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Abstract We give conditions on the strain–energy function
of nonlinear anisotropic hyperelastic materials that ensure
compatibility with the classical linear theories of anisotropic
elasticity. We uncover the limitations associated with the
volumetric–deviatoric separation of the strain–energy used,
for example, in many Finite Element (FE) codes in that it does
not fully represent the behavior of anisotropic materials in the
linear regime. This limitation has important consequences.
We show that, in the small deformation regime, a FE code
based on the volumetric–deviatoric separation assumption
predicts that a sphere made of a compressible anisotropic
material deforms into another sphere under hydrostatic pres-
sure loading, instead of the expected ellipsoid. For finite
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deformations, the commonly adopted assumption that fibres
cannot support compression is incorrectly implemented in
current FE codes and leads to the unphysical result that under
hydrostatic tension a sphere of compressible anisotropic
material deforms into a larger sphere.
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1 Introduction

Intuitively, one would expect a sphere made of a homoge-
neous anisotropic elastic material to deform into an ellip-
soid when subjected to hydrostatic stress. This is quite sim-
ple to prove for the case of a linearly elastic, transversely
isotropic material, with isotropy in the (x1, x2) plane, say.
Using the Voigt notation, the five independent elastic con-
stants are c11, c12, c13, c33, c44. When we apply a hydrosta-
tic stress σ = −pI, where p is the pressure (when positive)
or tension (when negative), the non-zero components of the
strain e are easily found to be

e11 = e22 = −p
c33 − c13

(c11 + c12)c33 − 2c2
13

,

e33 = −p
c11 + c12 − 2c13

(c11 + c12)c33 − 2c2
13

,

(1)

(see for instance Musgrave [1]), and these are clearly unequal
in general. It should be noted in passing that the denomina-
tor here is never zero since (provided the material is com-
pressible [2]) the stiffness matrix is required to be positive
definite. This is confirmed numerically in the simulation
of Fig. 1, where we used Abaqus® to deform a homoge-
neous sphere of linearly elastic anisotropic material into an
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Fig. 1 In Abaqus®, (a) a sphere with the linearly elastic constants of
paratellurite (transversely isotropic Tellurium dioxide TeO2; see, for
example, [3]) deforms into an ellipsoid (green) under hydrostatic ten-
sion, (b) shows the magnitude of displacement U (normalized by the

radius of the undeformed sphere Ro) of six points (highlighted in red in
(a) on the extremities of the major- (along the x axis) and minor axes
(along the y- and the z axes) of the ellipsoid as a function of the applied
uniform surface tension (in kPa). (Color figure online)

Fig. 2 In Abaqus®, (a) a
sphere (black) modelled by the
“Holzapfel–Gasser–Ogden”
model deforms into a larger
sphere (green) under hydrostatic
tension. In the simulation, the
loading produces a large
deformation and the spherical
shape remains, as attested by (b)
which displays the
non-dimensionalized
displacements of the major- and
minor axes end points as
functions of the hydrostatic
stress (in kPa). (Color figure
online)

(a) (b)

ellipsoid by applying a hydrostatic tension (i.e. a uniform
tensile loading [p < 0] is applied to the surface of the
sphere). Here the applied tension is increased so that the final
computed deformation shown in Fig. 1(a) exceeds the small
strain regime to produce a “visible” deformation for illus-
trative purposes. However, it is worth noting that the ellip-
soidal shape emerges from the start of the small deformation
regime, as exemplified by the immediate difference between
the deformed lengths of the major- and the minor axes upon
the application of the hydrostatic tensile loading, as shown
in Fig. 1(b). For an incompressible material, by contrast, an
anisotropic sphere does not deform at all under a hydrostatic
stress (this is shown theoretically in the nonlinear context in
Sect. 5).

However, when we use one of the nonlinear hyperelastic
models of anisotropic materials instead in Abaqus® to per-
form the same numerical experiment, we find that a sphere
is transformed into a sphere of larger diameter, not an ellip-

soid, as illustrated in Fig. 2. In this paper we show that this
unphysical prediction is explained by the way that certain
models of nonlinear anisotropic elasticity are implemented
in Finite Element (FE) codes, as a result of which they are
unable to predict, either in the infinitesimal (linear) limit or
in the finite deformation regime, the correct ellipsoidal shape
due to hydrostatic loading. In this paper we investigate the
theory underlying this problem.

The paper is organized as follows. In Sect. 2 we recall
the equations of compatibility which ensure that a nonlinear
hyperelastic material reinforced with one family of parallel
fibres behaves like a transversely isotropic solid in the infin-
itesimal limit [4]. These are then re-cast in terms of the vol-
umetric/deviatoric formulation of nonlinear hyperelasticity,
and we specialize them to the case of a strain–energy function
that is decoupled into the sum of a volumetric- and a devia-
toric part. In this case we find that the number of independent
elastic constants is reduced from five to four and thus the full
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transverse isotropy of linear elasticity is not captured. In par-
ticular, this specialization implies that a sphere deforms into
a sphere under hydrostatic stress, i.e. that e11 = e22 = e33 in
(1).

In Sect. 3 we extend the transversely isotropic result to
the case of a material reinforced with two families of orthog-
onal fibres, for which the constitutive equations reduce to
a specialization of orthotropic linear elasticity with only
seven elastic constants instead of the nine required for full
orthotropy. We also give results for the general case of a mate-
rial reinforced with two families of (not necessarily orthogo-
nal) fibres, for which the 13 elastic constants associated with
this monoclinic case reduce to 10, but the details are relegated
to Appendix A. This covers the case where the two fami-
lies are made of fibres with the same mechanical properties,
as implemented in the so-called “Holzapfel–Gasser–Ogden”
model [5].

In Sect. 4 we give the details of the simulation conducted
in Abaqus® using its version of the latter model. As pre-
dicted from the analysis of the preceding sections, Abaqus®

deforms a sphere into another sphere in the small deformation
regime. Surprisingly, it does so even in the large deformation
regime, even though, as we establish in Sect. 5, the theory
shows that the linear result does not carry over to the nonlin-
ear regime: for a compressible anisotropic material a hydro-
static stress does not yield a uniform dilatation in nonlinear
hyperelasticity, whether or not the strain–energy is decou-
pled into volumetric/deviatoric parts. Here the unphysical
behaviour of a sphere turning into a sphere is due to the way
that some anisotropic models are implemented in Abaqus®.
In particular, models for which the anisotropic contribution
is active only when the fibres are in extension, i.e. when
λ > 1, where λ is the stretch in the fibre direction. Cur-
rent FE codes effectively express this condition incorrectly
as λ∗ > 1 instead, where λ∗ is the deviatoric stretch in the
fibre direction. A dramatic consequence of this difference is
that the anisotropic contribution is never called upon under
a hydrostatic stress loading. Since more complex deforma-
tions computed for soft tissue by FE codes typically include
a hydrostatic part, it follows that the validity of such FE cal-
culations must be viewed with caution.

