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Abstract The modelling of off-axis simple tension experi-
ments on transversely isotropic nonlinearly elastic materials
is considered. A testing protocol is proposed where normal
force is applied to one edge of a rectangular specimen with the
opposite edge allowed to move laterally but constrained so
that no vertical displacement is allowed. Numerical simula-
tions suggest that this deformation is likely to remain substan-
tially homogeneous throughout the specimen for moderate
deformations. It is therefore further proposed that such tests
can be modelled adequately as a homogenous deformation
consisting of a triaxial stretch accompanied by a simple shear.
Thus the proposed test should be a viable alternative to the
standard biaxial tests currently used as material characterisa-
tion tests for transversely isotropic materials in general and,
in particular, for soft, biological tissue. A consequence of the
analysis is a kinematical universal relation for off-axis test-
ing that results when the strain-energy function is assumed
to be a function of only one isotropic and one anisotropic
invariant, as is typically the case. The universal relation pro-
vides a simple test of this assumption, which is usually made
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for mathematical convenience. Numerical simulations also
suggest that this universal relation is unlikely to agree with
experimental data and therefore that at least three invariants
are necessary to fully capture the mechanical response of
transversely isotropic materials.
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1 Introduction

The recent resurgence in interest in the modelling of
the mechanical response of incompressible, transversely
isotropic, nonlinearly elastic materials is primarily because
there are many examples of biological, soft tissue reinforced
with bundles of fibres that have an approximate single pre-
ferred direction, most notably skeletal muscles, ligaments
and tendons. Developed mainly by Rivlin [1], the phenom-
enological constitutive theory for such materials was origi-
nally used to model elastomers reinforced with steel cords
and it is a happy coincidence that such an elegant, rational
theory can be applied to some of the fundamental modelling
problems in biomechanics.

If soft tissue is assumed non-dissipative, as is commonly
the case, then its mechanical response is determined com-
pletely by the corresponding potential function, called the
strain-energy function in mechanics. For incompressible,
transversely isotropic materials, the general strain-energy
function is an arbitrary function of four scalar invariants (see,
for example, Spencer [2]). These invariants are functionals
of a strain tensor, with the left Cauchy-Green strain being
the measure of choice in biomechanics, and the direction of
the fibres in the undeformed configuration. Unfortunately, the
corresponding stress–strain relation is algebraically complex
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(see (5)) and, to facilitate analysis, simplifying assumptions
are, and usually must, be made. By far the most common
assumption is to assume that the strain-energy is a function
only of the two invariants I1, I4, where I1 is the trace of the
Cauchy-Green strain tensor and I4 is the square of the fibre
stretch. As already mentioned, this choice is usually made
on the basis of mathematical convenience alone, as a cursory
examination of (5) reveals the more complicated terms in the
stress–strain relation are eliminated as a result. This choice
of the (I1, I4) pair as the basis for the strain-energy function
is the central theme here. It will be critically evaluated by
examining the mechanical response of transversely isotropic
materials in the simplest material characterisation test: the
simple tension test.

In contrast to the situation for isotropic materials, the
development of protocols and methods for the simple ten-
sile testing of anisotropic materials is still on-going despite
its long history (see, for example, Pagano and Halpin [3]).
Simple tension testing when the direction of anisotropy is
oblique to the direction of the applied force is referred to
as ‘off-axis testing’. It has long being recognised that the
standard rigid grips of most tensile testing machines induce
shear forces and bending moments in the test specimens dur-
ing off-axis testing, resulting in large stress concentrations
and inhomogeneity in the test samples. This coupling of sim-
ple tension with shearing forces in off-axis testing of fibre-
reinforced materials has, in fact, been exploited to charac-
terise intralaminar shear (see Marín et al. [4]). References
to the different methods employed to reduce stress concen-
trations and inhomogeneity of the tested sample in off-axis
testing can be found in Marín et al. [4] and Xiao et al. [5].

Heretofore the vast majority of off-axis testing has
involved epoxy composites and is therefore concerned with
the determination of material constants within the context of
the linear theory. Here the focus is on off-axis testing within
the nonlinear regime and a new method of testing unidirec-
tional composites is considered. Specifically it is proposed
here that the coupling of shear and simple tension in off-
axis testing be fully recognised and that the specimen, clas-
sically fully constrained along one of its edges, be allowed
to move laterally there. A combination of tri-axial stretch
and simple shear is therefore proposed to model the result-
ing deformation. This stretch/shear combination has previ-
ously been studied for isotropic materials by, amongst others,
Moon and Truesdell [6], Rajagopal and Wineman [7] and,
more recently, by Mihai and Goriely [8] and by Destrade et
al. [9].

