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1 Introduction

“There are good reasons to believe that non-standard analysis, in some version or
other, will be the analysis of the future” [33].
Kurt Gödel, 1974.

An infinitesimal is a number that is smaller in magnitude than every positive
real number. The word infinitesimal comes from the Latin word infinitesimus and
was coined by the German mathematician Gottfried Wilhelm Leibniz around 1710
[1]. We learn early on in our study of standard analysis that nonzero infinitesimals
cannot exist. It is also true however that many people use the intuitive notion when
trying to understand basic concepts in analysis and calculus such as derivatives or
integrals. For example a student may think of the derivative of a function f at
a point x as the slope of the secant line between the point (x, f(x)) and a point
an infinitesimal distance away. Informal notions of infinitesimals have been used
throughout history, indeed the concept was used by Isaac Newton and Leibniz in
their formulation of calculus [9].

The use of infinitesimals in the formative years of calculus however lacked rigour
and their use was criticised by the Irish philosopher George Berkeley among others
[44]. Efforts were made to come up with a system that would admit the existence
of infinitesimals in a consistent manner. Little progress was made however, and
most efforts were abandoned when in the 1870’s Karl Weierstrass came up with
the formal ‘epsilon-delta’ theory of limits which became the rigorous foundation
needed for calculus. Modern mathematicians however again made efforts in the
20th century to formalise a theory of nonstandard numbers and in 1961 Abraham
Robinson succeeded in producing a consistent nonstandard analysis.

I was introduced to the area by my supervisor who directed me to read a piece
by 2006 Fields Medal winner Terence Tao on the subject in his book Structure
and Randomness: Pages from Year One of a Mathematical Blog [39]. In the
piece Tao gives a nice introduction to the area explaining many of the ideas in
a nice intuitive way which piqued my interest in the subject. In his book Tao
attributes the reluctance of many mathematicians to use non-standard methods
to the tendency to “gloss over the actual construction of non-standard number
systems”. Perhaps this is one of the reasons why although nonstandard analysis
may still be the “analysis of the future”, as predicted by Gödel, in mainstream
mathematics, and certainly in undergraduate mathematics, it has yet to become
the analysis of the present.

The main aim of my project therefore is to give a clear introduction to the con-
struction of the hyperreal numbers and the transfer principle of nonstandard anal-
ysis, suitable for any undergraduate mathematics student without any background
in the area. A simple introduction to nonstandard analysis is given by Jerome
Keisler in his book Elementary Calculus: An Infinitesimal Approach [23]. His con-
struction of the hyperreals is based on introducing infinitesimals in an axiomatic
way. My introduction will be based on the so-called ultraproduct construction of
nonstandard analysis and uses some of the ideas of Tao and Jaap Ponstein [39],
[30]. I will give an overview of the fascinating history of infinitesimals. I will also
present some of the interesting applications of nonstandard analysis with a focus
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on the applications to economics and finance.

2 Construction of the Hyperreals

2.1 Our aim

In the first article I read on the subject of non-standard analysis Tao attributes the
reluctance of many mathematicians to use non-standard methods to the tendency
to “gloss over the actual construction of non-standard number systems”. This
causes the transfer principle and the construction behind it to be viewed as “some
sort of “black box” which mysteriously bestows some certificate of rigour on non-
standard arguments” [39]. In this section I will attempt to clearly explain just how
the hyperreals are constructed and to begin to demystify this “black box”.

First we must be clear on exactly what we are attempting to do. We wish to
introduce non-zero infinitesimals to our set of real numbers. It is clear that 0 is the
only element of the real numbers that is an infinitesimal. Recall, an infinitesimal
is a number that is smaller in magnitude than any non-zero real number and so no
non-zero real number ε is an infinitesimal since | ε2 | < |ε| for every ε 6= 0. Our aim
therefore must be to introduce non-zero infinitesimals to the set of real numbers
and come up with an extension of the real numbers. We also wish to treat these
infinitesimals as we would classical numbers and so each non-zero infinitesimal
δ can be inverted to give γ = 1

δ . Now ∀n ∈ N : |γ| > n, we will call such
numbers hyperlarge. These hyperlarge numbers are also clearly greater than any
real number x since ∀x ∈ R : ∃n ∈ N : n > x.

