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Abstract We identify three distinct shearing modes for simple shear deformations of transversely isotropic soft
tissue which allow for both positive and negative Poynting effects (that is, they require compressive and tensile
lateral normal stresses, respectively, in order to maintain simple shear). The positive Poynting effect is that usually
found for isotropic rubber. Here, specialisation of the general results to three strain-energy functions which are
quadratic in the anisotropic invariants, linear in the isotropic strain invariants and consistent with the linear theory
suggests that there are two Poynting effects which can accompany the shearing of soft tissue: a dominant negative
effect in one mode of shear and a relatively small positive effect in the other two modes. We propose that the relative
inextensibility of the fibres relative to the matrix is the primary mechanism behind this large negative Poynting
effect.
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1 Introduction

Shearing deformations of soft tissue have been somewhat neglected in the literature, from both experimental
and modelling points of view, and are far less common than the almost ubiquitous tensile and biaxial material
characterisation tests. However, the large shear of a soft material is a most illuminating testing protocol. Simple
shear is achieved by gluing two opposite sides of a cuboid sample to two flat rigid platens and by displacing
one platen parallel to the other [1]. What becomes quickly apparent, both in practice and in theory, is that this
displacement is achieved by applying a force in the direction of shear (the direction of motion of the moving platen)
and forces in the direction normal to the platens. For isotropic materials, Poynting [2] showed experimentally, and
Rivlin [3] theoretically, that the normal forces had to be compressive on the platens because simple shear causes
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the sample to expand in the direction normal to these platens. Although Poynting [2] demonstrated this normal
stress effect for pure torsion, the tendency of a cuboid to expand in simple shear is now widely called the positive
Poynting effect. Recent contributions on the topic include those by Mihai and Goriely [4], Destrade et al. [5] and
Horgan and Smayda [6].

Although it is generally accepted that most existing isotropic materials exhibit the positive Poynting effect, the
experimental data of Janmey et al. [7] suggest that biogels reinforced with biological macromolecules such as fibrin
display a negative Poynting effect, i.e., there is a tendency for the platens to move closer together when subjected to
large shears. Several different approaches could be adopted to model this unexpected behaviour. For example, one
could relax some of the usual conditions imposed on the material response, such as the empirical inequalities, or,
alternatively, allow for some degree of compressibility, field inhomogeneity, anisotropy, or swelling, for example.
The work of Destrade et al. [8], Horgan and Murphy [9], Mihai and Goriely [4] and Wu and Kirchner [10], for
instance, is illustrative of these different methods. One could also exploit the microstructure of the reinforced biogels,
noting that they are composed of semi-flexible filaments embedded in a soft matrix. Although the filaments are
distributed isotropically in every direction, they behave differently in traction (strong resistance) than in compression
(high compliance), and the contribution of the stretched filaments can dominate the overall response. Thus, in simple
shear, the strong pull of the fibres can overcome the weaker push of the compressed fibers in the sheared matrix and
therefore bring the platens together. This avenue of microstructural modelling was explored by Janmey et al. [7] and
Ogden (private communication). Here we propose that the same effect can be modelled using the phenomenological
theory developed by Spencer [11] for strong fibres embedded in an isotropic matrix.

Hence we assume homogeneity, incompressibility and transverse isotropy, so that the mechanical response of
the solid is influenced by a single preferred direction (Sect. 2). We use material models (introduced by Murphy
[12]) which are compatible with linear anisotropic elasticity in the infinitesimal regime. Such consistency with the
linear theory is supported by extensive experimental data, particularly for muscles. The models considered are likely
to be good models of the mechanical response of soft tissue in general, given that they are guaranteed to model
infinitesimal deformations accurately and that typical physiological strains are only of the order of 10 %.

The systematic, comprehensive testing regime for the shearing of soft tissue introduced by Dokos et al. [13] is
considered in Sect. 3, with three distinct physical modes of shear identified, and we compute the corresponding
stress components. We show that general considerations of the normal stresses that accompany shearing suggest the
existence of both positive and negative Poynting effects, but with the negative effect dominant. This large negative
Poynting effect occurs only for one of the three modes of shear: it occurs when fibres are originally normal to the
platens. This is because the fibres strongly resist the stretch imposed upon them by the shearing deformation and
overcome the response of the soft isotropic matrix, with the result that there is a tendency for the platens to come
closer together (preliminary results on materials reinforced with inextensible fibres were established by Saccomandi
and Beatty [14]). This is shown in Sect. 4, where we also fit the data of Janmey et al. [7] to some of our models.