The main objective here is to consider the validity
of assuming pairs of invariants as the sole arguments of
the strain-energy function. To this end, numerical simula-
tions based on the finite element method (FEM) were per-
formed. The commercial FEM programme ANSYS was used
throughout. There is no direct implementation of a trans-

versely isotropic material available in ANSYS. Instead fibre-
reinforced nonlinearly elastic matrices were modelled using a
structural modelling approach, although this structural model
includes a phenomenological component, the neo-Hookean
matrix. This matrix is reinforced by much stiffer linearly
elastic cords. On clamping one of the edges to restrict move-
ment in the vertical direction, but allowing displacement in
the lateral direction, a normal force is applied to the opposite
edge.

Two inferences can be drawn from an analysis of the
output of the various simulations performed by varying the
applied force and the fibre orientation. The first is that a
homogenous deformation field consisting of a triaxial defor-
mation accompanied by a simple shear seems a viable model
of material behaviour for off-axis testing. This gives some
support to the viability of the experimental method proposed
here. The second is that the assumption that pairs of invariants
are sufficient to capture the main features of the mechanical
response of nonlinearly elastic, transversely isotropic mate-
rials is not compatible with our numerical simulations and
therefore that at least three invariants are necessary to fully
capture the mechanical response of transversely isotropic
materials. This is because if pairs of invariants are assumed,
then a universal kinematical relation between the kinematical
variables results from satisfaction of the boundary conditions
associated with simple tension. An illustrative comparison is
then made between the kinematical relation that results from
the (I1, I4) choice and the FEM results for an illustrative
fibre orientation over a range of physiological strain. It will
be shown that there is a fundamental incompatibility between
the two sets of results.

Interpretation of this incompatibility will depend on which
model is more likely to encapsulate the mechanical response
of biological, soft tissue in the laboratory. Ultimately, of
course, this question can only be resolved by conducting
simple tension tests of the type proposed here but, faced with
the lack of experimental data, it is our contention that the
physically well-motivated structural model that is the basis
of our FEM results is a better choice than a phenomenological
model based primarily on mathematical convenience. Using
finite element analysis in this way to inform the constitutive
modelling process seems a novel application of computa-
tional mechanics.

The paper is organized as follows: after a section outlining
the constitutive theory for transversely isotropic materials,
the modelling of off-axis simple tension tests is discussed
in Sect. 3, with a particular emphasis on the modelling of
a class of materials often used in biomechanics. The results
of our numerical experiments are then reported in Sect. 4
and the consequences of these results for the modelling of
transversely isotropic, soft tissue are discussed.

Although the assumed homogeneous deformation consist-
ing of a simple shear superimposed upon a triaxial stretch
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seems a natural fit with off-axis testing of transversely
isotropic materials, and seems supported by our numerical
experiments, the semi-inverse approach adopted here is not
without its limitations, similar to the problems associated
with modelling simple shear for isotropic materials (Rivlin
[10], Gent et al. [11], Horgan and Murphy [12]). Specifi-
cally, stresses need to be applied to the inclined faces of the
deformed test pieces in order to maintain the assumed combi-
nation of tri-axial stretch and simple shear. This is discussed
in the final section.

2 Transversely isotropic materials

Incompressible fibre-reinforced materials are considered
from now on. We call x = xi ei the coordinates in the cur-
rent configuration B of a particle which was at X = Xα Eα in
the reference configuration Br . Here the orthonormal vectors
Eα are aligned with the edges of the test sample, which is
assumed to be a cuboid of dimensions

−A/2 ≤ X1 ≤ A/2, −L/2 ≤ X2 ≤ L/2,

−H/2 ≤ X3 ≤ H/2. (1)

We take the the orthonormal vectors (e1, e2, e3) to be aligned
with (E1, E2, E3). The sample is clamped at X2 = ±L/2
and the clamps are attached to the cross-heads of a tensile
machine. One of the clamps is allowed to slide freely in the
X1 direction.

We assume that there exists a single preferred direction
(along the unit vector A, say) to which all reinforcing fibres
are parallel (transverse isotropy) and that the fibres are con-
fined to the (X1, X2) plane in the undeformed configuration.
Thus

A = C E1 + S E2, where C ≡ cos �, S ≡ sin �, (2)

where �(0 < � < π/2) is the angle in the undeformed
configuration between the fibers and the direction normal to
the tensile force.

