poisson’s ratio before simulations
begin. Copyright © 2011 John Wiley & Sons, Ltd.
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1. INTRODUCTION

When solid rubber-like materials are assumed to be incompressible so that only isochoric (i.e.
volume preserving) deformations are allowed, then the theory of nonlinear elasticity is known to
be extremely effective in providing analytical predictions for their mechanical response when both
the original geometry and boundary conditions are simple. These analytical solutions include shear,
torsion, bending, straightening and inflation (see, e.g. Rivlin [1], Green and Zerna [2] or Ogden [3]).
To analyse more complex problems, use of finite element (FE) simulations is usually necessary.
However, in most commercial FE codes, incompressibility is not assumed ab initio in order to
prevent element locking (see, e.g. [4–6]). Thus, in FE analyses, slight compressibility is usu-
ally assumed, and the solution for fully incompressible materials is obtained in a limit process if
necessary (see, e.g. [6–9]). Indeed, because all solid rubbers are, to some extent, compressible,
models for slight compressibility have been investigated independently of any FE considerations
(see, e.g. Ogden [3], Horgan and Murphy [10–13] and references cited therein).

Rubber components are often subjected to shearing deformations in applications, and biological
soft tissue is often sheared in vivo (see, e.g. LeGrice et al. [14] for a discussion on shear strain in
the left ventricular myocardium or Horgan and Murphy [15] on the simple shearing of tissues). It is
therefore essential that accurate, reliable and efficient models be available to predict shear behaviour.
In a recent paper, Gent et al. [16] conducted some numerical simulations using the commercial code
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ABAQUS of the simplest possible shearing deformation, where one face of a block, modelled as a
compressible neo-Hookean solid, is displaced relative to the parallel face. This shearing deformation
will be called here experimental simple shear. One set of their results is puzzling: in their Figures 12
and 13, an infinitesimal change in Poisson’s ratio .!/ leads to a large change in the predicted values
of the normal stress components, with, in some cases, a small change in Poisson’s ratio leading to
a change in the sign in the components, leading effectively to an ‘inverse’ Poynting effect. These
numerical results have been confirmed by our own numerical simulations (§2) for which the adopted
procedure mirrors, as closely as possible, the earlier work.

In §3, this extreme sensitivity of the normal stresses to changes in ! is explained by combin-
ing a realistic mathematical model of experimental simple shear that incorporates the possibility of
small volume changes with the constitutive models of slight compressibility used in FE simulations.
It is shown that the predicted normal stresses for the slightly compressible neo-Hookean material
obtained from this combination display exactly the sensitivity to changes in the Poisson ratio as was
first observed by Gent et al. [16]. The shearing strains considered here are only moderate in range,
with a maximum shear strain of 100% being imposed. It is likely that the extreme sensitivity noted
here is more pronounced for larger strains.

We suggest that the results discussed earlier have significant implications for the numerical simu-
lation of materials traditionally considered as being incompressible. We note that, in practice, when
simulating these materials, experimental values of the corresponding Poisson’s ratio are not known.
Instead, most engineers adopt the pragmatic solution of specifying instead a value of Poisson’s ratio
‘close’ to 1=2, assuming implicitly that the specific value of Poisson’s ratio adopted does not have
a significant impact on the numerical results and, in particular, that small percentage changes in the
value of Poisson’s ratio result in corresponding small percentage changes in the stress distribution.
Most simulations of biological soft tissue, for example, are conducted on this basis. However, the
simulations of Gent et al. [16] and our own numerical experiments (§2) all suggest that, with the
models currently used, a small change in the value of Poisson’s ratio chosen (say from 0.499 to
0.495) results in significant changes in the stress distribution. There is almost certainly a differ-
ence between the assumed and actual values of Poisson’s ratio, and this should generally result in
a significant difference between predicted and actual stress distributions. Our conclusion is that an
accurate determination of Poisson’s ratio is essential if FE simulations are to yield accurate normal
stresses in shearing deformations (See also Horgan and Murphy [17] for a discussion of the results
of Gent et al. [16] relevant to the present paper).

It is finally noted that the seemingly obvious solution to this extreme sensitivity to Poisson’s
ratio of simply simulating perfect incompressibility is not a valid approach. No material is perfectly
incompressible and assuming this idealisation (denoted in our results by ! D 1

2 ) will result in a dif-
ference between the idealised value assumed and the actual value of Poisson’s ratio. This difference
will lead to a significant percentage error in the predicted normal stresses.