Our ultimate goal therefore is to introduce these numbers to the reals and to
come up with a consistent system of hyperreals ∗R. So how will we do this? To
motivate our method of constructing the hyperreals we’ll first look at how we can
introduce Z, Q and R from our starting point of the natural numbers N.

2.2 Z, Q and R from N

Just as when we are attempting to construct the system of hyperreals we are trying
to construct is an extension of the set of real numbers, the set of integers is an
extension of the set of natural numbers. The set of rationals is in turn an extension
of the integers and the set of reals is an extension of the rationals. The elements
of each of these sets can be generated by the elements of the set we are trying to
extend, for example the elements of Z can be generated by elements of N. Leopold
Kronecker is famously quoted as saying “God created the natural numbers; all else
is the work of man” [42]. When we are generating these new elements we must
always follow two rules:

1. We must define the equality of elements by using an equivalence relation.

2. If the element we have generated is not new we must identify it explicitly
with the element we already knew.
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2.2.1 The Integers

We can generate each integer using an ordered pair of natural numbers. If (x, y)
is a pair of natural numbers then let Z(x, y) be the integer generated by it. So the
set of all integers Z = {Z(x, y) : x ∈ N, y ∈ N}.

We now must define when two integers Z(x, y) and Z(w, z) are equal. To do
this we first define an equivalence relation ∼z on pairs of natural numbers:

(x, y) ∼z (w, z)⇔ x+ z = y + w

and then set Z(x, y) = Z(w, z) precisely when (x, y) ∼z (w, z).
Finally we must identify when a pair of natural numbers generates one of our

original set of natural numbers. We use the following rule:

∀n ∈ N : Z(n, 0) = n.

2.2.2 The Rationals

We can generate each rational number by using an ordered pair of integers. If
(p, q) is a pair of integers with q 6= 0 then let Q(p, q) be the rational generated by
it. So the set of all rationals Q = {Q(p, q) : p ∈ Z, q ∈ Z, q 6= 0}.

We now must define when two rationals Q(p, q) and Q(r, s) are equal. To do
this we first define an equivalence relation ∼q on pairs of integers:

(p, q) ∼q (r, s)⇔ ps = qr

and then set Q(p, q) = Q(r, s) precisely when (p, q) ∼q (r, s).
Finally we must identify when a pair of integers generates one of our original

set of integers. We use the following rule:

∀x ∈ Z : Q(z, 1) = z.

2.2.3 The Reals

We can generate each real number by using a Cauchy sequence of rationals. If
(q1, q2, . . .) is a Cauchy sequence of rationals then let R(q1, q2, . . .) be the real
generated by it. So the set of all reals R = {R(q1, q2, . . .) : ∀i : qi ∈ Q}.

As in the two cases above we now must define when two reals R(q1, q2, . . .) and
R(r1, r2, . . .) are equal. To do this we first define an equivalence relation ∼r on
Cauchy sequences of rationals:

(q1, q2, . . .) ∼r (r1, r2, . . .)⇔ ∀m ∈ N : ∃k ∈ N : ∀n ∈ N, n > k : |qn − rn| <
1

m

and then set R(q1, q2, . . .) = R(r1, r2, . . .) precisely when (q1, q2, . . .) ∼r (r1, r2, . . .).
Finally, we must identify when a Cauchy sequence of rationals generates one

of our original set of rationals. We use the following rule:

∀q ∈ Q : R(q, q . . .) = q.

We have seen that we can extend the natural numbers N to the integers Z by
using two natural numbers to generate each integer. The integers Z can again be
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extended to the rationals Q by using two integers to generate each rational. Finally,
the rationals Q can be extended to the reals R by using infinite Cauchy sequences
of rationals to generate each real number. Now we wish to extend the reals R to
the hyperreals ∗R by using elements of the reals to generate each hyperreal. If
man can construct Z, Q and R by simply using the natural numbers given to us
by God why not go one step further and construct ∗R?