Let F ≡ ∂x/∂ X denote the deformation gradient ten-
sor and B = F FT , C = FT F the left and right Cauchy-
Green strain tensors, respectively. For incompressible mate-
rials, det F = 1. The general strain-energy function for
incompressible, fibre-reinforced, hyperelastic materials has
the form W = W (I1, I2, I4, I5) (see Spencer [2]), where
I1, I2 are the first and second isotropic principal invariants:

I1 = tr C, I2 = tr C−1, (3)

and I4, I5 are the anisotropic invariants,

I4 = A · C A, I5 = A · C2 A. (4)

The corresponding Cauchy stress tensor T is given by [2]

T = −p I + 2W1 B − 2W2 B−1 + 2W4a ⊗ a

+2W5
(
a ⊗ Ba + Ba ⊗ a

)
, (5)

where Wk ≡ ∂W/∂ Ik, p is a Lagrange multiplier introduced
by the incompressibility constraint, I is the identity tensor
and a ≡ FA.

Experience has shown that the technical challenges of
analysing general transversely isotropic materials are formi-
dable and indeed further evidence of this will be provided
in later sections. To make progress, simplifying assumptions
need to be made. For transversely isotropic materials, it is
usual to ignore the I2, I5 invariants and to adopt the assump-
tion that

W = W (I1, I4) only. (6)

Many strain-energy density functions used in biomechanics
applications have this form (see, for example, Humphrey and
Yin [13], Humphrey et al. [14], Horgan and Murphy [15],
Wenk et al. [16]) and a much-used example is the so-called
standard reinforcing material

W (I1, I4) = μ

2

[
I1 − 3 + γ (I4 − 1)2

]
, (7)

where μ(>0) is the shear modulus of the neo-Hookean poten-
tial and γ (>0) is a non-dimensional material constant that
provides a measure of the strength of reinforcement in the
fibre direction, with large values of this parameter typical
for soft, biological tissue (see, for example, Ning et al. [17],
Destrade et al. [18]) . Another popular choice is the Gasser-
Ogden-Holzapfel model [19]

W (I1, I4) = μ

2
(I1 − 3) + k1

2k2

[
ek2(I4−1)2 − 1

]
, (8)

where μ, k1 and k2 are positive constants, to be deter-
mined from experimental data. Similarly, the extension of
this strain-energy density to include dispersive effects for
the fibers in [20], the so-called ‘HGO’ model implemented
in the finite element software ABAQUS, also belongs to the
family (6).

3 Simple tension test: analytical solution

We focus on the general homogeneous field response gener-
ated by a tensile test where the tensile force occurs at an angle
to the fibres. Hence we take the components Fiα = ∂xi/∂ Xα

of the deformation gradient tensor to be constants. One clamp
is allowed to slide in the direction of E1 = e1 and the line
elements that were parallel to the clamps in Br remain paral-
lel to the clamps in B. In other words, the deformation takes
the form
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x1 = F11 X1 + F12 X2, x2 = F22 X2, x3 = F33 X3.

(9)

An illustrative example of this type of deformation is given in
Fig. 1 below. Deformations of this form are a special case of
the homogeneous deformations, with deformation gradient
tensor

[F]iα =
⎡

⎣
F11 F12 0
F21 F22 0
0 0 F33

⎤

⎦ , (10)

considered by Holzapfel and Ogden [22] who wished to clar-
ify the extent to which biaxial testing can be used for deter-
mining the elastic properties of transversely isotropic mate-
rials.

The deformation (9) can be decomposed as a tri-axial
stretch accompanied by a simple shear, as can be seen from
the following identifications in the (ei ⊗ Eα) coordinate sys-
tem,

[F]iα =
⎡

⎣
F11 F12 0
0 F22 0
0 0 F33

⎤

⎦ =
⎡

⎣
λ1 λ2κ 0
0 λ2 0
0 0 λ3

⎤

⎦

=
⎡

⎣
1 κ 0
0 1 0
0 0 1

⎤

⎦

⎡

⎣
λ1 0 0
0 λ2 0
0 0 λ3

⎤

⎦ , (11)

(see [6,7,9] for isotropic materials). Here λ1, λ2, λ3 are posi-
tive constants, with λ3 = (λ1λ2)

−1 as a result of imposing the
incompressibility constraint and κ is the amount of shear in
the E2 = e2 direction. The data to be collected during those
tensile tests are: λ1, λ2, κ and T22, the tensile Cauchy stress
component. The stretches can be measured with two orthog-
onal LASER tracking devices and κ by measuring the trans-
verse displacement of the sliding clamp, see Fig. 1. Alterna-
tively, a Digital Correlation Imaging device can be used. To
measure T22, the force is measured by a loadcell attached to
a clamp and divided by λ1 A × λ3 H = AH/λ2, the current
cross-sectional area.

