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a b s t r a c t

Residual deformation (strain) exists in arterial vessels, and has been previously proposed to induce
homogeneous transmural strain distribution. In this work, we present analytical formulations that
predict the existence of a finite internal (homeostatic) pressure for which the transmural deformation is
homogenous, and the corresponding stress field. We provide evidence on the physical existence of
homeostatic pressure when the artery is modeled as an incompressible tube with orthotropic
constitutive strain-energy function. Based on experimental data of rabbit carotid arteries and porcine
coronary arteries, the model predicts a homeostatic mean pressure of !90 mmHg and 70–120 mmHg,
respectively. The predictions are well within the physiological pressure range. Some consequences
of this strain homogeneity in the physiological pressure range are explored under the proposed
assumptions.

& 2012 Elsevier Ltd. All rights reserved.

1. Introduction

The existence of residual stress in arteries is widely accepted
and constitutive models are formulated accordingly (e.g., see
Rachev and Greenwald, 2003 for a review). To account for residual
stress, Chuong and Fung (1986) modeled the artery as an open
sector of a cylinder that is first closed and then axially stretched
to form the artery. This method, usually called the opening angle
method, has the advantage of an elegant mathematical formula-
tion and will be adopted here.

The reason for the existence of residual stress in arteries is an
open question. Chuong and Fung (1986) proposed that residual
stresses exist to reduce transmural stress gradients. An alterna-
tive hypothesis was offered by Takamizawa and Hayashi (1987)
who suggested that the residual stress homogenizes the circum-
ferential strain. Liu and Fung (1989) confirmed this hypothesis
as an adaptation principle in hypertension. Both approaches can
be considered applications of the Principle of Homeostatis, which
recognizes the self-regulatory nature of physiological systems.
The first precise formulation of this idea is credited to Bernard
(1878), who asserted that all ‘vital mechanisms’ preserve
‘constant the conditions of life in the internal environment’.

Bernard’s insight was developed most notably by Cannon
(1929). Both authors were concerned exclusively with the self-
regulatory nature of the fluid matrix of the body, termed home-
ostasis by Cannon. Cannon recognized that this concept of self-
regulation had the potential to be extended to ‘other materials
and environmental states, whose homeostasis is essentially
important for optimal activity of the organisms’. This homeostatic
idea has been adapted to the biomechanics of the arterial wall
(see reviews by Kassab and Navia (2006), and Kassab (2008).

Here, we focus on the relation between residual stress and the
homeostatic principle. We hypothesize that when a residually
pre-strained cylinder is inflated, there exists a pressure at which
the strain is transmurally homogeneous and that this pressure is
the mean arterial blood pressure. Here, we shall test this hypoth-
esis with previously measured carotid (Fung et al., 1979) and
coronary data (Lu et al., 2003; Wang et al., 2006).

2. Methods

2.1. Deformation of a vessel

Let (R,Y,Z) denote the cylindrical coordinates of the sector of
an incompressible annular sector of artery with opening angle a
(Fig. 1(a)), denoted as zero-stress state (ZSS), and (r, y, z) denote
the cylindrical coordinates in a deformed configuration of the vessel
(Fig. 1(b)), denoted as the loaded state. The deformation gradient
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tensor, F, is (e.g., Chuong and Fung, 1986):

F¼ diag
R
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,
kr
R

,lz

! "
¼ diagðlR,lY,lzÞ,r2 ¼
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(R, r: radial coordinate at ZSS and loaded state, respectively)
where lz(Z1) is the axial pre-stretch. For convenience, we define
the dimensionless radial coordinate x'r2/R2, such that the inner
deformed surface of the deformed vessel is x1 ' r2ðR1Þ=R2

1, and the
outer surface is
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It can be further derived that
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It is clear that when x1 or r2
1=R2

1 equals 1/klz, the transmural
deformation gradient is uniform:
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i.e., the vessel reaches homeostatic state. In the next sections, we
will explore the conditions for the existence of the homeostatic
state.

2.2. Pressure–radius relationship

Since the passive response of arteries is of interest, we model
the vessel wall as a hyperelastic material with strain energy
function W¼W(F) (see a standard reference of Ogden, 1997),
along with the assumption of incompressibility. The Cauchy stress
r, is r¼&qIþFqW/qF, whose non-zero components in axisym-
metric deformations are:

srr ¼&qþ
R

klzr
@W
@lR

,syy ¼&qþ
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,szz ¼&qþlz
@W
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and therefore

syy&srr ¼
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R
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0
ðxÞ, ð2:2Þ

where, using the notation (1.1) and the definition of x, ŴðxÞ '
W(lR(x),lY(x),lz)AC2(0,N) and the prime notation denotes differ-
entiation. The equilibrium equations in y and z directions are
satisfied identically, and that in the r (radial) direction is dsrr/
drþ(srr&syy)/r¼0 subject to boundary conditions srr(r1)¼&P1

and srr(r2)¼&P2. Integration of this radial equilibrium equation

using the trivial identity dx/dr¼2rR&2(1&klx) yields
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From here on, we only consider vessels with stress-free
external boundary, i.e., P2¼0, and thus P1¼P(x1). Eq. (2.3)
determines the deformed inner radius x1 for prescribed pressure
P1. The corresponding transmural stresses can then be derived as:

srrðxÞ ¼ bþ
R x
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where b is a constant (zero in this case to satisfy the boundary
condition).