The novelty here then is the prediction of a negative Poynting effect of the same order of magnitude as the shear
stress when soft tissue is sheared in the physiological range of strain (as in the experiments of Janmey et al. [7]),
which is explained by a simple physical mechanism (Fig. 1). Although the predictions are only for three special
modes of shear for three polynomial models, one can justify this claim by noting that the shearing deformations
considered are essentially canonical shearing modes, in that every shearing deformation can be considered a non-
linear superposition of these modes and the strain energies are likely to be representative of the mechanical response
of soft tissue, as argued earlier.

2 Simple shear of soft tissues and material models

We call (X1, X2, X3) and (x1, x2, x3) the Cartesian coordinates of a typical particle in the undeformed and deformed
configurations respectively. Then F ≡ ∂x/∂X is the deformation gradient tensor (with J ≡ det(F)), and B = FFT

and C = FTF are the left and right Cauchy–Green deformation tensors respectively. The corresponding principal
isotropic invariants are defined by
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(a) (b)

(c)

Fig. 1 Schematics of a longitudinal shear, b transverse shear and c perpendicular shear. In a and c, the dark lines represent the fibres.
In b, the darkened circles denote fibres out of the plane of the page. The arrows in c indicate the resistive forces developing in the
stretched fibres in response to the simple shear: this shear mode provides a simple mechanism to model negative Poynting effects

I1 = tr(B), I2 = 1
2

[
I 2
1 − tr

(
B2)], I3 = det(B) = J 2. (1)

Consider now a transversely isotropic, non-linearly elastic material with a preferred direction M in the unde-
formed configuration, physically induced by the presence of parallel fibres embedded in a softer elastic matrix. The
so-called anisotropic invariants are defined as

I4 = M · CM, I5 = M · C2M. (2)

As is well known, I4 is the square of the stretch experienced by material elements in the fibre direction: when
I4 ≥ 1, the fibres are stretched; when I4 ≤ 1, they are compressed.

As the material is assumed perfectly incompressible, I3 ≡ 1, and the strain energy density W is therefore a
function of only four invariants: W = W (I1, I2, I4, I5). The corresponding constitutive law has the form [15]

σ = −p I + 2W1B − 2W2B−1 + 2W4FM ⊗ FM + 2W5 (FM ⊗ BFM + BFM ⊗ FM) , (3)

where σ denotes the Cauchy stress, attached subscripts denote partial differentiation of W with respect to the
appropriate invariant and p is an arbitrary scalar field. To ensure that the stress is identically zero in the undeformed
configuration, we require that

2W 0
1 − 2W 0

2 = p0, W 0
4 + 2W 0

5 = 0, (4)

where the 0 superscript denotes evaluation in the reference configuration, in which I1 = I2 = 3, I4 = I5 = 1. It
will also be assumed that the strain energy vanishes in the undeformed configuration, i.e. that W 0 = 0.

Merodio and Ogden [16] and Murphy [12] obtained restrictions to ensure the compatibility of the linear and
non-linear theories. This compatibility requires that
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2W 0
1 + 2W 0

2 = μT, 2W 0
5 = μL − μT, 4W 0

44 + 16W 0
45 + 16W 0

55 = EL + μT − 4μL, (5)

where μT, μL are the infinitesimal shear moduli for shearing in planes normal to the fibres and along the fibres
respectively, and EL is the Young’s modulus in the fibre direction (see Vergori et al. [17] for compatibility formulas
in orthotropic and monoclinic elasticity).

There is significant experimental evidence, particularly for muscles (e.g. Gennisson [18], Papazoglou et al. [19],
Sinkus et al. [20]), suggesting that

μL > μT, (6)

with an order-of-magnitude difference recorded in some instances. There is a distinct lack of comprehensive exper-
imental data for soft tissue where biaxial testing is combined with shear testing. One notable recent exception is the
work of Morrow et al. [21], who showed that

EL � μL (7)

for the extensor digitorum longus muscles of rabbits. These inequalities between the material constants are assumed
to hold in what follows.

The signs of the partial derivatives of the strain-energy function will play an important role in the following
analysis. For isotropic materials, the so-called empirical inequalities, given by

W1 > 0, W2 ≥ 0, (8)

are often enforced. They are classically employed for rubber-like materials to ensure that specific choices for the
strain-energy function give physically realistic mechanical responses (see Truesdell and Noll [22] and Beatty [23]
for a discussion). In the absence of experimental data to suggest otherwise, they are assumed to hold also for our
transversely isotropic materials.