We now compute the components of the left and right
Cauchy-Green deformation tensors as

[B]i j =
⎡

⎣
λ2

1 + λ2
2κ

2 λ2
2κ 0

λ2
2κ λ2

2 0
0 0 λ2

3

⎤

⎦ ,

[C]αβ =
⎡

⎣
λ2

1 λ1λ2κ 0
λ1λ2κ λ2

2(1 + κ2) 0
0 0 λ2

3

⎤

⎦ , (12)

in the (ei ⊗e j ) and the (Eα⊗Eβ ) coordinate systems, respec-
tively. The isotropic strain-invariants are given by [7]

I1 = λ2
1 + λ2

2

(
1 + κ2

)
+ λ−2

1 λ−2
2 ,

I2 = λ−2
1

(
1 + κ2

)
+ λ−2

2 + λ2
1λ

2
2, (13)

Fig. 1 A cuboid of hyperelastic material reinforced with one family of
parallel fibers can deform homogeneously when subjected to a tensile
force only, as a combination of triaxial stretch (with stretch ratios λi )
and simple shear (with amount of shear κ)

and the anisotropic invariants by

I4 = (λ1C + λ2κS)2 + λ2
2S2,

I5 = λ2
1

(
λ2

1 + λ2
2κ

2
)

C2

+λ2
2

[
λ2

2 +
(
λ2

1 + 2λ2
2

)
κ2 + λ2

2κ
4
]

S2

+2λ1λ2

[
λ2

1 + λ2
2

(
1 + κ2

)]
κC S. (14)

We may then compute the corresponding Cauchy stress com-
ponents. It follows from (5) that T13 = T23 = 0. We complete
the plane stress assumption by setting T33 = 0, which gives
us the expression for p and the in-plane stress components
are therefore [21,22]

T11 = 2W1 (B11 − B33) + 2W2

[
B22 (B11 − B33) − B2

12

]

+2W4a2
1 + 4W5a1(Ba)1,

T22 = 2W1 (B22 − B33) + 2W2

[
B11 (B22 − B33) − B2

12

]

+2W4a2
2 + 4W5a2(Ba)2,

T12 = 2W1 B12 + 2W2 B12 B33

+2W4a1a2 + 2W5 [a1(Ba)2 + a2(Ba)1] , (15)

where we used det B = 1 (incompressibility) to compute the
components of B−1. Here, ai and (Ba)i denote the appro-
priate components of the vectors a and Ba, respectively.
Explicitly, they read

a1 = λ1C + λ2κS,

a2 = λ2S,

(Ba)1 =λ1
(
λ2

1+λ2
2κ

2
)

C+λ2
(
λ2

1 + λ2
2 + κ2λ2

2

)
κS,

(Ba)2 = λ1λ
2
2κC + λ3

2

(
1 + κ2

)
S.

(16)

We remark that a2 = λ2 sin � �= 0, and thus deformed fibres
are never aligned with the direction of the applied force.
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For tensile testing,

T22 = T �= 0, T11 = T12 = 0. (17)

Since two of the in-plane stresses are identically zero, it fol-
lows from (15) that for the classes of materials that depend
on only two invariants a relationship between the deforma-
tion parameters λ1, λ2, κ will be obtained. For a given gen-
eral fibre-angle �( �= 0, π/2), this relation therefore reduces
the number of independent kinematical variables by one. In
contrast to the relations that result from imposing the physi-
cal constraints of, say, incompressibility and inextensibility,
there is no physical motivation for these restrictions; these
relations are merely the result of a constitutive choice.