In Sect. 6, we show why, on the basis of the assumptions
made in FE implementations, a sphere becomes a sphere
under hydrostatic tensile loading contrary to physical expec-
tation. Finally, as already mentioned, results for monoclinic
material symmetry are presented in Appendix A.

2 Transverse isotropy

For solids with one family of parallel fibres, Spencer [6]
showed that in general, the strain–energy function W is
a function of three isotropic strain invariants (I1, I2, I3)

and two anisotropic invariants (I4, I5), which together form
a complete set of independent invariants for transversely
isotropic elastic materials. Hence

W = W (I1, I2, I3, I4, I5), (2)

where

I1 = trC, I2 = 1
2

[
(trC)2 − tr

(
C2

)]
, I3 = det C,

I4 = M · CM, I5 = M · C2 M, (3)

F is the deformation gradient, C = FTF is the right Cauchy–
Green deformation tensor and M is a unit vector aligned with
the fibres in the reference configuration, which is assumed to
be stress free.

Here we give connections between the first and second
derivatives of W with respect to the invariants, evaluated in
the undeformed configuration, and the five constants of trans-
versely isotropic linear elasticity as a prelude to considering
the implications of the volumetric/deviatoric separation.

First, the Cauchy stress σ is given by

Jσ = 2W1B + 2W2

(
I1B − B2

)
+ 2I3W3I

+2W4m ⊗ m + 2W5(m ⊗ Bm + Bm ⊗ m), (4)

where J = det F = I 1/2
3 is the dilatation, B = FFT is

the left Cauchy–Green deformation tensor, I is the identity
tensor, m = FM, and Wk = ∂W/∂ Ik, k = 1, 2, . . . , 5.

A useful alternative way to express the constitutive law
is in terms of the invariants of the distortional part of the
deformation [5,7]. This is defined by

F∗ = J−1/3F, so that det F∗ = 1, (5)

indicating that no volume changes occurs for the part of the
deformation described by F∗. The corresponding distortional
right and left Cauchy–Green tensors are

C∗ = J−2/3C, B∗ = J−2/3B, (6)

by means of which the associated deviatoric invariants

I ∗
1 = J−2/3 I1, I ∗

2 = J−4/3 I2,

I ∗
4 = J−2/3 I4, I ∗

5 = J−4/3 I5, (7)

are constructed.
We now take the energy function to depend on the inde-

pendent invariants I ∗
1 , I ∗

2 , I3, I ∗
4 , I ∗

5 and denote it by W ∗.
Then, Eq. (4) can be rewritten as

Jσ = 2W ∗
1

(
B∗ − 1

3 I ∗
1 I

)
+ 2W ∗

2

(
I ∗
1 B∗ − B∗2 − 2

3 I ∗
2 I

)

+2I3W ∗
3 I + 2W ∗

4
(
m∗ ⊗ m∗ − 1

3 I ∗
4 I

)

+2W ∗
5

(
m∗ ⊗ B∗m∗ + B∗m∗ ⊗ m∗ − 2

3 I ∗
5 I

)
,
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where m∗ = F∗ M = J−1/3m. An immediate consequence
is that

1
3 trσ = 2J W ∗

3 ≡ W ∗
J , (8)

which is a special case of a general result for hyperelastic
materials given in [7].

In the (undeformed) reference configuration, F = C = I
and the invariants take the values

I1 = I2 = 3, I3 = 1, I4 = I5 = 1, (9)

and thus

J = 1, I ∗
1 = I ∗

2 = 3, I ∗
4 = I ∗

5 = 1. (10)

For convenience, the energy function is assumed to be zero
in the undeformed state, and we also assume that the stress
vanishes there. This leads to (see Merodio and Ogden [4])

W = 0, W1 + 2W2 + W3 = 0, W4 + 2W5 = 0, (11)

wherein all the terms are evaluated for (9). Consistency with
the classical linear theory of transversely isotropic elasticity
is achieved when the additional conditions

W1 + W2 + W5 = c44/2,

W2 + W3 = c12 − c11

4
,

W11 + 4W12 + 4W22 + 2W13 + 4W23 + W33 = c11

4
,

W14 + 2W24 + 2W15 + W34 + 4W25 + 2W35 = c13 − c12

4
,

W44 + 4W45 + 4W55 + 2W5 = c33 − c11 + 2c12 − 2c13

4
,

(12)

are satisfied [4], where again the derivatives of W are evalu-
ated in the reference configuration. Here the five independent
elastic constants c11, . . . , c44 are given in the standard Voigt
notation with the x3 coordinate direction corresponding to
the axis of symmetry aligned with the unit vector M.

The corresponding, equivalent, results in terms of W ∗ are
simply
W ∗ = 0, W ∗

1 + W ∗
2 = 1

4 (c11 − c12) , W ∗
3 = 0,

W ∗
4 = −2W ∗

5 = 1
2 (c11 − c12) − c44, (13)

and

W ∗
33 = 1

36 (2c11 + 2c12 + c33 + 4c13) ,

W ∗
34 + 2W ∗

35 = 1
12 (c13 − c12 + c33 − c11) ,

W ∗
44 + 4W ∗

45 + 4W ∗
55 = 1

4 (c11 + c33 − 2c13) − c44, (14)

all evaluated in the reference configuration.
The hyperelastic models implemented in many FE codes

rely on an additive separation of the strain–energy function
W into a volumetric- and a deviatoric parts. For solids with

one family of parallel fibres, W is thus assumed to be of the
form

W (I1, I2, I3, I4, I5) = W ∗ (
I ∗
1 , I ∗

2 , I3, I ∗
4 , I ∗

5
)

= f (I3) + W
(
I ∗
1 , I ∗

2 , I ∗
4 , I ∗

5
)
, (15)

where f, the volumetric part, is a function of I3 only
and W, the deviatoric part, is a function of the deviatoric
isotropic (I ∗

1 , I ∗
2 ) and anisotropic (I ∗

4 , I ∗
5 ) invariants only.

Separation into volumetric and deviatoric parts is done for
instance for the so-called “Fung” and “Holzapfel–Gasser–
Ogden” models in Abaqus® [8], the “Holzapfel” model
in ANSYS® [9], the “Transversely Isotropic Hyperelas-
tic”, “Fung Orthotropic”, “Tension—Compression Nonlin-
ear Orthotropic” models in FEBio [10], and the “Orthotropic
Effects” model in ADINA® [11].