2.3 Free Ultrafilters

To extend the real numbers to the hyperreals ∗R we are going to use infinite
sequences of real numbers to generate each hyperreal number. To do this we also
need to have rules for equality and identification, just as we had for Z, Q and
R so we can come up with a mathematically consistent and sensible system of
hyperreals. To help us do this we are going to use a free utrafilter.

Ultrafilters were not originally introduced for the purpose of constructing the
hyperreal numbers and have other applications outside non-standard analysis. The
notion of an ultrafilter was first introduced by the French mathematician Henry
Cartan in two short notes in The Proceedings of The Academy of Sciences Paris
in 1937, for use in the area of general topology [12]. Ultrafilters are particularly
important when dealing with Hausdorff spaces. They are used in the construction
of the Stone-Čech and Wallman Compatifications.

First we will explore the more general idea of a filter.

Definition A non-empty collection F of subsets of N is called a filter (over N) if:

• ∅ 6∈ F

• if A ∈ F and N ⊇ B ⊇ A then B ∈ U ,

• if A ∈ U and B ∈ U , then A ∩B ∈ U ,

A filter U is called an ultrafilter if for any A ⊆ N, either A or Ac is an element
of U , but not both. (Here Ac is the complement of A. Ac = N \A.)

A filter is called free (or non-principal) if all of its elements are infinite sets.
Combining our above definition of a filter and the two conditions above we come
up with the following definition of a free ultrafilter:

Definition A non-empty collection U of subsets of N is called a free ultrafilter
(over N) if:

• if A ∈ U and N ⊇ B ⊇ A then B ∈ U ,

• if A ∈ U and B ∈ U , then A ∩B ∈ U ,

• if A ∈ U , then A is infinite, and,

• if A ⊆ N, then either A ∈ U or Ac ∈ U , but not both.

Now we have given the definition of a free ultrafilter we must ask ourselves
if such a filter exists. The answer is that free ultrafilters over any infinite set do
exist. A proof of their existence, relying on the axiom of choice, was given by
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Tarski in 1930. In our proof below we will invoke the axiom of choice through
the use of Zorn’s Lemma. This reliance on the axiom of choice leads to the area
of non-standard analysis being criticised by constructivist mathematicians due to
the extremely nonconstructive nature of the axiom. We will discuss this criticism
further in the final section of this paper.

Theorem 2.3.1. Free ultrafilters over N exist.

Proof. Let F0 be the filter consisting of all cofinite subsets of N, sometimes known
as the cofinite or Fréchet filter, (Q ⊆ N is cofinite if and only if Qc is finite). Let
E be the set of all filters F s.t. F ⊇ F0. E is nonempty (since F0 ∈ E) and can
be partially ordered by set inclusion.

Let G be any totally ordered subset of E. Then B =
⋃
{F : F ∈ G} ∈ E and

B is an upper bound for G. B ⊇ F0 since ∀F ∈ G : F ⊇ F0. B is also a filter:

1. ∅ 6∈ B since B is the union of filters.

2. If Q ∈ B and N ⊇ R ⊇ Q then Q ∈ F for some F ∈ G. Since F is a filter
R ∈ F also ⇒ R ∈ B.

3. Let Q,R ∈ B, then Q ∈ F1 and R ∈ F2 for some F1, F2 ∈ G. G is totally
ordered so F1 ⊆ F2 or F2 ⊆ F1. Suppose F1 ⊆ F2, then Q,R ∈ F2. But F2

is a filter so Q ∩R ∈ F2 ⊆ B.

Now Zorn’s lemma tells us that E contains a maximal element U . We wish to
show that U is a free ultrafilter. U ⊇ F0 and so U is a free filter. We must now
show that U is also an ultrafilter.

Let Q′ ⊆ N and consider the following cases:
Case 1: Suppose ∀Q ∈ U : Q′ ∩Q is infinite. Let,

V = {T : N ⊇ T ⊇ Q′ ∩Q : Q ∈ U}.

where Q is some arbitrary element of U . Then V is a filter. Also V ∈ E, we can
see this by taking Q = {n, n+ 1, . . .}1. We also have that U ⊆ V but since V ∈ E
and U is the maximal element of E U ⊇ V . So V = U and since N ⊇ Q′ ⊇ Q′ ∩Q
we have that Q′ ∈ V ⇒ Q′ ∈ U .