As an example, consider strain-energy functions of the
form (6), which are almost universally used when modelling
transversely isotropic materials, including biological, soft tis-
sue. This choice is motivated purely by mathematical conve-
nience, with two invariants being the minimum necessary to
include both an isotropic and an anisotropic contribution to
the strain-energy function and the (I1, I4) pair being chosen
because the resulting form of the stress–strain relation (5)
is particularly convenient. For strain-energy functions of the
form (6), the simultaneous satisfaction of (17)2,3 yields the
following linear, homogeneous system of two equations for
W1 and W4:

0 = W1 (B11 − B33) + W4a2
1 , 0 = W1 B12 + W4a1a2,

which, since a1 �= 0, gives non-trivial solutions for W1, W4

if, and only if, the following, purely kinematical, relation
holds:

λ1

(
1 − λ−4

1 λ−2
2

)
S = λ2κC. (18)

This relationship is valid for all materials for which W =
W (I1, I4). It is therefore a necessary test of this constitutive
hypothesis; if for any non-zero angle of orientation (18) is
violated at any stage during simple tension, then W is not
a function of I1 and I4 only. It is shown in the next section
that this kinematical relation does not fit the data obtained
from the simple tension of a composite consisting of a soft
non-linear matrix reinforced with stiff linear fibres.

Other pairs of invariants could be considered in the same
way as (I1, I4). For example, if the strain energy density is
chosen to depend on I2 and I4 only, then the corresponding
semi-universal relation has the form
(
λ4

1λ
2
2 − 1

)
λ2S = κ (λ1C + λ2κS) . (19)

Similar considerations apply for the pairs (I1, I5) and
(I2, I5).

Assume for the moment that (18) holds for all mem-
bers of the popular family of strain energies (6). Then since
W2 = W5 = 0, it follows from (12), (15) that simple ten-
sion for these materials is described by the following two

simultaneous equations in the two unknowns λ1, λ2:

T22 = 2
(
λ2

2 − λ−2
1 λ−2

2

)
W1 + 2λ2

2S2W4,

0 =
(

1 − λ−4
1 λ−2

2

)
W1 +

(
1 − λ−4

1 λ−2
2 S2

)
W4, (20)

with I1, I4 now given by

I1 = λ2
1

C2 + λ2
2 + λ−2

1 λ−2
2

(
1 − S2

C2

)
,

I4 = λ2
1

C2

(
1 − λ−4

1 λ−2
2 S2

)2 + λ2
2S2, (21)

where we eliminated κ using (18). For the particular example
of the standard reinforcing model (7), these two equations are

T ≡ T22/μ = λ2
2 − λ−2

1 λ−2
2 + 2γ λ2

2S2 (I4 − 1) , (22)

0 = 1 − λ−4
1 λ−2

2 + 2γ
(

1 − λ−4
1 λ−2

2 S2
)

(I4 − 1) , (23)

with I4 given just above. These equations suggest a pro-
tocol to determine whether a given anisotropic soft tissue
can be modelled by the standard reinforcing material, once
it has been established that its strain-energy density is of
the form (6) by first checking experimentally that the semi-
universal relation (18) is satisfied. First, plot 1 − λ−4

1 λ−2
2

against −2
(

1 − λ−4
1 λ−2

2 S2
)

(I4 − 1): if a linear regression

analysis reveals that the relationship between the two quan-
tities is linear (up to a certain degree of approximation), then
the slope of the curve gives the value of γ . Next, plot the
T22 data against λ2

2 − λ−2
1 λ−2

2 + 2γ λ2
2S2 (I4 − 1); if again,

a linear relationship is found, then the material is adequately
described by the standard reinforcing model, and the slope of
that curve gives the value of μ. Thus the experimental con-
firmation of the validity of the standard reinforcing model
requires the satisfaction of three demanding constitutive tests,
given by (18), (22) and (23). To illustrate a typical tensile
stress-tensile stretch response for this model, we now fix γ

at γ = 10.0, say, and vary the angle of the fibres � to pro-
duce Fig. 2 in two steps: first, solve (23) for a given λ2 to find
the corresponding λ1; second, substitute into (22) to find T .

We see that, as expected intuitively, the more the fibers
were oriented to be aligned with the direction of the tensile
force (i.e. as � increases towards 90 ◦), the stiffer the mate-
rial response becomes. Changing the value of γ only brings
quantitative changes but the trend remains the same. For a
more complex strain-energy function, a multi-objective opti-
mization exercise must take place in order to evaluate the
material parameters [23,24].