Now note that strain energies which are additively decomposed into separate isotropic and anisotropic compo-
nents, i.e. strain energies of the form

W = f (I1, I2) + g (I4, I5) , (9)

say, are consistent with linear theory, in the sense that no restrictions are imposed on the material constants
μT, μL, EL by assuming such a form. For simplicity in what follows, separable forms are assumed. Simple poly-
nomial models can be adopted for transversely isotropic soft tissue, where the strain energies are at least quadratic
in I4 and I5 and at least linear in I1 and I2. Murphy [12] and Feng et al. [24] have argued that it is essential that
the strain-energy function be a function of both anisotropic invariants when modelling soft tissue, and we assume
this here, in addition to assuming a dependence on the two isotropic invariants. These considerations lead to the
following simple models of transversely isotropic response:

W I = 1
2μT [α (I1 − 3) + (1 − α) (I2 − 3)]

+ 1
2 (μT − μL) (2I4 − I5 − 1) + 1

32 (EL + μT − 4μL) (I5 − 1)2 ,

W II = 1
2μT [α (I1 − 3) + (1 − α) (I2 − 3)]

+ 1
2 (μT − μL) (2I4 − I5 − 1) + 1

16 (EL + μT − 4μL) (I4 − 1) (I5 − 1) , (10)

W III = 1
2μT [α (I1 − 3) + (1 − α) (I2 − 3)]

+ 1
2 (μT − μL) (2I4 − I5 − 1) + 1

8 (EL + μT − 4μL) (I4 − 1)2 ,
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Dominant negative Poynting effect 91

where 0 < α ≤ 1 ([12] first introduced these models with α = 1). The linear dependence on the first two strain
invariants in (10) reflects the isotropic matrix response of a Mooney–Rivlin model.

The last of these models is a generalisation of the so-called standard reinforcing model:

W = c1 (I1 − 3) + c2 (I4 − 1)2 (11)

(where c1 and c2 are two positive material parameters), which is often used in the literature to illustrate fibre
reinforcement. We thus call the last model of (10) the compatible standard reinforcing model. In addition to the
standard reinforcing model (11), we make use of the (non-polynomial) Holzapfel–Gasser–Ogden model:

W = 1

2
μ(I1 − 3) + k1

2k2

{
exp

(
k2 (I4 − 1)2

)
− 1

}
, (12)

where μ, k1, k2 are positive material parameters (Holzapfel et al. [25]); this model is very popular for modelling
biological soft tissues. These two models have a strain energy that depends only on I1, I4. We show in Sect. 4 that a
dependence of W on I2 is crucial to capturing the Poynting effect. In anticipation, we now introduce a modification
of these models to include a Mooney–Rivlin response for the isotropic matrix:

W IV = c1 [α (I1 − 3) + (1 − α) (I2 − 3)] + c2 (I4 − 1)2 , (13)

W V = 1

2
μ [α (I1 − 3) + (1 − α) (I2 − 3)] + k1

2k2

{
exp

(
k2 (I4 − 1)2

)
− 1

}
,

where 0 < α < 1. The first of these was introduced by Le Tallec [26] and was used by Horgan and Murphy [9]
to demonstrate positive and negative Poynting effects in simple shear; the second one is used in the finite-element
code ADINA [27].

3 Stress components in three shear modes

To investigate the non-linear shear response of passive ventricular myocardium, Dokos et al. [13] used cuboids of
fibre-reinforced material with a family of parallel fibres aligned with two opposite parallel faces of a block. As
sketched in Fig. 1, there are three distinct physical shear responses: (a) shearing in the direction of the fibres, which
we call longitudinal shear; (b) shearing in the planes normal to the fibres, which we call transverse shear; and (c)
shearing across the fibres, which we call perpendicular shear.

The invariants and Cauchy stress components for each of these deformations are given next using the Cartesian
representations for the deformations given in [12], where it was assumed that the Z -axis was aligned in the direction
of the fibres in the reference configuration. In each case the normal stress to the plane of shear is assumed to be
identically zero.

3.1 Longitudinal shear

This shearing mode can be described by the deformation

x = X, y = Y, z = Z + κ X, (14)

giving

I1 = I2 = 3 + κ2, I4 = 1, I5 = 1 + κ2. (15)
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Note that the fibres are not stretched in this shearing mode. The corresponding non-zero Cauchy stress components
are then obtained from (3) as

σxx = −p + 2W1 − 2W2

(
1 + κ2

)
,

σyy = −p + 2W1 − 2W2, (16)

σxz = 2κ (W1 + W2 + W5) ,

σzz = −p + 2W1

(
1 + κ2

)
− 2W2 + 2W4 + 4W5

(
1 + κ2

)
.