We now substitute the special form of strain–energy func-
tion (15) into the general equations (13), (14). The only one to
give anything essentially new is Eq. (14)2. Its left-hand side
is clearly zero when the decoupling is enforced, which gives

c12 − c13 = c33 − c11. (16)

If this relation were to hold, then there would be only four
independent elastic constants and the material would not be
fully transversely isotropic in the linear regime. It follows
that materials with one family of parallel fibres for which
the strain–energy function can be decomposed additively as
(15) do not behave like general transversely isotropic solids
when subject to infinitesimal deformations. This is not sur-
prising since (15) represents a specialization of the trans-
versely isotropic theory, and it has not been claimed other-
wise in the literature. However, as shown by Musgrave [1]
and by Federico [12], if the elastic constants of a transversely
isotropic solid were to obey Eq. (16), then the material would
contract or dilate uniformly under either a compressive or a
tensile hydrostatic stress. This is clearly seen by comparing
Eqs. (1) and (16).

This conflict puts simulations based on that decomposi-
tion into perspective, because the resulting material will not
behave as expected physically. These results carry over to the
case of a solid with two families of fibres, as we show in the
next section and Appendix A.

3 Orthotropy

A material reinforced with two families of parallel fibres pos-
sesses only one plane of symmetry (the plane containing all
the fibres) in general, and is thus of monoclinic symmetry.
In the linear theory a monoclinic solid has 13 independent
elastic constants. As shown by Spencer [6], there are two
special cases of materials with two planes of symmetry: (a)
when the fibres are at right angles, and (b) when the fibres are
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all mechanically equivalent. In those two cases, the consti-
tutive equations should specialize to those of linearly elastic
orthotropic solids in the infinitesimal limit, which possess
nine independent elastic constants. Here we extend the results
of the previous section to Case (a). Case (b) is lengthier and
can be read off from the general monoclinic treatment pre-
sented in Appendix A.

When the fibre families are orthogonal, the strain–energy
function W depends on seven invariants [13]: I1 to I5 defined
in (3), and

I6 = M ′ · CM ′, I7 = M ′ · C2 M ′, (17)

M ′ being a unit vector in the reference configuration orthog-
onal to M and aligned with the second family of fibres. With-
out loss of generality, M and M ′ may be taken to be aligned
with two orthogonal Cartesian unit vectors, e2 and e3 say. In
the stress-free reference configuration, where

I1 = I2 = 3, I3 = I4 = I5 = I6 = I7 = 1, (18)

we must have

W1 + 2W2 + W3 = 0, W4 + 2W5 = 0, W6 + 2W7 = 0.

(19)

Furthermore, we find that consistency with the classical lin-
ear theory of orthotropic elasticity is achieved when the con-
ditions

W1 + W2 = 1
2 (c55 + c66 − c44) ,

W5 = 1
2 (c44 − c66) ,

W7 = 1
2 (c44 − c55) ,

W11 + 4W12 + 4W22 + 2W13 + 4W23 + W33 = 1
4 c11,

W14 + 2W24 + 2W15 + W34 + 4W25 + 2W35

= 1
4 [c13 − c11 + 2 (c55 + c66 − c44)] ,

W16 + 2W26 + W36 + 2W17 + 4W27 + 2W37

= 1
4 [c12 − c11 + 2 (c55 + c66 − c44)] ,

W44 + 4W45 + 4W55 = 1
4 (c11 + c33 − 2c13 − 4c55) ,

W66 + 4W67 + 4W77 = 1
4 (c11 + c22 − 2c12 − 4c66) ,

W46 + 2W47 + 2W56 + 4W57

= 1
4 [c11 − c12 + c23 − c13 − 2 (c55 + c66 − c44)] , (20)

are met, where the derivatives of W are evaluated in the ref-
erence configuration. Here c11, c12, c13, c22, c23, c33, c44,

c55, c66 are the nine independent elastic constants in the
Voigt notation.

Similarly to (7)4,5, we introduce the deviatoric invariants

I ∗
6 = J−2/3 I6, I ∗

7 = J−4/3 I7, (21)

and consider the strain–energy function W ∗ to depend in all
generality on the seven invariants:

W ∗ = W ∗ (
I ∗
1 , I ∗

2 , I3, I ∗
4 , I ∗

5 , I ∗
6 , I ∗

7
)
.

Then the above compatibility equations take the equivalent,
but more compact, forms

W ∗
3 = 0,

W ∗
1 + W ∗

2 = 1
2 (c55 + c66 − c44) ,

W ∗
4 = −2W ∗

5 = c66 − c44,

W ∗
6 = −2W ∗

7 = c55 − c44, (22)

and

W ∗
33 = 1

36 (c11 + c22 + c33 + 2c12 + 2c23 + 2c13) ,

W ∗
34 + 2W ∗

35 = 1
12 (c33 + c23 − c11 − c12) ,

W ∗
36 + 2W ∗

37 = 1
12 (c22 + c23 − c11 − c13) ,

W ∗
44 + 4W ∗

45 + 4W ∗
55 = 1

4 (c11 + c33 − 2c13 − 4c55) ,

W ∗
66 + 4W ∗

67 + 4W ∗
77 = 1

4 (c11 + c22 − 2c12 − 4c66) ,

W ∗
46 + 2W ∗

47 + 2W ∗
56 + 4W ∗

57

= 1
4 [c11 − c12 + c23 − c13 − 2 (c55 + c66 − c44)] , (23)

all evaluated in the reference configuration where the invari-
ants have the values given in (18) .

Again, we now look at the implications of the volumet-
ric/deviatoric decoupling, in this case in the form

W = W ∗ = f (I3) + W
(
I ∗
1 , I ∗

2 , I ∗
4 , I ∗

5 , I ∗
6 , I ∗

7
)
. (24)

Clearly, because of the decoupling, the left-hand sides of the
second and third equations in (23) are zero, which yields the
following two conditions on the elastic stiffnesses:

c23 − c12 = c11 − c33, c23 − c13 = c11 − c22. (25)

If these relations hold, then there are only seven inde-
pendent elastic constants and the material is not a general
orthotropic material in the linear regime. In fact, it is then a
very special orthotropic material, for which a sphere deforms
into a sphere when subject to compressive or tensile hydro-
static pressure loadings. This clearly unphysical result is eas-
ily shown by extending the analysis of Musgrave [1] to the
present case.

It follows that materials with two orthogonal families
of parallel fibres for which the strain–energy function is
decomposed additively as in (24) do not behave like gen-
eral orthotropic solids when subject to infinitesimal deforma-
tions. Similar results can also be deduced for the other case of
orthotropy, when the families of fibres are not necessarily at
right angles, but are mechanically equivalent (see Appendix
A for general case). This includes the popular Holzapfel–
Gasser–Ogden model [5] for arteries, for which the original
incompressible formulation has been decoupled into a devi-
atoric/volumetric split in the Abaqus® and ADINA® imple-
mentations.