Case 2: Suppose on the other hand that ∃Q0 ∈ U : Q′ ∩ Q0 is finite then
Q′ 6∈ U . Now take any Q ∈ U . Q0 ∈ U also ⇒ Q0 ∩ Q ∈ U and Q0 ∩ Q is
infinite. Since Q′ ∩ Q0 ∩ Q is finite (Q0 ∩ Q) \ (Q′ ∩ Q0 ∩ Q) = Q′c ∩ Q0 ∩ Q is
infinite. So Q′c∩Q must be infinite. Applying Case 1, replacing Q′ with Q′c, gives
Q′c ∈ U .

Theorem 2.3.2. Suppose that N = A1 ∪ A2 ∪ . . . ∪ An for mutually disjoint Ai
and n ∈ N. Then Ai ∈ U for exactly one i.

Proof. Let Bi = Aci . Suppose that there is no i ∈ {1, 2, . . . , n} such that Ai ∈ U .
Then ∀i ∈ {1, 2, . . . , n} : Bi ∈ U . So we now have that ∅ = B1 ∩B2 ∩ . . .∩Bn−1 ∩
Bn ∈ U which is a contradiction. So ∃i ∈ {1, 2, . . . , n} : Ai ∈ U . But we also have
that the Ai are mutually disjoint and so there can only be one i such that Ai ∈ U
since if Ai ∈ U and Aj ∈ U for i 6= j we would have that ∅ = Ai ∩Aj ∈ U .

1U ∈ E ⇒ U ⊇ F0. Now Q ∈ F ⇔ ∃n ∈ N : {n, n + 1, . . .} ⊆ Q (since Q must be cofinite). So
Q′ ∩Q is infinite iff ∃m ∈ N : {m,m + 1, . . .} ⊆ Q′ ∩Q.

5



2.4 Generating elements of ∗R

We now fix an ultrafilter U on N. We will use infinite sequences of real numbers,
in conjunction with U , to generate the hyperreals. Just as in the case of Z, Q and
R we will need to establish rules for the equality and identification of these infinite
sequences of real numbers. This is where we will use our free ultrafilter.

A nice way to think about how this works is to think of the infinite sequence
real numbers as the votes of an infinite electorate. The ultrafilter helps us decide
which votes matter when deciding the winner of the election. The fact that the
ultrafilter is free means that if one number gets a cofinite number of “votes” it will
always win against a number that gets only a finite number of “votes”.

2.4.1 Rules for Equality and Identification

We can generate each hyperreal number by using an infinite sequence of real num-
bers. If (x1, x2, . . .) is an infinite sequence of real numbers let H(x1, x2, . . .) be the
hyperreal number generated by it. So the set of all hyperreals ∗R =
{H(x1, x2, . . .) : ∀i : xi ∈ R}.

• Equality
Again we must define when two hyperreals H(x1, x2, . . .) and H(y1, y2, . . .)
are equal. To do this we first define an equivalence relation ∼u on infinite
sequences of reals:

(x1, x2, . . .) ∼u (y1, y2, . . .)⇔ {i : xi = yi} ∈ U

and then set H(x1, x2, . . .) = H(y1, y2, . . .) precisely when (x1, x2, . . .) ∼u
(y1, y2, . . .).

Theorem 2.4.1. ∼u is an equivalence relation.

Proof. We must show that ∼u is reflexive, symmetric and transitive.

1. ∼u is reflexive. ∀(x1, x2, . . .) : (x1, x2, . . .) ∼u (x1, x2, . . .) since {i : xi =
xi} = N ∈ U for every free ultrafilter U .

2. ∼u is symmetric. (x1, x2, . . .) ∼u (y1, y2, . . .)⇔ {i : xi = yi} = {i : yi =
xi} ∈ U ⇔ (y1, y2, . . .) ∼u (x1, x2, . . .)