2. MODELLING SLIGHT COMPRESSIBILITY

Many different constitutive models have been proposed to reflect slight deviations from incompress-
ibility on assuming that the material is homogeneous, isotropic and hyperelastic. We refer to the
recent papers [10–13] for background, references to the pertinent literature and, very importantly, a
summary of the fit of these models, and, in particular, the models used here, with experimental data.
Here, we briefly describe the usual form of such slightly compressible (or almost incompressible)
strain-energy functions used in the FE simulations.

Assume that an incompressible strain-energy function W D  ."1,"2,"3/, where  is a sym-
metric function of the principal stretches "i , has been obtained that gives an excellent fit to the
experimental data collected from some set of material characterization experiments. Then the
corresponding slightly compressible form implemented in FE models is usually of the form

W D  
! N"1, N"2, N"3

"
CF .i3/ , (1)
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where

i3 ! "1"2"3, N"i !
"i

i
1
3
3

, (2)

F is some specified polynomial function of its indicated argument, and the N"s are the so-called
‘deviatoric stretches’ (see the ABAQUS [18] and ANSYS [19] manuals).

On assuming that  .1, 1, 1/ D 0 to ensure zero strain-energy in the reference configuration for
the incompressible material, it follows from Equation (1) that we need to assume that

F.1/D 0, (3)

for the same property to hold for the slightly compressible material. To ensure zero stress in the
reference configuration, it is sufficient to require that

F 0.1/D 0. (4)

Finally, to ensure compatibility with the classical linear form of the elastic strain-energy function
on restriction to infinitesimal deformations, it is required that

@2 

@ N"21
.1, 1, 1/" @2 

@ N"1@ N"2
.1, 1, 1/C @ 

@ N"1
.1, 1, 1/D 2#, F 00.1/D $, (5)

where # and $ are the infinitesimal shear and bulk moduli, respectively. Recall that they are
connected to Poisson’s ratio ! through

$

#
D 2.1C !/
3.1" 2!/ . (6)

Motivated by these relations, it is now assumed that the  term in Equation (1) is proportional to
#, and that F is proportional to $. On setting i3 D 1 in Equation (1), one recovers the original strain-
energy function for the corresponding incompressible material. It is important to emphasise that the
main motivation for strain-energy functions of the form (1) seems to be mathematical convenience:
a simple additive term in i3 is included to account for the compressibility so that, on restriction to
infinitesimal deformations,  and F are proportional to the shear modulus # and the bulk modulus
$, respectively (see e.g. Horgan and Murphy [13] for further details).

Many FE codes are based on models of the form (1). The initial moduli are usually assumed to be
such that !" # 1 in order to model slight incompressibility. In the variational formulation, the bulk
modulus $ is called the penalty number (see, e.g. [4,6,20]) and is chosen to be large. From Equation
(6), we find that for ! D 0.49, 0.499, 0.4999, we have !

" ' 50, 500, 5000, respectively. The default
setting in Abaqus/Explicit is quite low, as it assumes that !" D 20, corresponding to a Poisson’s ratio
of ! ' 0.475.

Equivalently, the model can be written in terms of the Cauchy–Green strain invariants, defined in
terms of the principal stretches "i , i D 1, 2, 3, as follows:

I1 D "21C "22C "23, I2 D "21"22C "21"23C "22"23, I3 ! i23 D "21"22"23. (7)

The corresponding strain-energy function that is used in FE simulations to model almost
incompressible behaviour then has the equivalent form

W D  
! NI1, NI2

"
CF.I

1
2
3 /, where NI1 D

I1

I
1
3
3

, NI2 D
I2

I
2
3
3

. (8)

Further details can be found, for example in Crisfield [9].
The general representation of the stress–strain relations for compressible, nonlinear elasticity can

be found, for example in Atkin and Fox [21] and is given by

T D ˛0I C ˛1B C ˛2B2, (9)
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where

˛0 D 2I
1
2
3

@W

@I3
, ˛1 D

2

I
1
2
3

#
@W

@I1
C I1

@W

@I2

$
, ˛2 D "

2

I
1
2
3

@W

@I2
. (10)

Here, T is the Cauchy stress, I is the identity tensor andB is the left Cauchy–Green strain tensor,
defined in terms of the deformation gradient tensor F through the relation B D FF T . The stress–
strain relation for the almost incompressible material, Equation (8), therefore has the form (9) with
the following coefficients:

˛0 D "
2

3I
1
2
3

NI1
@ 

@ NI1
" 4

3I
1
2
3

NI2
@ 

@ NI2
CF 0.I

1
2
3 /,

˛1 D
2

I
5
6
3

#
@ 

@ NI1
C NI1

@ 

@ NI2

$
,

˛2 D "
2

I
7
6
3

@ 

@ NI2
. (11)