To summarize: separating the strain–energy function of a
nonlinearly hyperelastic anisotropic material into the sum
of a deviatoric and a volumetric part leads to a model
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which fails to fully capture linear anisotropic elasticity in
the small deformation regime. In particular, the decoupling
predicts that in the linearized regime, a sphere deforms
into another sphere under hydrostatic loading—a clearly
unphysical behaviour. We now illustrate this prediction with
Abaqus®.

4 Numerical experiments

We subjected Abaqus® to a test in linear anisotropic elas-
ticity (where there is no decoupling of the strain–energy
between volumetric and deviatoric parts) and a test in non-
linear anisotropic hyperelasticity (where the decoupling is
implemented by default).

First, we put a sphere made of (transversely isotropic) Tel-
lurium Dioxide TeO2 under hydrostatic loading. This mate-
rial is linearly elastic and possesses the 422 tetragonal sym-
metry, with elastic stiffness constants c11 = 5.59, c12 =
5.13, c13 = 2.17, c33 = 10.56, c44 = 2.67, c66 = 6.62
(1010 N/m2) and mass density ρ = 6, 020 kg/m3. It is con-
sidered to be “strongly anisotropic” [14]. Figure 1 in the
Introduction illustrates the behaviour for hydrostatic tension,
while here in Fig. 3 the sphere is subject to hydrostatic pres-
sure (p > 0). As was the case for a hydrostatic tensile loading
(Fig. 1), the sphere deforms into an ellipsoid under a hydro-
static pressure loading, as indeed it should. Again, in this
simulation we pushed the deformation beyond the limit of
validity of the linear theory for illustrative purposes, but the
change of shape from a sphere to an ellipsoid was found to
take place as soon as the deformation started, as attested by
the plot of dimensionless displacements of six points on the
surface of the sphere shown in Fig. 3(b). The six points on

the surface of the sphere are highlighted in Fig. 3(a) and they
represent the end points of the major- and minor axes of the
deformed ellipsoid.

Next we used a sphere made of Holzapfel–Ogden–Gasser
material. This is one of the most commonly used hyperelastic
anisotropic models, due to its excellent ability to capture the
behaviour of arterial and other soft tissues. Based on struc-
tural observations, it assumes that for artery walls, there are
two families of mechanically equivalent stiff collagen fibres
embedded in a softer isotropic matrix. An extension of the
model (Gasser et al. [15]) can also account for distributed
collagen fibre orientations. For our experiments we picked
the following material and structural constants: κ = 0 (no
dispersion), µ = 50 kPa, k1 = 1 MPa, k2 = 100, Θ = 50◦

(see [15] for details). Figure 2 shows the result for a sphere
under hydrostatic tension, while Fig. 4 shows the correspond-
ing result for hydrostatic pressure. In both cases, the sphere
deforms into another sphere. To dispel any doubt about this
phenomenon, we also display the displacement magnitudes
of some representative points on the surface, and find that
they all agree.

As we saw earlier, this clearly unphysical behaviour is
due to the additive decomposition of Eq. (24), at least
in the infinitesimal regime. However, when we increased
the hydrostatic tension enough to produce a large defor-
mation we also obtained a sphere, even though our proof
does not carry over to the nonlinear regime, as we show
in the following section. For the case of hydrostatic pres-
sure the situation is different since the fibre families in the
Holzapfel–Gasser–Ogden model are assumed not to support
compression and then the material response is isotropic; it
is then expected that a sphere will deform into a smaller
sphere.

x

y

z

(a) (b)

Fig. 3 In Abaqus®, (a) a sphere (black) with the linear elastic constants
of paratellurite (transversely isotropic Tellurium dioxide TeO2; see, for
example, [3]) deforms into an ellipsoid (green) under hydrostatic pres-
sure loading. Here the applied pressure is increased beyond the small
strain regime to produce a “visible” deformation for illustrative pur-

poses, but the ellipsoidal shape emerges immediately upon application
of the pressure loading in the small deformation regime, as exemplified
in (b), which displays the non-dimensionalized displacements of the
end points (red dots on the major x- and the minor y- and z axes) with
respect to the hydrostatic stress (in kPa). (Color figure online)
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(a) (b)

Fig. 4 In Abaqus®, (a) a sphere (black) modelled by the “Holzapfel–
Gasser–Ogden” model deforms into a smaller sphere (green) under
hydrostatic pressure. This material is often used to model nonlinear soft
tissues reinforced with one or two families of stiff fibres. In the simula-

tion, the loading produces a large deformation and the spherical shape
remains, as exemplified in (b), which displays the non-dimensionalized
displacement of the minor and major end points with respect to the
hydrostatic stress (in kPa). (Color figure online)

All FE simulations in this study were initially performed
using a low density mesh consisting of 35,252 four noded
tetrahedron elements with linear interpolation functions. A
convergence analysis was performed using a high density
mesh consisting of 209,023 four noded tetrahedron elements
with linear interpolation functions. Computed nodal defor-
mations on the surface of the sphere for the high density
mesh differed from those computed for the low density mesh
by less than 0.0016 %, demonstrating a highly converged
solution. Additionally, simulations revealed that the use of
ten noded tetrahedron elements with quadratic interpolation
functions resulted in a change of computed results of less
than 0.0012 %.

5 Hydrostatic stress versus pure dilatation

Here we show that a sphere made of a compressible nonlinear
anisotropic material deforms into an ellipsoid under a large
hydrostatic stress, whether or not its strain–energy function
is decoupled.

For ease of illustration we consider a model in which
the strain–energy function depends only on the invariants
I1, I3, I4, I6 corresponding to a simplified model for an
isotropic matrix with two embedded families of fibres. This
model includes the Holzapfel–Gasser–Ogden material as a
special case. Thus, W = W (I1, I3, I4, I6), and the Cauchy
stress σ is given by

Jσ = 2W1B + 2I3W3I + 2W4m ⊗ m + 2W6m′ ⊗ m′. (26)

For a pure (and uniform) hydrostatic stress σ = σ I, define
σ̄ = Jσ − 2I3W3. Then the above becomes

σ̄ I = 2W1B + 2W4m ⊗ m + 2W6m′ ⊗ m′. (27)

We suppose the initial fibre directions M and M ′ lie in
the plane defined by e1 and e2, contain an angle of 2Θ and
have components

M = (cos Θ, sin Θ, 0), M ′ = (cos Θ, − sin Θ, 0). (28)

We also assume that the two families of fibres have the same
mechanical properties. Then, by symmetry we can consider
the deformation resulting from the hydrostatic stress to be a
pure homogeneous strain with principal directions e1, e2, e3
and corresponding stretches λ1, λ2, λ3. The deformed fibre
directions are then

m = (λ1 cos Θ, λ2 sin Θ, 0) ,

m′ = (λ1 cos Θ, −λ2 sin Θ, 0) ,
(29)

and the invariants I4 and I6 are given by

I4 = I6 = m · m = m′ · m′ = λ2
1 cos2 Θ + λ2

2 sin2 Θ. (30)