Assuming plane stress conditions, i.e. assuming that σyy ≡ 0, determines p as p = 2W1 − 2W2. The remaining
normal stress components are therefore

σxx = −2W2κ
2, σzz = 2W1κ

2 + 2W4 + 4W5

(
1 + κ2

)
. (17)

The normal stress component σxx is the force per current unit area which must be exerted on the x-planes in order
to maintain the state of simple shear described in (14). Its sign is determined by the sign of W2. The shear stress
component σxz is the force per unit area which must be applied in the x-direction.

3.2 Transverse shear

This deformation can be described as follows:

x = X + κY, y = Y, z = Z , (18)

so that

I1 = I2 = 3 + κ2, I4 = 1, I5 = 1. (19)

Again, there is no stretch occurring in the fibre direction. The Cauchy stress components are

σxx = −p + 2W1

(
1 + κ2

)
− 2W2,

σxy = 2κ (W1 + W2) , (20)

σyy = −p + 2W1 − 2W2

(
1 + κ2

)
,

σzz = −p + 2W1 − 2W2 + 2W4 + 4W5.

Assuming plane stress conditions means that σzz ≡ 0 and, therefore, that

σxx = 2W1κ
2 − 2W4 − 4W5, σyy = −2W2κ

2 − 2W4 − 4W5. (21)

Here, the σyy term is the force per unit area which needs to be applied in the direction normal to the shearing platens
in order to maintain simple shear, whereas σxy is applied in the direction of shear.
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3.3 Perpendicular shear

This mode of shear can be described by deformations of the form

x = X + κ Z , y = Y, z = Z , (22)

giving

I1 = I2 = 3 + κ2, I4 = 1 + κ2, I5 =
(

1 + κ2
)2 + κ2. (23)

Note that perpendicular shear is the only mode of simple shear in which the fibres are stretched (I4 > 1). Since
the fibres are much stiffer than the matrix in which they are embedded, Fig. 1c suggests that a tensile normal force
must be applied to the upper and lower surfaces of the specimen to simultaneously stretch the fibres and maintain
the specimen in a state of simple shear. Tensile normal forces are equivalent to a negative Poynting effect, and
perpendicular shear is proposed here as a simple explanation for the mechanism underlying the negative Poynting
effect seen in the experiments of Janmey et al. [7]. This is discussed further in Sect. 4.

The non-zero Cauchy stress components for this deformation are

σxx = −p + 2W1

(
1 + κ2

)
− 2W2 + 2W4κ

2 + 4W5κ
2
(

2 + κ2
)

,

σyy = −p + 2W1 − 2W2, (24)

σxz = 2κ
[
W1 + W2 + W4 + W5

(
3 + 2κ2

)]
,

σzz = −p + 2W1 − 2W2

(
1 + κ2

)
+ 2W4 + 4W5

(
1 + κ2

)
.

Setting σyy ≡ 0 yields p, and therefore

σxx = 2κ2
[
W1 + W4 + 2W5

(
2 + κ2

)]
, σzz = −2W2κ

2 + 2W4 + 4W5

(
1 + κ2

)
. (25)

In this case it is the σzz term that determines the force which needs to be applied in the direction normal to the
shearing platens in order to maintain simple shear, whereas σxz is applied in the direction of shear.

4 The Poynting effect

The normal forces needed to maintain simple shear for each of the three shearing modes derived in the previous
section are of interest here. Call the necessary normal stresses for longitudinal, transverse and perpendicular shear
NL, NT and NP respectively. Collecting the results of the last section together, these are thus given by

NL = −2W2κ
2,

NT = −2W2κ
2 − 2W4 − 4W5, (26)

NP = −2W2κ
2 + 2W4 + 4W5

(
1 + κ2

)
.

Many models of transversely isotropic soft tissue assume strain-energy functions which are independent of I2 for
simplicity. However, as we can see from (26), these models implicitly assume a Poynting effect which is identically
zero in longitudinal shear, a prediction which seems unduly prescriptive and for which there is no experimental
justification. Hence, in particular, the standard reinforcing model (11) and the Holzapfel–Gasser–Ogden model (12)
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cannot account for a Poynting effect in longitudinal shear. If, as is almost certainly the case in practice, W2 > 0,
then a compressive force must be applied, or otherwise the material would expand normal to the direction of shear.
This corresponds to the usual positive Poynting effect. For isotropic materials, the crucial role of this dependence
on the second invariant was pointed out explicitly by Horgan and Murphy [9], Horgan and Smayda [6] and Mihai
and Goriely [4].