The stress–strain relation for almost incompressible materials can thus be put in the form

T D F 0.i3/I C Ǫ0I C ˛1B C ˛2B2, (12)

with ˛1, ˛2 given in Equation (11)2,3 and Ǫ0 D ˛0 "F 0.i3/, that is

Ǫ0 D "
2

3I
1
2
3

NI1
@ 

@ NI1
" 4

3I
1
2
3

NI2
@ 

@ NI2
. (13)

Thus, the stress is always the sum of two parts: a hydrostatic term proportional to the volumetric
function F.i3/, and therefore of the order of the infinitesimal bulk modulus $, and another part of
the order of the infinitesimal shear modulus #.

The numerical simulations of Gent et al. [16] are based on the slightly compressible neo-Hookean
specification of this strain-energy function, readily implemented in ABAQUS [18]. It has the form

W D #

2

! NI1 " 3"CF .i3/D #

2

! N"21C N"22C N"23 " 3
"
CF .i3/ , (14)

where the constitutive volumetric function F is the quadratic form

F.i3/D
$

2
.i3 " 1/2 , (15)

which is the simplest form to satisfy Equations (3), (4) and (5)2. For this material, the constitutive
coefficients simplify to

Ǫ0 D "
#I1

3I
5
6
3

, ˛1 D
#

I
5
6
3

, ˛2 D 0, (16)

and the following stress–strain relation is obtained:

T D $.I
1
2
3 " 1/I C

#

I
5
6
3

#
B " 1

3
I1I

$
. (17)

Predictions based on the neo-Hookean model have been found to yield a good fit with data from
a variety of experiments on rubber-like materials for small to moderate strains. Because moder-
ate strains are only considered here, the results obtained in our analyses are therefore likely to be
obtained from simulations based on other forms of the deviatoric part of the strain-energy function.
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Figure 1. Normal stress variations along the horizontal center line of a sheared block of a slightly com-
pressible neo-Hookean material (amount of shear: 1, block’s aspect ratio: 10). The Cauchy stress com-
ponents T11 (left) and T22 (right) are highly sensitive to small changes in the values of Poisson’s ratio

! D 0.5, 0.499, 0.495, 0.49, 0.48, 0.47.

The form (14) was assumed in our repeating, and furthering, of the numerical simulations of
Gent et al. [16]. We entered their physical and geometrical parameters into ABAQUS 6.7 to try
to replicate their results for a sheared neo-Hookean block. We obtained the stresses and strains
throughout the thickness. We varied the mesh resolution, the time step duration and the number of
increments used and found virtually no difference with their simulations. Figure 2 shows an example
of the stress field distribution in the sheared block, displaying clearly an almost homogeneous field
except near the edges. Further pictures obtained for the stress and strain distributions are identical
to those of Gent et al. [16], see Figure 1.

We also carried out two remeshes in addition to the original mesh [16] of 20 (thickness) by
100 (length), that is 2000 rectangular elements. The first re-mesh was a square mesh of 20 $ 200
(i.e. 4000 elements), and the second re-mesh was a square mesh of 40$ 400 (i.e. 16 000 elements).
Each new mesh was run for the two following values of Poisson’s ratio: ! D 0.49 and ! D 0.5.
These re-meshes had no effect on the original results of Gent et al. [16]. Similarly, we varied the
time step and incrementation from their original [16] values of time step D 4 s, 400 increments
(giving a shearing rate of 2 mm/s). Thus, we halved (time D 2, increments D 200, shearing rate D
4 mm/s) and then doubled (timeD 8, incrementsD 800, shearing rateD 1 mm/s) the time steps and
increments. These time changes also had no effect.

In conclusion, we found, just like Gent et al. [16] that, for the compressible neo-Hookean model
Equations (14)–(15), infinitesimal changes in the value of Poisson’s ratio can lead to finite changes
in the simulated stress distribution. Our simulations suggest that this problem is especially acute
for ! 2 Œ0.495, 0.5% and that the problem of extreme sensitivity of the normal stresses to Poisson’s
ratio increases, the closer the value of ! is to 1

2 . These features are evident in Figure 1 and, perhaps
more emphatically, in a comparison of Figures 2 and 3. In Figure 2, where perfect incompressibil-
ity has been assumed, the stress is almost homogeneous, except for more complicated behaviour
near the corners, and tensile throughout a block with aspect ratio 1:10 sheared by a unity amount.
Figure 3 displays the normal stress component T22 distribution with Poisson’s ratio ! D 0.495. In
contrast with Figure 2, the stress is no longer homogenous: it can be seen there that T22 is tensile
and non-uniform near the slanted faces but is compressive towards the centre of the specimen.