Since the two families of fibres have the same properties
then, for the considered deformation, W4 = W6 and hence

2W1B + 2W4(m ⊗ m + m′ ⊗ m′) = σ̄ I. (31)

It follows that

2W1B(m+m′)=
[
σ̄ −2W4

(
I4+m · m′)] (m+m′), (32)

2W1B(m−m′)=
[
σ̄ −2W4

(
I4−m · m′)] (m−m′), (33)

i.e. m + m′ and m − m′, which are along the bisectors of
the fibres in the deformed configuration, are eigenvectors of
B. Also m × m′, which is along the normal to the plane
of the fibres, is an eigenvector. Let them correspond to the
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eigenvalues λ2
1, λ2

2, λ2
3, respectively. Then

λ2
1 = σ̄ − 2W4(I4 + m · m′)

2W1
,

λ2
2 = σ̄ − 2W4(I4 − m · m′)

2W1
,

λ2
3 = σ̄

2W1
, (34)

and hence

λ2
1 − λ2

2 = −2W4(m · m′)/W1,

λ2
1 − λ2

3 = −W4
(
I4 + m · m′) /W1,

λ2
2 − λ2

3 = −W4
(
I4 − m · m′) /W1, (35)

and we also have m · m′ = λ2
1 cos2 Θ − λ2

2 sin2 Θ.

As a consequence, for a fibre-reinforced material with
W4 (= 0, we note that λ1 = λ2 if and only if m · m′ = 0,

in which case we must have cos 2Θ = 0, i.e. the fibres are
initially orthogonal (a special case). But also, λ1 = λ2 (= λ3
except when W4 = 0 (which takes us back to isotropy). A
special case also arises if m · m′ (= 0 and I4 = ±m · m′,
but this corresponds to the two fibre families being aligned
(Θ = 0 or π/2). On the other hand, if the fibres are initially
orthogonal then we obtain

(
λ2

1 − λ2
2

)
(W1 + W4) = 0, (36)

and we deduce that λ1 = λ2 (= λ3. With appropriate slight
changes the above analysis applies also for a single fibre
family.

Now consider the energy function, again denoted W ∗,
to be expressed in terms of the deviatoric invariants I ∗

1 =
I −1/3
3 I1, I ∗

4 = I −1/3
3 I4, I ∗

6 = I −1/3
3 I6, and J. Then, we

have [16]

Jσ = J W ∗
J + 2W ∗

1
(
B∗ − 1

3 I ∗
1 I

)

+2W ∗
4

(
m∗ ⊗ m∗ − 1

3 I ∗
4 I

)

+2W ∗
6

(
m′∗ ⊗ m′∗ − 1

3 I ∗
6 I

)
, (37)

where B∗ = J−2/3B, m∗ = J−1/3m, m′∗ = J−1/3m′. If
the strain energy is decoupled into a deviatoric and a volu-
metric part as

W ∗ (
I ∗
1 , I ∗

4 , I ∗
6 ; J

)
= f (J ) + W

(
I ∗
1 , I ∗

4 , I ∗
6
)
, (38)

then the result of our proof above is unaffected, because (35)
is simply replaced by

λ2
1 − λ2

2 = −2W4(m · m′∗)/W1,

λ2
1 − λ2

3 = −W4
(
I ∗
4 + m∗ · m′∗) /W1,

λ2
2 − λ2

3 = −W4
(
I ∗
4 − m · m′) /W1, (39)

and the same deductions follow.
Now take the trace of both sides of Eq. (37) for the case

when the strain–energy is decoupled according to (38). This
gives

1
3 trσ = f ′(J ). (40)

Thus, as pointed out in [17], when there is a volumet-
ric/deviatoric split, the deviatoric stress changes only the
shape and not the volume, in contrast to the situation where
there is no such split.

Ní Annaidh et al. [16] argued that the mean Cauchy stress
on the left-hand side of this equation should cause more than
the simple volume change that the right-hand side would
seem to indicate. However, even though the mean Cauchy
stress depends only on J here, the response of the material is
not in general purely dilatational, as we now show through
an example.

For simplicity we consider a single family of fibres, so
that

Jσ =2W1
(
B∗− 1

3 I ∗
1 I

)
+2W4

(
m∗ ⊗ m∗− 1

3 I ∗
4 I

)
+ J f ′(J ).

(41)

Suppose we consider a uniaxial stress σ1 along the m direc-
tion. Then this equation gives (with λ2 = λ3 by symmetry,
I4 = λ2

1 and σ2 = σ3 = 0)

Jσ1 = 4
3W1 I −1/3

3

(
λ2

1−λ2
2

)
+ 4

3W4 I −1/3
3 λ2

1+ J f ′(J ),

0 = −2
3W1 I −1/3

3

(
λ2

1−λ2
2

)
− 2

3W4 I −1/3
3 λ2

1+ J f ′(J ). (42)

By subtraction, and use of (40), we obtain the two equalities

Jσ1 =2W1 I −1/3
3

(
λ2

1−λ2
2

)
+2W4 I −1/3

3 λ2
1 =3J f ′(J ). (43)

Since λ2 = λ3 and hence I3 = λ2
1λ

4
2, the latter equation

determines λ2 in terms of λ1, at least in principle. Thus, σ1
is a function of λ1 and λ2, but in general λ1 (= λ2. Equation
(40) shows that the dilatation is determined by the hydrostatic
part of the stress, but that does not imply that the deformation
is a pure dilatation or that the uniaxial stress depends only on
the dilatation, because of the connection between λ1 and λ2.

We conclude this section by studying the effects of an
assumption which is often made when modelling biological
soft tissues: that collagen fibres don’t withstand compres-
sion. Mathematically this is translated by letting the material
have an effective fibre contribution to its strain–energy func-
tion (as in Eq. (26)) when the stretch is greater than unity in
the direction of the fibres, and by taking that contribution to
be zero when the stretch is smaller than unity. Because this
stretch is

√
I4 in the direction of M and

√
I6 in the direction
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of M ′, it means that here Eq. (26) is in place when I4 > 1 and
I6 > 1. When I4 ≤ 1 (compression in the direction of M),
Eq. (26) is reduced by one term by effectively taking W4 ≡ 0
and similarly when I6 ≤ 1 (compression in the direction of
M ′), in which case we take W6 ≡ 0.

For a material with two families of parallel fibres with
equal properties, suppose again that the initial fibre directions
M and M ′ are as in Eq. (28), and that the deformation result-
ing from a hydrostatic stress is a pure homogeneous strain
with corresponding stretches λ1, λ2, λ3, and I4 = I6 > 1.

