1. Let $C_{12}=<a: a^{12}=1>$ be a cyclic group of order 12. (Note: $a^{k} \neq 1$ for $0<\mathrm{k}<12$.) Determine explicitly the (elements in the) cyclic subgroups $\left\langle a^{4}\right\rangle,\left\langle a^{5}\right\rangle,\left\langle a^{8}\right\rangle,\left\langle a^{10}\right\rangle$. Express each of the last three subgroups in the form $\left\langle a^{m}\right\rangle$ for some divisor m of 12 . What are the orders of the elements a^{4}, a^{5}, a^{8} and a^{10} ?
2. Let $C_{n}=<a: a^{n}=1>$ be a cyclic group of (finite) order n. Show that if H is a subgroup of C_{n} then $H=\left\langle a^{m}\right\rangle$ for some $m \mid n$. (So a subgroup of a finite cyclic group is cyclic!)
3. Let G be a finite multiplicative group. Show that a non-empty subset H of G is a subgroup if H is closed under the multiplication. Deduce that the set $\operatorname{Alt}(\mathrm{n})$ of all even permutations is a subgroup of the group $\operatorname{Sym}(\mathrm{n})$ of all permutations of $\{1,2,3, \ldots, n\}$.
4. Find the distinct cosets of H in G, and the index $|G: H|$, in each of the cases:
(i) G is the group in Q3 of Problems I, and $H=\langle d\rangle$;
(ii) G is $\operatorname{Alt}(4)$ and $H=<(413)>$.
5. Prove the Theorem of Lagrange: if H is a subgroup of the finite group G then (its order) $|H|$ divides $|G|$.
6. Let G be a group of (finite) order n. Show that the order $o(a)$ of $a \in G$ is a divisor of n, and deduce that $a^{n}=1$. Show also that (i) $o\left(a^{-1}\right)=o(a)$ and (ii) $a^{-1}=a \Leftrightarrow a=1$ or $o(a)=2$.
7. Show that if $a, b \in G$ satisfy $o(a)=o(b)=o(a b)=2$ then $b a=a b$, and deduce that $H=\{1, a, b, a b\}$ is a (noncyclic) subgroup of order 4 in G. [Take care to check that the listed elements of H are distinct.]
8.(i) Assuming associativity, show that $G=\left\{\left(\begin{array}{ll}p & q \\ r & s\end{array}\right): p, q, r, s \in Z ; p s-q r=1\right\}$ is a group under matrix multiplication.
(ii) Find the elements of the subgroups $\langle a\rangle,\langle b\rangle$ and $\langle c\rangle$ of G, where

$$
a=\left(\begin{array}{cc}
0 & 1 \\
-1 & -1
\end{array}\right), \quad b=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) \quad \text { and } \quad c=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) .
$$

Homework: 2, 4, 8. Due: 25 October.