It is natural to see if the problems in simulating slightly compressible materials are reflected in
analytical approaches to simple shear because their specific cause might then be isolated. To inves-
tigate these problems analytically, the classical mathematical approximation to experimental simple
shear is generalised in the next section and the corresponding stress distribution obtained for both
the general slightly compressible model (12) and for the slightly compressible neo-Hookean model
(17) used in FE simulations.

3. ANALYTICAL APPROACHES TO SIMPLE SHEAR

The classical mathematical model of simple shear assumes that a block of rubber is deformed
according to

x1 DX1C &X2, x2 DX2, x3 DX3, (18)

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:403–411
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Figure 2. Finite element simulation of the simple shear of a block with the same dimensions and charac-
teristics as the block of Gent et al. [16] (amount of shear: 1, block’s aspect ratio: 10). Here, Poisson’s ratio
is ! D 0.5 (perfect incompressibility), and the normal stress T22 is tensile throughout the block, except in

small areas near the compressed corners.

Figure 3. Finite element simulation of the simple shear of a block with the same dimensions and character-
istics as the block of Gent et al. [16] (amount of shear: 1, block’s aspect ratio: 10). Here, Poisson’s ratio is
! D 0.495 (slight compressibility), and the normal stress T22 is uniform and compressive in a large part of

the center of the block.

where .X1,X2,X3/ and .x1, x2, x3/ denote the Cartesian coordinates of a typical particle before and
after deformation, respectively, and & is an arbitrary dimensionless constant called the amount of
shear. Within the context of nonlinear elasticity, this problem was first considered by Rivlin [1] and
has been much discussed and analysed since. The reference works of Green and Zerna [2], Truesdell
and Noll [22] and Ogden [3], for example all consider various aspects of this problem.

Intuitively, it seems reasonable that this homogeneous deformation should accurately model
experimental simple shear, especially within the bulk of the material and for modest amounts of
shear. The corresponding in-plane stress distribution for the general strain-energy function, adopted
in FE simulations to model almost incompressible rubbers, is easily obtained from Equations
(11)–(12) and is given by

T11 D Ǫ0C ˛1
!
1C &2

"
C ˛2

!
1C 3&2C &4

"
,

T22 D Ǫ0C ˛1C ˛2
!
1C &2

"
,

T12 D ˛1& C ˛2&
!
2C &2

"
. (19)

Modelling experimental simple shear using the intuitive deformation (18) therefore results in the
in-plane stress field for almost incompressible materials of the form (1) being independent of the
volumetric function F . This is not surprising given that classical simple shear is an isochoric defor-
mation (i3 D 1). Therefore, for a fixed value of #, the in-plane stress field is independent of the bulk

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:403–411
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modulus $, or equivalently, of the Poisson ratio !. This is in conflict with the numerical predictions
discussed earlier.

This conflict can be explained by the fact that using the isochoric approximation (18) to model
experimental simple shear is too restrictive and does not capture an essential feature of every defor-
mation of rubbers, that is that an infinitesimal volume change always occurs and therefore occurs
in experimental simple shear, in particular. To get an idea of the order of the change, we rely on the
classical experimental data of Penn [23]. In a series of elegant experiments on peroxide vulcanizates
of natural gum rubber using a dilatometer technique, Penn measured the volume change in simple
tension for axial stretches of the order of 2. The volume change, calculated as i3 " 1, was found to
be of the order of 0.0001. No comparable data exist for simple shear. We now investigate the effect,
if any, of a change in volume.

We model the infinitesimal volume change with the following simple generalization of the
classical approach (18),

x1 D .1C '1/X1C &.1C '2/X2, x2 D .1C '2/X2, x3 D .1C '3/X3, (20)

where the 's are infinitesimal quantities. This deformation seems intuitively to capture the main
features of the deformation of a block when one face is displaced relative to a parallel face. It cor-
responds to a simple shear of amount & superposed on a triaxial extension, where the 's are the
infinitesimal elongations.