A question arises of whether the internal pressure P(x1) is
well-defined when the vessel reaches homeostatic state, i.e.,
when x1¼1/klz. It will now be shown that not only is (2.3)
well-defined when x1¼1/klz but also it is continuous there. First,
note that trivially it follows from (1.3) that:

x24x1 when x1o1=klz;

x2 ¼ x1 when x1 ¼ 1=klz;

x2ox1 when x141=klz: ð2:5Þ

Since

dP
dx1
¼

1
1&klzx1

ðW 0ðx2Þ&W 0ðx1ÞÞ; ð2:6Þ

P is therefore differentiable at x1¼1/klz, and therefore contin-
uous, since it follows from L’Hospital’s Rule that

dP
dx1
ð1=klzÞ ¼

g
klzðgþ1Þ

W 00ð1=klzÞ: ð2:7Þ

In addition to the differentiability assumption made pre-
viously, it is further assumed that ŴðxÞ is a strictly convex
function, i.e., Ŵ

00
ðxÞ40. The necessity of this assumption to

ensure physically realistic behavior of arterial tissue in response
to mechanical forces has been discussed in Holzapfel et al. (2000).
It follows then from (2.6) that P is a monotonically increasing
function of x1.

2.3. Homeostatic pressure

In the previous section, the value x1¼1/klz was discussed as
being the only possible singular value of x1 in the definition of the
pressure difference given in (2.3); and it was shown that the
pressure is in fact continuous there. The value x1¼1/klz does,
however, have a characteristic that distinguishes it from all other
values: it follows from (1.3) that when x1¼1/klz, the deformation
is transmurally homogeneous of the form (1.4). The radial
equilibrium equation then yields:

&q¼
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The corresponding radial stress srr is therefore given by:
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Fig. 1. Deformation of arterial wall from open sector (zero-stress reference
configuration) (a) to loaded state and (b) under inner and outer constant
hydrostatic pressures applied on the faces.
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Imposition of the boundary conditions yields the blood pres-
sure for the vessel to reach homeostatic state, denoted Ph, as:

Ph ¼ PðOÞ ¼ 2OŴ
0
ðOÞln r2

r1

! "
ð3:4Þ

Noting at homeostatic state that x2¼x1¼1/klz, we get
r2/r1¼R2/R1, and thus Ph can be determined by the zero-stress
geometry, radii R1 and R2 and the opening angle index k, as:

Ph ¼ PðOÞ ¼ 2OŴ
0
ðOÞln

R2

R1

! "
ð3:5Þ

The key hypothesis here is that the residual stresses attempt to
maintain the artery in a state of transmurally homogeneous strain
at a certain physiological blood pressure. This then is a variation on
the uniform strain hypothesis of Takamizawa and Hayashi (1987),
who proposed that ‘the artery undergoes a uniform circumferential
strain throughout the wall in the physiological loading state’.

2.4. Stress distribution at homeostatic pressure

The constant strain fields (1.4) are accompanied by stress
fields that are slowly varying functions of the radial coordinate in
a logarithm form. As can be derived from (3.2), the radial stress is:

srrðrÞ ¼ 2OŴ
0
ðOÞ ( ln

r
r1

! "
&Ph ð4:1Þ

and the hoop (circumferential) stress is:
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! "$ %
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whose values on the inner and outer walls are, respectively

sin
yy ¼&Ph 1&

1
lnðr2=r1Þ

$ %
,and sout

yy ¼
Ph

lnðr2=r1Þ
ð4:3Þ

At homeostatic strain state, the hoop stress gradient is essen-
tially the same as that for the radial stress, given that the diffe-
rence is simply a constant 2OŴ

0
ðOÞ , as it follows from (3.5) to

(4.2) that syy(r)¼srr(r)þPh everywhere. The outer hoop stress
sout
yy is always tensile. There is a critical arterial thickness ratio

for the hoop stress, r2/r1¼R2/R1¼eE2.72 at which the inner
hoop stresses is 0 and the outer hoop stress is Ph, respectively.
In reality, the thickness ratio of artery is much less than this value,
ensuring that the hoop stress is tensile throughout the wall.