3. ∼u is transitive. (x1, x2, . . .) ∼u (y1, y2, . . .) and (y1, y2, . . .) ∼u (z1, z2, . . .)⇔
A = {i : xi = yi} ∈ U and B = {i : yi = zi} ∈ U . Since U is a free ultra-
filter we have that if A ∈ U and B ∈ U , then A∩B = {i : xi = zi} ∈ U .
{i : xi = zi} ∈ U ⇔ (x1, x2, . . .) ∼u (z1, z2, . . .)

So ∼u satisfies all three properties and is therefore an equivalence relation.

• Identification
We now must identify when an infinite sequence of reals generates one of our
original sets of reals. We use the following rule:

∀x ∈ R : H(x1, x2, . . .) = x⇔ {i : xi = x} ∈ U.
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2.4.2 Some Examples

1. H(
√

2,
√

2,
√

2, . . .) =
√

2.
This is true since {i : xi = x} = N and N ∈ U for all free ultrafilters U .

2. What about the sequence (
√

2, π,
√

2, π,
√

2, . . .)?
What number does it generate? Is it possible that our definition could
lead us to the obvious contradiction that H(

√
2, π,
√

2, π,
√

2, . . .) =
√

2 and
H(
√

2, π,
√

2, π,
√

2, . . .) = π?

To answer this we must recall the definition of an ultrafilter given above.
If U is an ultrafilter and A ⊆ N, then either A ∈ U or Ac ∈ U , but not
both. So either the set of odd numbers {1, 3, 5, . . .} or the set of even num-
bers {2, 4, 6, . . .} is in our free ultrafilter U but not both. In this case if
{1, 3, 5, . . .} ∈ U (we can think of this as the case where only the odd voters
votes are taken into consideration) then H(

√
2, π,
√

2, π,
√

2, . . .) =
√

2 but if
{2, 4, 6, . . .} ∈ U (we can think of this as the case where only the even voters
votes are taken into consideration) then H(

√
2, π,
√

2, π,
√

2, . . .) = π.

3. What number does the sequence (1, 12 ,
1
3 , . . .) generate?

Recall that if U is a free ultrafilter and A ∈ U , then A is infinite. Since
no real number appears more than once the set Ax = {i : xi = x} is finite
∀x ∈ R. So ∀x : Ax 6∈ U ⇒ H(1, 12 ,

1
3 , . . .) is an entirely new number that

is not equal to any of our classical real numbers. Later we will show that
H(1, 12 ,

1
3 , . . .) is a non-zero infinitesimal.

Similarly the sequence(1, 2, 3, . . .) does not generate any of our classical real
numbers. Later we will show that H(1, 2, 3, . . .) is a positive hyperlarge.

2.5 Arithmetic operations and inequalities in ∗R

Now that we have constructed the hyperreals we must be able to carry out simple
operations and define when we consider when one hyperreal number to be larger
than another. For example for two hyperreal numbes x = H(x1, x2, . . .) and y =
H(y1, y2, . . .) how do we define x+ y or x/y? When can we say that x < y?

The definitions and rules we use follow very intuitively from our construction
of the hyperreals. If & is an operation such as addition, subtraction, taking the
absolute value, multiplication or division we introduce our version of & for the
hyperreal numbers ∗& = H(&1,&2, . . .) by simply taking &i = & for all i. So for
example H(x1, x2, . . .)

∗ + H(y1, y2, . . .) = H(x1 + y1, x2 + y2, . . .) for any H(xi)
and H(yi) ∈ R. Since the context makes it clear whether we mean the classical
version of the operation or our version for the hyperreals we will drop the ∗.
This is a list of simple definitions and operations in ∗R:

(i) Definition of ∗R
∗R = {H(x1, x2, . . .) : ∀i : xi ∈ R}.

(ii) Equality
H(x1, x2, . . .) = H(y1, y2, . . .) precisely when (x1, x2, . . .) ∼u (y1, y2, . . .).
(Recall that: (x1, x2, . . .) ∼u (y1, y2, . . .)⇔ {i : xi = yi} ∈ U)
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(iii) Identification
∀x ∈ R : H(x1, x2, . . .) = x⇔ {i : xi = x} ∈ U .