Now we write the components of (31) as

σ̄ = 2W1λ
2
3,

σ̄ = 2W1λ
2
1 + 4W4λ

2
1 cos2 Θ,

σ̄ = 2W1λ
2
2 + 4W4λ

2
2 sin2 Θ. (44)

Assume first that the deformation determines a volume com-
pression, as in Figs. 3 and 4, or leaves the volume unchanged:
J ≤ 1. Then, compare the invariants I4 = I6 to 1. If I4 > 1,

then W4 > 0 in (44), which we can solve to find, using (44)
and the connection J = λ1λ2λ3, that

λ1 = J 1/3
[

W1(W1 + 2W4 sin2 Θ)

(W1 + 2W4 cos2 Θ)2

] 1
6

,

λ2 = J 1/3
[

W1(W1 + 2W4 cos2 Θ)

(W1 + 2W4 sin2 Θ)2

] 1
6

,

λ3 = J 1/3

[
W 2

1 + 2W1W4 + W 2
4 sin2 2Θ

W 2
1

] 1
6

. (45)

By substituting for λ1 and λ2 in the expression for I4 in (30)
we then obtain

I4 = J 2/3g(Θ) > 1, (46)

where

g(Θ) =
[

W1(W1 + 2W4 sin2 Θ)

(W1 + 2W4 cos2 Θ)2

] 1
3

cos2 Θ

+
[

W1(W1 + 2W4 cos2 Θ)

(W1 + 2W4 sin2 Θ)2

] 1
3

sin2 Θ. (47)

However, we can easily compute the extrema of g and estab-
lish that

0 <

[
W 2

1

(W1 + 2W4)2

] 1
3

≤ g(Θ) ≤
[

W1

W1 + W4

] 1
3

< 1, (48)

for all Θ. Then inequality (46) leads necessarily to J >

1, contradicting the assumption of volume compression. It
follows that I4 = I6 ≤ 1 so that W4 ≡ 0 in (44), giving
λ1 = λ2 = λ3 = J 1/3 : in compression therefore, a sphere
changes into a smaller sphere under hydrostatic stress. This
observation goes a long way to explain Fig. 4 for the sphere
of Holzapfel–Gasser–Ogden material in compression.

Assume next that the deformation determines a volume
expansion: J > 1, as in Figs. 1 and 2. Then, compare the
invariants I4 = I6 to 1. If I4 ≤ 1, then W4 ≡ 0 and by (44), all
three stretches would be equal: λ1 = λ2 = λ3 = J 1/3 (recall
that λ1λ2λ3 = J ). But then, it would follow from (30) that
I4 = λ2

1 = J 2/3 > 1, a contradiction. We therefore deduce
that I4 = I6 > 1 and thus we take W4 = W6 (= 0 in (44). We
then find, using (44) and the identity J = λ1λ2λ3, that the
expressions (45) hold. Therefore, for any value of Θ at least
two of the principal stretches are different: in expansion, a
sphere changes into an ellipsoid under hydrostatic stress.

The overall conclusion of this section is that in compress-
ible nonlinear anisotropic hyperelasticity, hydrostatic ten-
sion is not accompanied by a pure dilatation, whether or not
the strain–energy function is decoupled into a deviatoric and
a volumetric part; and under hydrostatic pressure the same
conclusion follows unless the fibres do not support compres-
sion. This is consistent with the work of Sansour [17] who
showed that for orthotropic materials, a purely spherical state
of stress is accompanied by a change of shape.

The case of an incompressible material is covered by the
first of the above arguments (for J ≤ 1) and for J = 1 we
conclude that λ1 = λ2 = λ3 = 1 : for an incompressible
material under hydrostatic stress, whether positive or neg-
ative, there is no deformation and a sphere remains unde-
formed.

However, a question remains about the way Abaqus®

deals with compressible anisotropic hyperelasticity using the
volumetric/deviatoric separation. As we have shown for the
infinitesimal theory, for a decoupled model under hydrostatic
stress a sphere deforms into another sphere. Abaqus® carries
this result over to the finite deformation regime not only in
compression, which can be explained by the fact that fibres
do not support contraction, but also in expansion, contrary to
theoretical predictions.

6 Why a sphere deforms into a sphere in FE simulations
of nonlinear anisotropic elasticity

The Holzapfel–Gasser–Ogden [5] strain–energy function
used for modelling arterial layers with two families of paral-
lel collagen fibres, with the same mechanical properties, has
the general form

W (I1, I3, I4, I6) = f (J ) + W
(
I ∗
1 , I ∗

4 , I ∗
6
)
, (49)

where f (J ) is the volumetric part and

W = µ

2

(
I ∗
1 − 3

)
+ Ψ ∗

1 + Ψ ∗
2 , (50)

showing the respective contributions of an isotropic neo-
Hookean matrix and of the reinforcing fibres. For the ver-
sion of this model including fibre dispersion [15], Ψ ∗

1 and
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Ψ ∗
2 have the forms

Ψ ∗
1 = k1

2k2

[
exp

{
k2

[
κ I ∗

1 + (1 − 3κ)I ∗
4 − 1

]2
}

− 1
]
,

Ψ ∗
2 = k1

2k2

[
exp

{
k2

[
κ I ∗

1 + (1 − 3κ)I ∗
6 − 1

]2
}

− 1
]
, (51)

and µ, κ, k1, k2 are material parameters. This model is
implemented in Abaqus®. It is also implemented in ADINA®

with κ = 0, i.e. there is no dispersion in the fibre distribution.
What such models have in common is that their anisotropic

part enters into play only when the deviatoric stretch is
greater than unity in the fibre direction(s), that is when
I ∗
4 > 1 and/or I ∗

6 > 1. This subtle difference with the
previous section (where anisotropy contributed to the strain–
energy when the actual fibre stretches were greater than unity,
that is when I4 > 1 and/or I6 > 1) has dramatic repercus-
sions for the hydrostatic tensile loading of a sphere, as we
now see.

Re-consider the hydrostatic loading case examined in the
previous section in which the deformation determines a vol-
ume expansion: J > 1 with I4 = I6 > 1 and hence W4 > 0.

The deviatoric invariants read

I ∗
4 = I ∗

6 = λ∗
1

2 cos2 Θ + λ∗
2

2 sin2 Θ, (52)

where the deviatoric principal stretches λ∗
i ≡ J−1/3λi , i =

1, 2, are found, similarly to (45), as

λ∗
1 =

[
W1(W1 + 2W4 sin2 Θ)

(W1 + 2W4 cos2 Θ)2

] 1
6

,

λ∗
2 =

[
W1(W1 + 2W4 cos2 Θ)

(W1 + 2W4 sin2 Θ)2

] 1
6

. (53)

Substituting (53) into (52), we deduce that

I ∗
4 = I ∗

6 =
[
W1(W1 + 2W4 sin2 Θ)

(W1 + 2W4 cos2 Θ)2

] 1
3

cos2 Θ

+
[
W1(W1 + 2W4 cos2 Θ)

(W1 + 2W4 sin2 Θ)2

] 1
3

× sin2 Θ ≤
[

W1

W1 + W4

] 1
3

,

(54)

which is strictly less than 1 for all Θ. Hence the deviatoric
stretches are always less than unity in the fibre directions,
and the anisotropic contribution to the strain–energy function
(49) disappears. Consequently, we obtain λ1 = λ2 = λ3 =
J 1/3, which is why our Abaqus® simulations show that a
sphere subject to hydrostatic tension deforms into a sphere
of greater radius instead of an ellipsoid. Although we have
not tried this experiment with ADINA®, it is clear that it will
predict the same unphysical pure dilatation.

