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The present paper proposes to identify surface stability when a magnetoelastic half-space is subjected to a pure homogeneous
pre-deformation and to a magnetic field normal to its (plane) boundary. Clearly, the aim is to find the critical stretch ratio
beyond which surface instabilities may develop, or in other words, to establish a bifurcation criterion based on the incremental
static solution of the boundary value problem. We want to analyse how the presence of a coupling between magnetism and
nonlinear elasticity modify the conditions of stability.

1 Introduction

Magnetoelastic materials are smart because they can respond to a mechanical solicitation, but also to a magnetic solicitation.
This multiphysical ability allow engineers to imagine always smarter industrial applications such as vibration absorbers,
whose mechanical damping is tuned by applying suitable magnetic fields, or smart biosensors to measure body fluid acidity,
for instance. These technical advances naturally need to be accompanied by a strong theoretical modelling (see [1], [2], [3],
or more recently [4], [5], [6]). Here, we propose a theoretical study of the surface stability of nonlinear magnetoelastic solids,
based on incremental static solutions of the boundary value problem as Biot [7] successfully did in nonlinear elasticity. More
details about the referring incremental theory can be found in [8].

2 Pure homogeneous deformation of a magnetoelastic half-space

Let X1, X2, X3 be the rectangular Cartesian coordinates attached to a configuration B0 of an incompressible, isotropic,
magnetoelastic half-space of boundary X2 = 0, and occupying X2 > 0. After a plane strain in the plane (X1, X2), the
particles of the half-space located at X in B0 occupy the positions x1 = λX1, x2 = λ−1X2, and x3 = X3 in the new
configuration B. We refer to λ as the principal stretch in the X1 direction. Then, the components of the deformation gradient
F are Fij = ∂xi/∂Xj . We choose the magnetic induction vector B, defined in B, to be expressed as B = [0, B2, 0]T.
Constitutive laws for magnetoelastomers are now specified by adopting Dorfmann and Ogden’s formulation [4] which involves
a modified free energy function per unit volume, denoted by Ω, such that

T =
∂Ω(F , Bl)

∂F
− pF

−1, H l =
∂Ω

∂Bl

, (1)

where p is a Lagrange multiplier associated with the incompressibility constraint. The tensor T represents the Lagrangian
version of the total Cauchy stress tensor τ in B. This tensor τ includes the Cauchy and Maxwell stress tensors and is
introduced so that the equilibrium equations in the absence of mechanical body force is divτ = 0. The tensors Bl and H l

represent the Lagrangian versions of B and of the magnetic vector H in B, respectively.

3 Incremental static boundary value problem

We now consider that both magnetic fields and the deformation within the material undergo incremental changes. The incre-
ment Ḟ in F is then related to an incremental displacement vector u through F = (∂u/∂x)F = dF , where d has just been
introduced. Following small-on-large theory, the constitutive laws (1) are first incremented (superposed dot) before being
transformed into their Eulerian counterparts in B (indicated by a 0 subscript) giving

Ṫ 0 = A0d + Γ0Ḃl0 + pd − ṗI, Ḣ l0 = Γ0d + K0Ḃl0 , (2)

where A0, Γ0, and K0 represent the instantaneous magnetoelastic moduli tensors. In index notation, they are defined by

A0jisk = FjαFsβ

∂2Ω

∂Fiα∂Fkβ

, Γ0jik = FjαF−1

βk

∂2Ω

∂Fiα∂Blβ

, K0ij = F−1

αi F−1

βj

∂2Ω

∂Blα∂Blβ

. (3)

∗ Corresponding author: e-mail: melanie.ottenio@inrets.fr, Phone: +33 (0)4 72 14 23 85

PAMM · Proc. Appl. Math. Mech. 7, 1090701–1090702 (2007) / DOI 10.1002/pamm.200700094

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim



0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 1 1.5 2 2.5 3

b = 1.0

b = 1.5

b = 0.5

b = 2.0

b = 0.0

l
cr

B
02

a = 0.5

(a) α = 0.5

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.5 1 1.5 2 2.5 3

b = 1.0

b = 1.5

b = 0.5

b = 2.0

b = 0.0

a = 2.0

l
cr

B
02

(b) α = 2.0

Fig. 1 Dependence of the critical stretch λcr < 1 for instability in compression for a magnetoelastic Mooney-Rivlin solid in plane strain on
the non-dimensional measure B̄l2 of the magnetic field for several values of the magnetoelastic coupling parameters α and β.

All the equations describing the finite magnetoelastic problem have to be incremented in the same manner. It means that
incremental versions of the mechanical equilibrium, of Maxwell’s equations (inside and outside the material), and of the
jump conditions for the total stress and the magnetic fields are required. Then, finding surface stabilities turns out to seek
small-amplitude solutions, localized near the interface x2 = 0 . In other words, solutions can take the form Ae−ksx2eikx1 ,
where A is an arbitrary parameter, k is in relation with the wavelength of the perturbation (= 2π/k), and s is an unknown
parameter such that the condition �(s) > 0 is checked to ensure decay with increasing x2. Using this solution form, the full
set of incremental equations allow us to obtain a 7 × 7 matrix, whose vanishing of the determinant provides the bifurcation
criterion.

4 Surface stability of a Mooney-Rivlin magneto-elastic solid

We propose here to specialize the modified free energy Ω so that

Ω =
1

4
µ(0)[(1 + γ)(λ2 + λ−2

− 2) + (1 − γ)(λ2 + λ−2
− 2)] + µ−1

0
(αB2

l2
+ λ−2βB2

l2
), (4)

where µ(0) is the shear modulus of the material without magnetic fields; µ0 is the magnetic permeability in vacuum; γ is
a dimensionless elastic material constant, and α and β are dimensionless magnetoelastic coupling parameters. If α and β
vanish, the material is a classical Mooney-Rivlin material. Two parameters (α and β) are at least necessary to capture the
two-way coupling in the sense than stress can be affected by the magnetic field, but magnetic properties can also be changed
by the deformation. Then, the static solutions of the incremental boundary value problem of Section 3 are the critical stretch
ratios λcr in compression, which are expressed as a function of B̄l2 = Bl2/

√
µ0µ(0) (see Figure 1 for graphical results). At

B̄ = 0, the well-known critical stretch ratio for elastic Mooney-Rivlin materials in plane-strain is recovered (λcr = 0.5437).
When lower values of λcr are reached, the magnetic field has a stabilizing effect on the magnetoelastic half-space. Otherwise,
the magnetoelastic half-space is unstable in compression, and even in tension (when λcr > 1).
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