Next we note that for separable strain-energy functions (9) in transverse shear (for which I4 = I5 = 1) we have

2W4 + 4W5 = 2g4(1, 1) + 4g5(1, 1) = 0, (27)

because of the initial condition (4)2. On using this condition in the second of (26), we see that there are just two
modes of normal stress response, the effectively isotropic response

Niso = NL = NT = −2W2κ
2, (28)

and the perpendicular shear anisotropic response NP.
By virtue of the empirical inequalities (8), Niso ≤ 0, so that we have the usual positive Poynting effect for

materials with additively split strain energies in longitudinal and transverse shear, if the strict inequality sign holds.
Since the anisotropic invariants are associated with the stiff reinforcing fibres, as reflected in the linearisation
condition (5)3 for example, it also seems reasonable to assume that

W4 or W5 � W1, W2. (29)

If these constitutive inequalities hold, then it follows that NP > 0, so that we have a possible negative Poynting
effect in perpendicular shear.

Thus, both positive and negative Poynting effects are likely for soft tissue reinforced with macromolecular
fibrils, and the magnitude of the negative effect is expected to be much larger. These predictions are supported by
consideration of specific strain energies, as shown next.

First note that the isotropic response is the same for all three materials of the polynomial form W I − W III in (10)
and is given by

Niso = μT (α − 1) κ2 < 0. (30)

Thus, a compressive force must be applied to the top and bottom surfaces of the sheared specimen to counteract
the tendency of these materials to expand in the direction normal to the direction of the applied shear force. Hence,
the classical (positive) Poynting effect occurs for both transverse and longitudinal shears.

Using an obvious notation, the anisotropic normal response in perpendicular shear of the three models is given
by

N I
P =

[
μT (α − 3) + 2μL + 1

4 (EL + μT − 4μL)
(

1 + κ2
) (

3 + κ2
)]

κ2,

N II
P =

[
μT (α − 3) + 2μL + 1

8 (EL + μT − 4μL)
(

5 + 3κ2
)]

κ2, (31)

N III
P =

[
μT

(
α − 5

2

)
+ 1

2 EL

]
κ2.

Now let N /μT be a dimensionless measure of the normal stress. For a physiological range of strain, each of the
normalised normal stresses for perpendicular shear is plotted in Fig. 2 for
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Fig. 2 Normal stress
responses accompanying
perpendicular shear (dashed
lines) and the isotropic
transverse and longitudinal
shear (full line) for three
models of solids reinforced
with one family of fibres
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• α = 1/2, corresponding to the middle of the range of the parameter;
• μL/μT = 5, corresponding to a typical relationship between the shear moduli for the experimental data given

in Gennisson [18], Papazoglou et al. [19], Sinkus et al. [20];
• EL/μT = 75, motivated by the data of Morrow et al. [21].

The normalised isotropic response (30) is also plotted in Fig. 2 for α = 1/2.
Recall that a positive (tensile) normal stress corresponds to the negative or reverse Poynting effect. From Fig. 2

we see that perpendicular shear is accompanied by a negative Poynting effect and that, relative to the perpendicular
shear response, the Poynting effect accompanying transverse and longitudinal shear is approximately zero [although
in absolute terms, there is a (small) positive Poynting effect]. Therefore, the magnitude of the negative Poynting
effect dominates the positive effect when soft tissue is sheared. From Fig. 2 it is also seen that the tensile normal
stress is monotonically increasing with respect to the amount of shear.

The relative magnitudes of the normal stresses with respect to the applied shear stresses are now investigated.
Define the dimensionless quantity

R ≡ σnormal

σshear
. (32)

For simplicity, we only consider the so-called sompatible standard reinforcing model (Model III, given by (10)3)
since it gives rise to the smallest normal stress response for perpendicular shear (see Fig. 2 above). The corresponding
longitudinal, transverse and perpendicular shear stresses are

