1. Show that a non-cyclic group G of order 6 contains an element, say x, of order 3 and an element, say y, of order 2 . Deduce that $G=\left\{1, x, x^{2}, y, x y, x^{2} y\right\}$ and that $y x=x^{2} y$. Express $y x^{2}$ and $(x y)^{2}$ as elements in the list for G.
2. Consider the matrices $a=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $b=\left(\begin{array}{ll}0 & i \\ i & 0\end{array}\right)$. Calculate $c=a b$ and check that $a^{2}=b^{2}=c^{2}=-I$ and $b a=-c$. Deduce that $G=\{I,-I, a,-a, b,-b, c,-c\}$ is a group under matrix multiplication. Find the order of each element of G.
3. Let K be a normal subgroup of G. Define normal and show that the set G / K of cosets of K in G is a group under (set) multiplication. Show that $K=\{ \pm I\}$ is normal in the group G in Q2 above, and calculate the multiplication table for G / K.
4. (i) Let G be a finite multiplicative group. Show that the centre Z of G, given by $Z=\{x \in G: x g=g x$ for all $g \in G\}$, is a normal subgroup of G.
(ii) Consider the matrices $a=\left(\begin{array}{cc}0 & 1 \\ -1 & 0\end{array}\right)$ and $b=\left(\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right)$. Calculate $c=a b$ and check that $a^{2}=-I, b^{2}=c^{2}=I$ and $b a=-c$. Deduce that $G=\{I,-I, a,-a, b,-b, c,-c\}$ is a group under matrix multiplication. Find the centre Z of G and the multiplication table for G / Z.
5. The map $f: G \rightarrow H$ is an isomorphism. Define isomorphism and show that $o(f(a))=o(a)$ for all $a \in G$. Deduce that the matrix groups in Q2 and Q4 above are not isomorphic.
Find (and verify) an isomorphism f between $Z_{4},+$ and $\{ \pm 1, \pm i\}, \times$ such that $f(3)=i$.
6. Let $f: G \rightarrow H$ be a homomorphism of finite multiplicative groups. Define homomorphism and show that: (i) $f\left(1_{G}\right)=1_{H}$; (ii) $f(x)^{-1}=f\left(x^{-1}\right)$ for all x in G; (iii) $f(G)=\{f(x): x \in G\}$ is a subgroup of H; (iv) $K=\left\{x \in G: f(x)=1_{H}\right\}$ is a normal subgroup of G ; (v) the map $\bar{f}: G / K \rightarrow H$ given by $\bar{f}(K x)=f(x)$ defines an isomorphism between G / K and $f(G)$.
7. Let a be an element of the finite multiplicative group G. Define the centraliser $C_{G}(a)$ and the conjugacy class $c c l_{G}(a)$. Show that $C_{G}(a) \leq G$ and $|G|=\left|C_{G}(a)\right| \cdot\left|c c l_{G}(a)\right|$.
8. Describe briefly how the conjugacy classes in the symmetric group S_{n} correspond to partitions of n. Determine, with explanation, the size of the class $c c l_{G}(\alpha)$ and the elements of the centraliser $C_{G}(\alpha)$ when $G=S_{5}$ and (i) $\alpha=(415)$ (ii) $\alpha=(5432)$.