2.5. Orthotropic constitutive model

The standard mathematical model of anisotropic passive
arterial response was introduced by Fung and co-workers

(e.g., Chuong and Fung, 1986) as:

W ¼
c
2
ðexpðQ Þ&1Þ, ð5:1Þ

where Q is a quadratic function of components of the Green-
Lagrange strain E¼(FTF&I)/2. For the axisymmetric deformation
of interest, the quadratic function has the form:

Q ¼ b1E2
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The derivative of W with respect to the variable x is given by:
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Re-evaluation of this derivative at the homogeneous deforma-
tion state, x¼1/(klz), leads to the following homeostatic pressure:
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An alternative approach for formulation of strain-energy
density functions for soft fibrous tissues with anisotropic material
behavior is possible (e.g., Weinberg et al., 2007) but will not be
considered here.

2.6. Mechanical data

We use two sets of experimental data to test the above derived
formulations. The first data were acquired by Fung et al. (1979) on
rabbit carotid arteries. The second data include triaxial mechan-
ical test of eight porcine left anterior descending (LAD) arteries
(Lu et al., 2003). Briefly, LAD segments, 3–4 cm long and num-
bered as L1–L8, were dissected from fresh porcine hearts. Each
specimen was mounted to test axial stretch and inflation in an
organ bath at room temperature. After the vessels were precondi-
tioned (cyclically loaded to minimize the viscous response), short
rings (1–2 mm) were cut from the proximal and distal LAD artery
for measurement of the inner and outer radius R1 and R2 and
opening angle a for the zero-stress state (Fig. 1(a)), as listed in
Table 1. During the experiment, the axial stretch lz was varied
from 1.2 to 1.4 in increments of 0.1, and the internal pressure

Table 1
Homeostatic pressure Ph (in mmHg) for porcine left anterior descending arteries (LAD), estimated based on Fung model (5.1). The experimental data are taken from Lu et al.
(2003) and Wang et al. (2006).

Vessel Vessel geometry Material parameters Ph

R2 R1 a k C b1 b2 b3 b4 b5 b6

L1 3.08 2.46 182.4 1.73 11.64 1.03 2.09 0.38 0.37 0.02 0.06 69.5
L2 6.20 5.44 256.6 3.48 5.94 1.27 2.78 0.62 0.45 0.13 0.13 79.0
L3 11.0 10.4 317.8 8.52 4.16 1.58 2.66 0.73 0.3 0.03 0.08 108.8
L4 5.37 4.76 262.5 3.69 11.45 1.00 2.16 0.52 0.39 0.04 0.06 72.1
L5 2.20 1.85 194.0 2.17 4.43 1.48 5.15 0.24 0.25 0.46 0.01 95.2
L6 3.56 3.10 261.6 3.66 13.87 0.66 4.9 0.12 0.48 0.07 0.01 119.5
L7 7.40 7.05 303.8 6.39 4.26 0.92 7.84 2.42 0.31 0.2 0.32 90.4
L8 3.52 3.07 213.0 2.45 13.86 1.26 1.89 0.52 0.27 0.05 0.14 71.6

mean 88.3

R1 and R2 (mm): inner and outer radius of zero-stress state; a (degree): opening angle; k: opening angle index (Eq. 1.1); c (kPa) and {b1!b6}: dimensionless material
parameters in Eq. (5.2).
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was continuously varied from 0 to 200 mmHg at constant lz.
The outer radius r2 of the deformed vessel and the axial force
were recorded. The inner radius r1 was calculated from the
incompressibility condition.

3. Results

We tested the anisotropic prediction of Ph for rabbit carotid
arteries (Fung et al., 1979). In the current notation, the geome-
trical and residual stress data where R1¼3.92 mm, R2¼4.52 mm,
k¼2.52 and lz¼1.02. The material parameters in Eqs. (5.1)
and (5.2) were given by Chuong and Fung (1986) as c¼22.4 kPa,
{b1–b6}¼{1.0672, 0.4775, 0.0499, 0.0903, 0.0585, 0.0042}. These
values lead to homeostatic pressure of Ph¼11 kPa (!80 mmHg)
which is well within the normal physiological range of blood
pressure for rabbits (see, for example, Rees et al., 1989).

The porcine LAD data were fitted to an orthotropic Fung model
(5.1), whose material parameters c and {b1–b6} were previously
fitted to biaxial tests (Wang et al., 2006), and are given in Table 1
for completeness. The homeostatic pressure Ph was calculated for
each LAD artery by Eq. (5.6) with physiological axial stretch
lz¼1.35, and the results are given in Table 1. It is shown that
the value of Ph ranges from range of 70 to 120 mmHg, with a mean
value of 88 mmHg, which is also within the normal
physiological range.