Finally, we note that when the deformation determines a
volume compression or leaves the volume unchanged (J ≤
1) then I ∗

4 = I ∗
6 = 1 since I4 = I6 = J 2/3 so that the

anisotropic contribution in the strain–energy function (49)–
(50) also disappears.

It is important to remark here that while we have used
the Holzapfel–Gasser–Ogden model for illustration, the
above discussion applies to any model that is a function of
I ∗
1 , I3, I ∗

4 and I ∗
6 for which the anisotropic contribution is

suppressed when I ∗
4 ≤ 1 and I ∗

6 ≤ 1, whether or not the
strain–energy function is decoupled. In particular, W may
be replaced by W in (54).
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Appendix A: monoclinic elasticity

Here we extend the results of Sects. 2 and 3 to the case of
monoclinic symmetry, for which, in the linear theory, there
are 13 independent elastic constants. For this purpose it suf-
fices to consider an isotropic matrix material reinforced with
two families of fibres, with fibre directions defined by M and
M ′ in the reference configuration, the fibres being in gen-
eral neither at right angles nor mechanically equivalent. First
we establish the general equations of compatibility between
nonlinear and linear anisotropic elasticity.

With two fibre directions, the strain–energy function W is
a function of three isotropic strain invariants (I1, I2, I3) and
five anisotropic invariants (I4, I5, I6, I7, I8). Thus,

W = W (I1, I2, I3, I4, I5, I6, I7, I8) , (55)

where

I1 = tr C, I2 = 1
2

[
(tr C)2 − tr

(
C2

)]
,

I3 = det C, I4 = M · CM, I5 = M · C2 M,

I6 = M ′ · CM ′, I7 = M ′ · C2 M ′, I8 = M · CM ′. (56)

Note that, to simplify the ensuing analysis, we are using the
invariant I8 as defined above, rather than one of its strictly
invariant forms I8 M · M ′ or I 2

8 , which do not depend on the
sense of either M or M ′.

For the expression for the Cauchy stress σ in the incom-
pressible case we refer to Merodio and Ogden [13]. Here we
use its compressible counterpart
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Jσ = 2W1B + 2W2

(
I1B − B2

)
+ 2I3W3I

+ 2W4m ⊗ m + 2W5(Bm ⊗ m + m ⊗ Bm)

+ 2W6m′ ⊗ m′ + 2W7(Bm′ ⊗ m′ + m′ ⊗ Bm′)

+W8(m ⊗ m′ + m′ ⊗ m). (57)

In the reference configuration the invariants take the values

I1 = I2 = 3, I3 = I4 = I5 = I6 = I7 = 1, I8 = M · M ′.

(58)

Assuming that the reference configuration is stress free, it
follows from (57), when evaluated in the reference configu-
ration, that the conditions

W1 + 2W2 + W3 = 0,

W4 + 2W5 = 0, W6 + 2W7 = 0, W8 = 0, (59)

must hold there.
Now let e be the infinitesimal strain tensor and let e = tre.

Then, to the first order in e, we obtain

I1 = 3 + 2e, I2 = 3 + 4e, I3 = 1 + 2e,

I4 = 1 + 2M · eM, I5 = 1 + 4M · eM,

I6 = 1 + 2M ′ · eM ′, I7 = 1 + 4M ′ · eM ′,

I8 = M · M ′ + 2M · eM ′, (60)

and B = I+2e. Then, using the restrictions (59) and lineariz-
ing (57) in e, we obtain, after a lengthy but straightforward
process,

σ = αe + [(β − α)e + γ (M · eM) + γ ′(M ′ · eM ′)

+ζ M · eM ′]I + 4W5(M ⊗ eM + eM ⊗ M)

+4W7(M ′ ⊗ eM ′ + eM ′ ⊗ M ′)

+(γ e + δM · eM + εM ′ · eM ′ + ηM · eM ′)M ⊗ M

+(γ ′e + εM · eM + δ′ M ′ · eM ′ + η′ M · eM ′)M ′⊗M ′

+ 1
2 (ζe + ηM · eM + η′ M ′ · eM ′ + 4W88 M · eM ′)

×(M ⊗ M ′ + M ′ ⊗ M),

where we have introduced the notations

α = 4 (W1 + W2) ,

β = 4 (W11 + 4W12 + 4W22 + 2W13 + 4W23 + W33) ,

γ = 4 (W14 + 2W24 + W34 + 2W15 + 4W25 + 2W35) ,

γ ′ = 4 (W16 + 2W26 + W36 + 2W17 + 4W27 + 2W37) ,

δ = 4 (W44 + 4W45 + 4W55) ,

δ′ = 4 (W66 + 4W67 + 4W77) ,

ε = 4 (W46 + 2W47 + 2W56 + 4W57) ,

ζ = 4 (W18 + 2W28 + W38) ,

η = 4 (W48 + 2W58) , η′ = 4 (W68 + 2W78) , (61)

for the combinations of derivatives of W evaluated in the ref-
erence configuration. These constants, together with W5, W7

and W88 constitute the 13 independent elastic constants of
monoclinic symmetry.

By comparing with the general expression for the Cauchy
stress in linear anisotropic elasticity in terms of the Voigt
notation we obtain 21 expressions for elastic constants, only
13 of which are independent. These are summarized as

cii = β + 2 (γ + 4W5) M2
i + 2

(
γ ′ + 4W7

)
M ′

i
2 + 2ζ Mi M ′

i

+δM4
i + 2ηM3

i M ′
i + (2ε + 4W88) M2

i M ′
i
2

+2η′Mi M ′
i
3 + δ′M ′

i
4
, (62)

ci j = β − α + γ
(

M2
i + M2

j

)
+ γ ′

(
M ′

i
2 + M ′

j
2
)

+ζ
(

Mi M ′
i + M j M ′

j

)
+ δM2

i M2
j + δ′M ′

i
2 M ′

j
2

+ε
(

M2
i M ′

j
2 + M ′

i
2 M2

j

)
+ 4W88 Mi M j M ′

i M ′
j

+
(
ηMi M j + η′M ′

i M ′
j

) (
Mi M ′

j + M ′
i M j

)
, (63)

for i, j ∈ {1, 2, 3}, i (= j,

c14 =
(
γ + δM2

1 + εM ′
1

2 + ηM1 M ′
1

)
M2 M3

+
(
γ ′ + εM2

1 + δ′M ′
1

2 + η′M1 M ′
1

)
M ′

2 M ′
3

+ 1
2

(
ζ + ηM2

1 + η′M ′
1

2 + 4W88 M1 M ′
1

)