(iv) Addition
H(x1, x2, . . .) +H(y1, y2, . . .) = H(x1 + y1, x2 + y2, . . .), xi, yi ∈ R.

(v) Subtraction
H(x1, x2, . . .)−H(y1, y2, . . .) = H(x1 − y1, x2 − y2, . . .), xi, yi ∈ R.

(vi) Multiplication
H(x1, x2, . . .)×H(y1, y2, . . .) = H(x1 × y1, x2 × y2, . . .), xi, yi ∈ R.

(vii) Absolute Value
|H(x1, x2, . . .)| = H(|x1|, |x2|, . . .), xi ∈ R.

(viii) Division
When we are defining division we use the same method as usual however
we must be careful since just like in the case of classical mathematics our
divisor cannot be zero. We can deal with this extra condition easily. For
H(x1, x2, . . .) 6= 0 we define:
1/H(x1, x2, . . .) = H(r1, r2, . . .), xi ∈ R
with ri = 1/xi if x 6= 0 and ri arbitrary if xi = 0. Note that our arbitrary
choice of ri when xi = 0 has no effect on the value of 1/H(x1, x2, . . .) since
we can see from part (iii) that H(x1, x2, . . .) 6= 0⇔ {i : xi 6= 0} ∈ U .

(viii) Inequalities
H(x1, x2, . . .) < H(y1, y2, . . .)⇔ {i : xi < yi} ∈ U , xi, yi ∈ R.
(We have similar definitions for ≤, >,≥.)

Theorem 2.5.1. Let x, y ∈ ∗R then exactly one of x < y, x = y and x > y is
true.

Proof. Let x = H(x1, x2, . . .) and y = H(y1, y2, . . .). Then A1 = {i ∈ N : xi < yi},
A2 = {i ∈ N : xi = yi} and A1 = {i ∈ N : xi > yi} are mutually disjoint sets
with A1 ∪A2 ∪A3 = N. Now by Theorem 2.3.2 exactly one of A1, A2 and A3 is in
U .

2.5.1 Some examples

1. From (iii) above we have that H(1, 1, . . .) = 1 and H(2, 2, . . .) = 2 and so
H(1, 1, . . .) +H(2, 2, . . .) = 1 + 2 = 3.
This is consistent with the definition of addition for ∗R given in (iv):
H(1, 1, . . .) +H(2, 2, . . .) = H(1 + 2, 1 + 2, . . .) = H(3, 3, . . .) = 3

2. From (ii) and (iii) above we have that H(0, 2, 2, . . .) = H(2, 2, 2, . . .) = 2 and
so 1/H(0, 2, 2, . . .) = 1/2.
This is consistent with our definition of division for ∗R given in (viii):
1/H(0, 2, 2, . . .) = H(r, 1/2, 1/2, 1/2, . . .), for arbitrary r ∈ R. Now from (ii)
and (iii) we have that:
H(r, 1/2, 1/2, 1/2, . . .) = H(1/2, 1/2, 1/2, . . .) = 1/2.
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3. From (iii) above we have that H(1, 1, . . .) = 1 and H(2, 2, . . .) = 2. We have
that 1 < 2 and so H(1, 1, . . .) < H(2, 2, . . .).
This is consistent with the definition of < for ∗R given in (ix):
H(1, 1, . . .) < H(2, 2, . . .)⇔ {i : 1 < 2} = N ∈ U . But from the definition of
a free ultrafilter N ∈ U for all ultrafilters U . So H(1, 1, . . .) < H(2, 2, . . .).