Retaining only the first-order terms in the 's gives i3 ' 1C ', where ' ! '1 C '2 C '3 is the
volume change. It follows that, to the first-order in ', the constitutive function F 0.i3/ occurring in
the stress-strain relation (12) for almost incompressible materials can be approximated as

F 0.i3/' $', (21)

where we used Equations (4) and (5)2.
The corresponding in-plane stresses are found from by Rajagopal and Wineman [24] as

T11 D $'C Ǫ0C ˛1."21C &2"22/C ˛2Œ."21C &2"22/2C &2"42%,
T22 D $'C Ǫ0C ˛1"22C ˛2.1C &2/"42,

T12 D ˛1&"22C ˛2&"22Œ"21C .1C &2/"22%, (22)

where "i ! 1C 'i are the stretch ratios (here, it is understood that their powers are linearized with
respect to the 's). Compare these general expressions with those for simple shear, given in Equation
(19): the shear stress T12 is again independent of the bulk modulus and volume change, but now both
normal stresses T11 and T22 contain a new $' term. This is in agreement with the effects observed
in the numerical simulations, showing that the normal stresses, not the shear stress, are sensitive to
volume changes (see Figures 1 and 4(a)).

Now we try to mirror the numerical simulations: we specialise the stress-strain relation to that of
the slightly compressible neo-Hookean solid (17); we impose a parallel displacement for the moving
face with respect to the fixed face (so that "2 D 1); and we impose a two-dimensional formulation
(so that "3 D 1). From [24], we find that the first principal invariant is I1 D 3C &2 C 2', where
we linearized with respect to ' D '1. For this specialisation the normal stress component T22, for
example is easily computed, and we find that

T22

#
D "&

2

3
C
#

2!

1" 2! C
5&2

9

$
', (23)

where we used the connection (6) between the bulk modulus, the shear modulus and Poisson’s ratio.
To compare this stress with the simulated stress given in Figure 2, the volume change ' D i3 " 1
is needed. In Figure 4(b) i3, as measured by ABAQUS, is plotted as a function of the amount of
shear & for different values of Poisson’s ratio: ! D 0.499, 0.495, 0.49. In Table I, we collected, in
particular, results obtained when the amount of shear is & D 1.0, as in the simulations. The volume
change i3 " 1 is displayed in the second column and the normalized Cauchy stress component T22" ,
found from (23), in the third column.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:403–411
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Figure 4. On the left: Shear stress variation along the horizontal center line of a sheared block of a slightly
compressible neo-Hookean material (amount of shear: 1, block’s aspect ratio: 10). The Cauchy stress com-
ponent T12 is not very sensitive to small changes in the values of Poisson’s ratio ! D 0.5, 0.499, 0.495, 0.49.
On the right: Volume change during the large shear of a slightly compressible block of a neo-Hookean

material with an aspect ratio of 10.

Table I. Variation of volume change with Poisson’s ratio.

! i3 " 1 T22=#

0.499 0.0009 0.116
0.495 0.0029 "0.045
0.490 0.0044 "0.115

It follows that Equation (23) predicts normal stresses that are very close to the average values of
T22 predicted by the numerical simulations given in Figure 1(b). Therefore, infinitesimal changes
in Poisson’s ratio close to the limiting value of ! D 1

2 may indeed result in dramatic changes in
the value for the normal stress, even leading to an inverse Poynting effect, caused by the volume
changes, which accompany every deformation.

4. CONCLUSION

It has been shown that the usual practice of arbitrarily choosing a value of Poisson’s ratio when
numerically modelling rubbers results in widely different normal stress distributions when the third
decimal of ! 2 Œ0.495, 0.5% is modified. The sign of the Poynting effect may even be reversed. It
is thus essential for the accurate modelling of rubbers to experimentally determine Poisson’s ratio
to the utmost precision. This is not as hard as it seems, especially when the measure of ! relies on
ultrasonic wave speed evaluation. There, the contrast between the speed of a compression wave vL
and the speed of a shear wave vT is so large for nearly incompressible solids that the connection

! D 1

2

v2L " 2v2T
v2L " v2T

, (24)

gives excellent precision. For instance, Wood and Martin [25] find ! D 0.49986 using acoustic
waves. Similarly, Gennisson et al. [26] measure the following body wave speeds for an Agar-
Agar gel: vL D 1500 m/s and vT D 1 m/s, giving ! D 0.49999978, according to Equation (24).

The issues raised here ought to be addressed by anyone wishing to use a commercial FE code
for large deformation behaviour. For instance, the Abaqus/Explicit manual [18] indicates that the
default setting for slight compressible models is ! D 0.475, a value that allows volume changes suf-
ficient to inverse the Poynting effect according to Figure 1. It goes on to state that if we ‘are defining
the compressibility rather than accepting the default value, an upper limit of 100 is suggested for
the ratio of !

" ’, which corresponds to ! ' 0.495, also within the range of extreme sensitivity in
shear. Furthermore, the manual goes on to say that slight compressibility ‘does not warrant special
attention for plane stress’, a statement clearly at odds with our findings.

Copyright © 2011 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2012; 90:403–411
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