σL
shear = μLκ, σT

shear = μTκ, σ P
shear = μLκ + 1

2 (EL − 3μT)κ3, (33)

respectively. The corresponding R for each mode of shear is therefore

RL = μT

μL
(α − 1) κ, RT = (α − 1) κ, RP = [μT (2α − 5) + EL] κ

2μL + (EL − 3μT) κ2 , (34)

respectively. For the material parameters used previously, these ratios are plotted in Fig. 3.
Thus, even for the restricted amount of shear considered (in line with physiological strains of the order of 10 %),

a physically significant reverse Poynting effect is shown to accompany perpendicular shearing deformations, with
the corresponding effect for the other two modes of shear relatively unimportant. Indeed for the upper range of
shear considered, it is seen that the tensile normal stress in perpendicular shear is of the same order of magnitude
as the shearing stress. Although the existence of a substantial Poynting effect in soft tissue awaits experimental
confirmation, the data of Janmey et al. [7] for semi-flexible biopolymer gels confirm the existence of a Poynting
effect of this order of magnitude. This suggests that the Poynting effect could be an important physiological control
mechanism, for example.
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Fig. 3 Plots of R (relative magnitude of normal stress with
respect to applied shear stress) for different shearing modes of
one model of a solid reinforced with one family of fibres

Fig. 4 Data of Janmey et al. [7] for shearing of a block of gel
made from actin cross-linked by polyacrylamide, displaying a
linear shear stress amount of shear relationship and a quadratic
normal stress amount of shear relationship. More than 260 mea-
surements were recorded. The negative sign of the normal stress
indicates the classical (positive) Poynting effect. The actual val-
ues are unimportant, as both the stress and strain are computed up
to multiplicative constants (see for instance the ARES rheometer
manual[28])

Finally, we analyse two of the data sets presented by Janmey et al. [7]: one exhibiting the positive Poynting effect,
the other the reverse Poynting effect. When shearing a block of gel made from actin cross-linked by polyacrylamide,
Janmey et al. [7] observed a positive Poynting effect. In Fig. 4 we see that the fitting of the shear and normal stress
components to linear and quadratic trends respectively gives excellent results (R2 = 0.999, 0.987 respectively),
i.e. that the material constitutive law obeys

σshear = aκ, σnormal = −bκ2, (35)

for some positive constants a and b. If the polyacrylamide gel is an isotropic material, then (35) clearly indicates
that it could be modelled as a Mooney–Rivlin material. If it is a transversely isotropic material, and biaxial testing
is the most efficient way of determining this, then the data reported in the figure cannot correspond to perpendicular
shear (which would not give a positive Poynting effect). However, polyacrylamide could be modelled with the strain
energies W I–W V of (10) and (13) as subjected to transverse shear because all models predict σshear and σnormal of
the form (35). It could also have been subjected to longitudinal shear because all models predict σshear and σnormal

of the form (35), except for model W I, which gives σ I
shear as an odd cubic in κ .

In Fig. 5 we present the data collected by Janmey et al. [7], showing a reverse Poynting effect for the shear
of a block of gel crossed-linked with collagen. This phenomenon cannot be captured by isotropic models (unless
the empirical inequalities (8) are violated). For transverse isotropy, we have perpendicular shear at our disposal to
model the data. We used in turn the five models W I–W V of (10) and (13) and found that W I provided the best
fit (R2 = 0.978) (see figure). We used (31)1 as an objective function, writing N I

P as N I
P = aκ2 + b(4κ4 + κ6),

where a and b are best-fit parameters to be determined. Of course, we acknowledge that the fitting exercise has its
limitations, given that the data are not smooth and we have no way of knowing whether this particular gel was both
transversely isotropic and subjected to perpendicular shear.
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Dominant negative Poynting effect 97

Fig. 5 Normal stress vs.
amount of shear from data
of Janmey et al. [7] for
shearing of a block of gel
made from actin
cross-linked by collagen.
Approximately 50
measurements were
recorded. The (mostly)
positive sign of the normal
stress indicates a reverse
(negative) Poynting effect.
The actual values are
unimportant because both
the stress and the strain are
computed up to
multiplicative constants (see
for instance [28]). The
experimental data are fitted
with model (31)1 in
perpendicular shear

σ

κ

y = 0.0393x2

     + 6.24x10-8(4x4+x6)

R2 = 0.978

5 Conclusion

The simple analysis presented here, which assumes that plane stress conditions hold when shearing, suggests that
for soft tissue a negative (reverse) Poynting effect should occur for perpendicular shear, with the positive effect
accompanying the other two modes being relatively unimportant. It has been demonstrated that the negative Poynting
effect could be quite substantial, of the same order of magnitude of the applied shearing stress for physiological
strains, in some circumstances. Although these results are consistent with experimental data of Janmey et al. [7] for
hydrogels, further experimental work on biotissues is clearly desirable.
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