4. Discussion

The review article of Rachev and Greenwald (2003) summarizes
the evolution of the concept that tubular structures (e.g., arteries)
are residually strained and stressed. It is now widely accepted that
mathematical models of arteries should incorporate some measure
of this residual stress in order to accurately and reliably predict
the response of arteries to mechanical forces. Here, we show an
important consequence of residual stress is the existence of homeo-
static uniform transmural strain at physiological blood pressure.

The validation of existence of physiological homeostatic pres-
sure Ph of rabbit carotid arteries and porcine LAD in anisotropic
models is significant as the predicted homeostatic pressure Ph is
consistent with both the experimental data for the residual
stretch and the experimentally-based anisotropic mathematical
models. It should be noted that the homeostatic pressure physio-
logically is not necessary the peak pressure, which is typically
near 120 mmHg for human carotids and porcine LAD. Rather, it
appears to be the mean pressure which is more accurately
captured by the anisotropic as opposed to the isotropic models
(data not shown).

It has been hypothesized that residual stresses may also result
from growth and remodeling of arterial tissue and osmotic pres-
sures (Guo et al., 2007). Regardless of the mechanism of residual
stress and strain, an important consequence may be to maintain
the artery in a state of homogeneous strain at mean blood pressure.
This is a generalization of the uniform strain hypothesis of
Takamizawa and Hayashi (1987), who proposed that ‘the artery
undergoes a uniform circumferential strain throughout the wall in
the physiological loading state’. It is a generalization because it is
suggested here that the full strain field is homogeneous and not just
the circumferential component. Other investigations of the relation
between residual strains and strain distribution include the study
of Kaazempur-Mofrad et al. (2003) who determined the effect of
residual strains on the cyclic stress and strain distributions in the
large arteries as they undergo phasic pressure changes.

This theory of homogeneous strain at mean blood pressure
may hold under compensatory pathological conditions such as

hypertension. This stipulation is not new as Fung and Liu (1989)
proposed that the increase in opening angle and accompanying
residual stress serves to maintain uniform stress and strain
gradients in hypertension. The increase in residual stress in blood
vessels in response to hypertension has been well documented (see
the review in Fung (1993)). Thus, even though the elevation of
mean blood pressure in hypertension causes the residual stresses
to be increased, we speculate that the vessel will still attempt to
maintain homogenous strain at this condition. Using engineering
systems terminology, this is an example of ‘sub-optimization’,
where a subsystem is optimized to the detriment of the overall
system depending on the magnitude of the perturbation.

The opening angle method, together with an axial pre-stretch,
is used here. One novelty is that an elegant relation is obtained
between the mean blood pressure and the residual stress that
implies homogeneous strain. This equation relates the blood pres-
sure to both the thickness of the arterial wall and the residual stress.
This relation can be inverted to obtain the in vivo residual stress
state, provided the corresponding strain-energy function is known.

The derived relation between blood pressure and residual
stress can be used to validate the constitutive model: a simple
substitution of a proposed strain-energy function with typical
values assumed for the residual stress should yield a value for the
blood pressure close to 90 mmHg. This was illustrated with an
example strain-energy function from the literature. An additional
interesting utility of this formulation is as a constitutive con-
straint, with one of the model parameters determined from this
relation. This could be particularly useful for a parameter that is
difficult to determine experimentally.

4.1. Critique of model

Arteries are composite structures, containing three histologi-
cally different layers (i.e., intima, media and adventitia). For normal
artery at physiological pressures, however, the media of the artery
dominates the mechanical response (e.g., Ogden and Schulze-
Bauer, 2000). Consequently, a single-layer artery model has been
assumed here to strike a balance between physical realism and
mathematical complexity necessary to introduce the concept of
homeostatic strain and to deduce the consequence on physiologic
loading (pressure). Clearly, this establishes a foundation for addi-
tional layers of complexity in future works. A homeostatic strain
hypothesis for multiple layer composite models will be considered
as well as the effect of smooth muscle tone in future studies.

We also note that the opening angle method adopted here has
limitations; e.g., the torsional residual stresses are not considered
and an assumption that residual stresses are homogeneous in the
axial direction. Regardless, the major experimentally observed
components of the residual stress are adequately captured by this
well-accepted approach. Alternative approaches can be considered
in future studies to further test the hypothesis advanced here.

4.2. Conclusion and significance

In conclusion, it was shown that there exists a finite internal
pressure at which the strain is homogeneous for an artery. A model
of literature data shows that this pressure is approximately the
mean blood pressure. This assumption is broadly compatible with
representative existing models of arterial response to mechanical
forces and has implications for growth, remodelling and disease.
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