4 Simple tension test: numerical solution

A finite element model of a transversely isotropic block
was built using ANSYS Version 13, which allows reinforc-
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Fig. 2 Tensile stress versus tensile stretch for the standard reinforcing
material. Here the stress measure is normalised with respect to the base
shear modulus, T ≡ T22/μ. The stretch λ2 is measured in the direction
of the tensile force, but is not the largest stretch in the sample because
of the fibre reinforcement, see Fig. 1. Here the fibers were at a angle
� = 20, 40, 60, and 80 ◦ with respect to the normal to the tensile force
in the reference configuration

ing fibres to be randomly distributed throughout the matrix,
as long as they are aligned in the same direction. If these
fibres have identical material properties and orientation, then
we may use a smeared reinforcement strategy to model the
contribution of the fibres to the mechanical response of
the fibre/matrix composite. The material parameters used
in our simulations have a biomechanical motivation. Moul-
ton et al. [25] found that the Young’s modulus of passive
myocardium is of the order of 0.02 MPa. The matrix was
therefore assumed to be a neo-Hookean, non-linearly elastic
material, since it is generally accepted that the neo-Hookean
material is an excellent model of the mechanical response of
general, isotropic materials for strains of the order consid-
ered here (Yeoh and Fleming [26]), with this value of Young’s
modulus. The fibres are modelled as a relatively stiff linearly
elastic material with a Young’s modulus of 200 MPa, since
Yamamoto et al. [27] found that the Young’s modulus of col-
lagen fascicles is of this order. In order to make the shearing
component of the deformation clearly visible in our graph-
ics (see Fig. 3 below), a volume fraction for the fibres of
0.1 was used; this fraction, however, is an order of magni-
tude greater than the volume fraction of interstitial collagen
found in the heart (Van Kerckhoven et al. [28]). The block had
originally a width of 20 mm, a height of 20 mm and a thick-
ness of 2 mm. The nodes on the bottom surface of the block
were constrained only so that no vertical displacement was
allowed, simulating a clamp which is free to move laterally
to allow for shearing of the specimen. No lateral displace-

Fig. 3 Initial configuration and final configuration with λ2 = 1.2 for
45 ◦ initial fibre orientation

ment was allowed on the top surface of the block (again to
simulate clamping), with a force acting in the positive verti-
cal direction. The other surfaces of the block were assumed
stress-free.

As an illustrative example of the finite element simula-
tions conducted, the mid-plane of the thickness in the initial
and deformed configurations is shown in Fig. 3 for the fibre
composite with � = 45 ◦, subjected to an axial strain of
1.2. For comparison purposes, these configurations are also
given in Figs. 8 and 9 in the Appendix for both � = 20 ◦,
and � = 80 ◦. We note that the out-of-plane deformations in
all our simulations were essentially homogenous, with inho-
mogeneity confined to thin boundary layer-like regions near
the clamped ends. The corresponding contour plots of the
axial, transverse and shear strains for � = 45 ◦ are given in
Fig. 4, so that the degree of homogeneity can be assessed.
These graphics confirm our physical intuition that deforma-
tions of the form (9) are good models of the deformation
that results from subjecting transversely isotropic materials
to simple tension, especially through the central region of the
specimen. It also supports our contention that an important
application of the analysis presented here is that of modelling
the mechanical response of biological, soft tissue given the
excellent qualitative agreement between the edge profiles of
the numerical simulations and the experimental results of,
for example, Guo et al. [29], who performed finite simple
shear tests on porcine skin in order to obtain guidelines for
the selection of specimen aspect ratio and clamping pre-
strain when studying the material response of soft tissues
under simple-shear tests. Although the assumed homoge-
neous deformation (9) is not an exact fit with the numeri-
cal results (the differing amounts through which the bottom
corners of the specimen are sheared are testament to that),
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(a) (b)

(c)

Fig. 4 Contour plots of a normal strain; b transverse strain; c shear strain

nonetheless the homogeneous approximation should be more
than adequate for our constitutive modelling purposes.

Although the focus here is on simple tension testing, and
therefore on stress controlled tests, for the numerical experi-
ments it was convenient to control the axial stretch λ2 so that
strains consistent with the physiological regime (of the order
of 20 %) were reproduced. Consequently axial stretches up to
λ2 = 1.2 were imposed for a number of different initial fibre
orientations. All of our numerical results were qualitatively
the same and the results for � = 45 ◦ are taken as represen-
tative. The transverse stretches λ1 and amounts of shear κ for
� = 45 ◦ were calculated by measuring the displacement of
the edge nodes along the centre of the specimen, where, as
can be seen from Figs. 3 and 4, the end effects are minimised
and the deformation is essentially homogeneous. The numer-
ical results are given in the Appendix and are summarised in
graphical form in Fig. 5 below.

