Groups I MA343/MA532 Problems II

- 1. Let $C_{12} = \langle a : a^{12} = 1 \rangle$ be a cyclic group of order 12. (Note: $a^k \neq 1$ for 0 < k < 12.) Determine explicitly the (elements in the) cyclic subgroups $\langle a^4 \rangle$, $\langle a^5 \rangle$, $\langle a^8 \rangle$, $\langle a^{10} \rangle$. Express each of the last three subgroups in the form $\langle a^m \rangle$ for some **divisor** *m* of 12. What are the orders of the elements a^4 , a^5 , a^8 and a^{10} ?
- 2. Let $C_n = \langle a : a^n = 1 \rangle$ be a cyclic group of (finite) order *n*. Show that if *H* is a subgroup of C_n then $H = \langle a^m \rangle$ for some $m \mid n$. (So a subgroup of a finite cyclic group is cyclic!)
- 3. Let G be a *finite* multiplicative group. Show that a non-empty subset H of G is a subgroup if H is closed under the multiplication. Deduce that the set Alt(n) of all *even* permutations is a subgroup of the group Sym(n) of all permutations of $\{1, 2, 3, ..., n\}$.
- 4. Find the distinct cosets of *H* in *G*, and the index |G:H|, in each of the cases: (i) *G* is the group in Q3 of Problems I, and $H = \langle d \rangle$; (ii) *G* is Alt(4) and $H = \langle (413) \rangle$.
- 5. Prove the Theorem of Lagrange: if H is a subgroup of the finite group G then (its order) |H| divides |G|.
- 6. Let *G* be a group of (finite) order *n*. Show that the order o(a) of $a \in G$ is a divisor of *n*, and deduce that $a^n = 1$. Show also that (i) $o(a^{-1}) = o(a)$ and (ii) $a^{-1} = a \Leftrightarrow a = 1$ or o(a) = 2.
- 7. Show that if $a, b \in G$ satisfy o(a) = o(b) = o(ab) = 2 then ba = ab, and deduce that $H = \{1, a, b, ab\}$ is a (noncyclic) subgroup of order 4 in *G*. [Take care to check that the listed elements of *H* are *distinct*.]

8.(i) Assuming associativity, show that $G = \{ \begin{pmatrix} p & q \\ r & s \end{pmatrix} : p,q,r,s \in Z; ps-qr=1 \}$ is a group under matrix multiplication.

(ii) Find the elements of the subgroups $\langle a \rangle$, $\langle b \rangle$ and $\langle c \rangle$ of G, where

$$a = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, \qquad b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \qquad \text{and} \qquad c = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

Homework: 2, 4, 8. Due: 25 October.