×
(
M2 M ′

3 + M ′
2 M3

)
, (64)

c15 =
(
γ + 4W5 + δM2

1 + εM ′
1

2 + ηM1 M ′
1

)
M1 M3

+
(
γ ′ + 4W7 + εM2

1 + δ′M ′
1

2 + η′M1 M ′
1

)
M ′

1 M ′
3

+ 1
2

(
ζ + ηM2

1 + η′M ′
1

2 + 4W88 M1 M ′
1

)

×
(
M1 M ′

3 + M ′
1 M3

)
, (65)

c16 =
(
γ + 4W5 + δM2

1 + εM ′
1

2 + ηM1 M ′
1

)
M1 M2

+
(
γ ′ + 4W7 + εM2

1 + δ′M ′
1

2 + η′M1 M ′
1

)
M ′

1 M ′
2

+ 1
2

(
ζ + ηM2

1 + η′M ′
1

2 + 4W88 M1 M ′
1

)

×
(
M1 M ′

2 + M ′
1 M2

)
. (66)

Note, in particular, that W5 and W7 do not appear in c14.

This is because the index 4 corresponds to the pair of indices
23, which are different from the first index 1 in this case.
The constants c24, c25, c26 and c34, c35, c36 follow the same
pattern, with the index 1 in the bracketed terms replaced by
2 and 3, respectively. Then, c25 and c36 do not contain W5
and W7.

We also have

c44 = 1
2α + 2W5

(
M2

2 + M2
3

)
+ 2W7

(
M ′

2
2 + M ′

3
2
)

+δM2
2 M2

3 + 2εM2 M3 M ′
2 M ′

3 + δ′M ′
2

2 M ′
3

2

+W88
(
M2 M ′

3 + M ′
2 M3

)2

+
(
ηM2 M3 + η′M ′

2 M ′
3
) (

M2 M ′
3 + M ′

2 M3
)
. (67)
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Then, c55 and c66 are obtained by replacing the index 2 by 1
and the index 3 by 1, respectively.

Finally, we have

c45 =
(

2W5 + δM2
3 + ηM3 M ′

3

)
M1 M2

+
(

2W7 + δM ′
3

2 + η′M3 M ′
3

)
M ′

1 M ′
2

+ 1
2

(
ηM2

3 + η′M ′
3

2 + 2εM3 M ′
3

) (
M1 M ′

2 + M ′
1 M2

)

+W88
(
M1 M ′

3 + M ′
1 M3

) (
M2 M ′

3 + M ′
2 M3

)
, (68)

and c46 and c56 are obtained simply by re-ordering the indices
appropriately.

It is now convenient to let the two fibre directions in the
reference configuration define the (x1, x2) coordinate plane,
so that M3 = M ′

3 = 0 and the 21 constants reduce to the
13 appropriate for monoclinic symmetry, with c14 = c24 =
c34 = c15 = c25 = c35 = c46 = c56 = 0.

We now turn to the formulation of the strain–energy
function based on the invariants I ∗

1 , I ∗
2 , I3, I ∗

4 , I ∗
5 , I ∗

6 , I ∗
7

defined in Sect. 3, supplemented by their counterpart for I8,

namely

I ∗
8 = J−2/3 I8. (69)

Thus, W ∗ = W ∗(I ∗
1 , I ∗

2 , I3, I ∗
4 , I ∗

5 , I ∗
6 , I ∗

7 , I ∗
8 ) and it is

easy to show that the conditions (59) holding in the reference
configuration become

W ∗
3 = 0, W ∗

4 + 2W ∗
5 = 0, W ∗

6 + 2W ∗
7 = 0, W ∗

8 = 0.

(70)

It also follows that

W ∗
34 + 2W ∗

35 = 1
12

(
3γ + 8W5 + δ + ε + ηM · M ′) ,

W ∗
36 + 2W ∗

37 = 1
12

(
3γ ′ + 8W7 + δ′ + ε + η′ M · M ′) ,

W ∗
38 = 1

12

(
3ζ + η + η′ + 4W ∗

88 M · M ′) , (71)

and

W ∗
33 = 1

4β + 1
6 (γ + γ ′) + 2

9 (W5 + W7) + 1
36 (δ + δ′ + 2ε)

+ 1
18 (3ζ + η + η′)M · M ′

+ 1
9 W ∗

88(M · M ′)2, (72)

while the terms in (61) that do not involve a derivative with
respect to I3 are unaffected by the change W → W ∗. Note
that W ∗

13 and W ∗
23 do not appear.

The terms in (71) can now be simply related to the Voigt
constants. Specifically, we obtain

1
12 (c11 + c12 − c33 − c23) =

(
W ∗

34 + 2W ∗
35

)
M2

1

+
(
W ∗

36 + 2W ∗
37

)
M ′

1
2

+W ∗
38 M1 M ′

1, (73)

1
12 (c22 + c12 − c33 − c13) =

(
W ∗

34 + 2W ∗
35

)
M2

2

+
(
W ∗

36 + 2W ∗
37

)
M ′

2
2

+W ∗
38 M2 M ′

2, (74)

1
12 (c16 + c26 + c36) =

(
W ∗

34 + 2W ∗
35

)
M1 M2

+
(
W ∗

36 + 2W ∗
37

)
M ′

1 M ′
2

+ 1
2 W ∗

38
(
M1 M ′

2 + M ′
1 M2

)
. (75)

For a decoupled model of the form

W ∗ = f (J ) + W
(
I ∗
1 , I ∗

2 , I ∗
4 , I ∗

5 , I ∗
6 , I ∗

7 , I ∗
8
)
, (76)

it follows that W ∗
34 = W ∗

35 = W ∗
36 = W ∗

37 = W ∗
38 = 0 and

hence the Voigt constants must be interrelated according to

c11 + c12 − c33 − c23 = 0,

c22 + c12 − c33 − c13 = 0,

c16 + c26 + c36 = 0, (77)

and the 13 constants are reduced to 10. Thus the material
is not fully monoclinic in the linearized limit. It follows
that materials with two families of non-orthogonal fibres for
which the strain–energy function can be decomposed addi-
tively as (76) do not behave like monoclinic solids when
subject to infinitesimal deformations. It can also be checked
that a monoclinic material for which the restrictions (77) hold
deforms in pure dilatation under hydrostatic stress.

By switching the indices 1 and 3 in the first two results in
(77) the results (25) in Sect. 3 are recovered (here M and M ′

define the (x1, x2) plane whereas in Sect. 3 they define the
(x2, x3) plane).
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