As might be expected, the transverse stretch is a monoton-
ically decreasing and the amount of shear a monotonically

increasing function of the imposed axial stretch. As a check
of the above predictions, the invariant I4 was computed using
(14)1. Recalling that this invariant is the square of the fibre
stretch, one would expect I4 to increase with increasing axial
stretch. This is reflected in Fig. 5, where the fibre stretch is
always greater than one, thus avoiding possible instabilities
arising from fibres being in compression.

The validity of kinematical relations like (18), obtained
by assuming invariant pairs for the strain-energy function, is
now examined by comparing them with the numerical pre-
dictions of the behaviour of fibre-reinforced composites pro-
vided by our finite element simulations. Only the relation (18)
is under consideration here, but similar results were obtained
for the other possible kinematical relations. Strain controlled
experiments were performed in the finite element analysis
and we therefore consider λ1 and κ as functions of the axial
stretch λ2 and therefore let

f (λ2) ≡ λ1

(
1 − λ−4

1 λ−2
2

)
S − λ2κC, (24)
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where λ1 = λ1(λ2), κ = κ(λ2). The analysis of Sect. 3 has
shown that if W = W (I1, I4), then f (λ2) should be zero
over the range of axial stretch of interest for all fibre angles.
For the physiological range of strain 1.0 ≤ λ2 ≤ 1.2, the
function values for our illustrative fibre angle of � = 45 ◦
are plotted in Fig. 6a. The practical difficulty in interpret-
ing the data of Fig. 6a is that a natural measure of ‘close-
ness’ between the function (24) and zero is not available.
One possible solution is to normalise the absolute differences
between the f (λ2) values and zero using the applied stretch
λ2 and then interpret the results as percentage errors. Plots
of these errors, defined therefore by

percentage error ≡
∣∣
∣∣

f (λ2)

λ2

∣∣
∣∣ × 100, (25)

are given in Fig. 6b.
The percentage error plot strongly suggests that the rela-

tion (18) is not valid for � = 45 ◦ and thus we conclude that
the numerical simulations are not supportive of the consti-
tutive assumption W = W (I1, I4), since if this assumption
were true, then (18) would hold for all fibre angles. Con-
sequently, to model the full range of fibre orientations for
physiological strains, the finite element simulations suggest
that at least three invariants are required to fully capture the
mechanical response of transversely isotropic materials. It
should be noted, however, that our simulations show a pro-
nounced fibre-effect on the percentage error values: specifi-
cally, the percentage errors decrease with decreasing orien-
tation angle. This is to be expected because in the limiting
case of � = 0 ◦ the fibres are perpendicular to the direction
of the applied force and consequently have no effect on the
composite response to the applied stress distribution.

Holzapfel and Ogden [22] considered the extent to which
biaxial testing can be used to determine the elastic proper-
ties of transversely isotropic materials (the same problem for
strain energies based on limited structural information and
multiaxial stress–strain data was considered by Humphrey
and Yin [13] and Humphrey et al. [14]). In particular, they
concluded that if the constitutive assumption (6) is valid, then
biaxial tests can be used to determine the functions W1, W4

and hence to determine the form of the corresponding strain-
energy function (6). Our conclusions do not contradict their
results; rather our results cast doubt on their premise. It is
our contention that strain-energy functions of the form (6)
are not valid.

5 Tractions along the inclined faces

Although physical intuition and the numerical experiments
of the Sect. 4 suggest that the deformation (9) is likely to be an
excellent approximation to the deformed state of a rectangu-
lar block subjected to the tension field (17), the semi-inverse

Fig. 5 Typical transverse stretch, shear and I4 results

approach adopted here results in an over-determined system
for the unknowns λ1, λ2, κ , with some boundary conditions
in any physical realisation of the proposed experiments not
being satisfied. Specifically, it is envisaged that the inclined
faces of the specimen will be stress-free but, as is well-known
for isotropic materials (see, for example, Atkin and Fox [30]
for a clear discussion of the issues involved), normal and
shear stresses must be applied to the inclined faces of the
block in order to maintain a state of homogeneous deforma-
tion.

It is easily shown here that for the tensile test deforma-
tion, the outward unit normal n to the inclined faces in the
deformed configuration has the following components:

n =
(

1√
1 + κ2

, − κ√
1 + κ2

, 0

)
, (26)

independent of the axial and lateral stretches. Noting the
imposed state of stress, (17), the normal stress N and the
shear stress S that therefore have to applied to the inclined
faces in order to maintain a block in the deformed state (9)
are given by

N = κ2

1 + κ2 T, S = − κ

1 + κ2 T . (27)

The normalised stresses N̂ ≡ N/T, Ŝ ≡ S/T are therefore a
function only of the amount of shear κ and are plotted in Fig. 7
for the moderate range of κ suggested by the simulations of
the last section.

It is clear from this figure that compared to the tensile
stress, only insignificant normal stresses are required for
physiological strains; consequently the absence of normal
stresses applied to the inclined faces is likely to have a negli-
gible effect on the homogeneity of the deformation. In con-
trast, there is essentially a linear relationship between κ and
Ŝ over the the range of strain of interest. That relatively
large shear stresses are required to maintain homogeneity is
not surprising given that even the linear theory for isotropic
materials requires a shear stress on the inclined face of equal

123



Comput Mech (2013) 52:959–969 967

(a) (b)

Fig. 6 a Test of (I1, I4) hypothesis; b percentage error plots

Fig. 7 Stresses on inclined faces

magnitude to the shear stress driving the deformation. It is
worth emphasising here, however, that for the given strain
range, the shear stresses are essentially an order of magni-
tude smaller than the applied tensile stress. In practice a lack
of shear stress on the inclined faces of sheared blocks of
biological tissue does not seem to affect the homogeneity of
the deformation. In Dokos et al. [31], for example, cuboid
specimens of myocardium were sheared up to 40 % with no
reported mention of any inhomogeneity observed in testing.
Some protocols to minimise inhomogeneity when shearing
biological, soft tissue were proposed by Horgan and Murphy
[32]. Certainly for the experiments considered here, Fig. 4
suggests that homogeneity is likely to be maintained, at least
within the central region of the specimen.

6 Conclusions

A method has been proposed for the off-axis simple ten-
sion testing of transversely isotropic nonlinearly hyperelas-
tic materials, a method that should be a viable alternative
to the dominant biaxial tension test for material character-
isation. This method proposes that a shearing deformation
accompanies a triaxial stretching regime. It was shown that
if, as is commonly the case, a pair of one isotropic and one

anisotropic invariant is chosen as the basis for the strain-
energy function, then a kinematical universal relation must
be satisfied for this new testing regime, one that must hold
for all fibre angles and for the full range of applied tension.
Finite element simulations suggest that this is too demand-
ing a requirement and that at least three invariants are nec-
essary to model the full range of mechanical response of
transversely isotropic materials.

Appendix

Numerical results

The following procedure was adopted to calculate the kine-
matical quantities λ1, λ2, κ from the numerical results. The
x1 coordinates of the mid-points of the inclined faces were
isolated from the rest of the output data at specified values of
the prescribed axial stretch; call them xl

1, xr
1, using an obvi-

ous notation. Referring to Fig. 3, let the origin coincide the
bottom left corner of the undeformed block. Since the dimen-
sions of the block were chosen to be 20 × 20 × 2 mm, it
follows from (9) that

xl
1 = κλ210, xr

1 = λ120 + κλ210.

Since λ2 is controlled, κ, λ1 are therefore obtained from

κ = xl
1

10λ2
, λ1 = xr

1 − xl
1

20
.

These calculated quantities to four decimal places are tabu-
lated in Table 1.

Comparative plots

Numerical results for a fibre angle of 45 ◦ were presented in
the main body of the paper. The simulations for this natural
choice of fibre angle are supplemented below for an angle
close to the horizontal and another close to the vertical. For
the material parameters used here, it is clear from Figs. 8
and 9 that shear is negligible for a 20 ◦ angle and much more
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Table 1 Kinematics for numerical experiments with a 45 ◦ fibre angle

Axial stretch Amount of shear Transverse stretch

1 0 1

1.02 0.0207 0.9885

1.04 0.0406 0.9771

1.06 0.0598 0.9659

1.08 0.0782 0.9549

1.1 0.0959 0.9441

1.12 0.1128 0.9336

1.14 0.1288 0.9232

1.16 0.1442 0.9132

1.18 0.1587 0.9033

1.2 0.1725 0.8938

Fig. 8 Initial and final configurations with λ2 = 1.2 for 20 ◦ initial
fibre orientation

pronounced for 80 ◦. A comparison of these graphics with
Fig. 3 shows that the amount of shear for 45 ◦ is between
these two limiting cases.
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