2.6 Some Notation & Definitions

Before we go much further we will quickly introduce some notation that we will
use to deal with the new elements we can now introduce.
Hyperlarge Numbers
Let x ∈ ∗R be a positive hyperlarge i.e. ∀n ∈ N : x > n then we write x ∼ ∞. For
x ∈ ∗R, x a negative hyperlarge i.e. ∀n ∈ N : x < −n we write x ∼ −∞.
Infinitesimals
Let δ ∈ ∗R be an infinitesimal i.e. ∀n ∈ N : x < 1/n then we write δ ' 0.
If δ is non-zero we write δ ∼ 0.
Limited Numbers
Let x ∈ ∗R be a number that is not hyperlarge. Then we call x a limited number.
Appreciable Numbers
Let x ∈ ∗R be a limited number that is not an infinitesimal. Then we call x an
appreciable number.
Standard Part of a Limited Number
Let x ∈ ∗R be a limited number, then the unique real number r that is infinitesi-
mally close to x is called the standard part of x and we write st(x) = r.

2.7 Other Ultrapower Constructions

We have shown that it is possible to use an ultrafilter to generate hyperreal num-
bers, but is there anything special about real numbers or can we generate new
hyperconstants from other types of mathematical constants such as functions, se-
quences, sets and n-tuples in a similar manner? For example, is it possible to
generate hypersets or hyperfunctions? Unsurprisingly perhaps, the answer is yes.
Although our focus in this paper will be on hyperreals we will briefly deal with
hyperfunctions and hypersets. Our first task is to give a generalised definition
of when two hyperconstants are equal, a definition that will hold for any type
of mathematical constant. These constants could be sets, functions, n-tuples or
sequences for example.

2.7.1 Equality

We have already used the equivalence relation ∼u to define when two hyperreals
are equal. Recall that for two infinite sequences, this relation is given by:

(x1, x2, . . .) ∼u (y1, y2, . . .)⇔ {i : xi = yi} ∈ U.

Now, to remain consistent, and to allow us to have a generalised definition of when
any two hyperconstants are equal we shall use it again, setting
H(x1, x2, . . .) = H(y1, y2, . . .) precisely when (x1, x2, . . .) ∼u (y1, y2, . . .).
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2.7.2 Identification of Hypersets

We now wish to give a definition of a hyperset that will be consistent with this
definition of equality. To motivate this we consider the following theorem.

Theorem 2.7.1. Let (X1, X2, . . .) and (Y1, Y2, . . .) be infinite sequences of sets.
Then

{H(xi) : xi ∈ Xi} = {H(yi) : yi ∈ Yi} ⇔ H(X1, X2, . . .) = H(Y1, Y2, . . .).

Proof. Suppose H(X1, X2, . . .) = H(Y1, Y2, . . .) and let Q = {i : Xi = Yi} then
Q ∈ U . Let X = {H(xi) : xi ∈ Xi} and let Y = {H(yi) : yi ∈ Yi}. Now for any
H(xi) ∈ X for all i we have that xi ∈ Xi and for i ∈ Q, xi ∈ Yi. Now by the
definition of equality we have that H(xi) ∈ Y . So X ⊆ Y , similarly we have that
Y ⊆ X ⇒ X = Y .

Conversely suppose H(X1, X2, . . .) 6= H(Y1, Y2, . . .), then Q 6∈ U and so by the
definition of a free ultrafilter Qc = {i : Xi 6= Yi} ∈ U . Now we have that either
{i : xi 6∈ Yi for some xi ∈ Xi} ∈ U or, {i : yi 6∈ Xi for some yi ∈ Yi} ∈ U , or both.

Suppose R = {i : xi 6∈ Yi for some xi ∈ Xi} ∈ U . If i ∈ R take xi ∈ Xi s.t
xi 6∈ Yi, and if i 6∈ R take any xi ∈ Xi. Now {i : xi 6∈ Yi} ⊇ R so {i : xi 6∈ Yi} ∈ U .
Suppose now that H(xi) ∈ Y , then {i : xi ∈ Yi} ∈ U . But since U is a free
ultrafilter we have that it is closed under intersection and so:

{i : xi 6∈ Yi} ∩ {i : xi ∈ Yi} = ∅ ∈ U.

which is a contradiction. So H(xi) 6∈ Y and X 6= Y . The proof in the other case
is similar.

Our definition for identification of hypersets follows intuitively from the result
of the previous theorem. We use the following definition: If all Si are sets then

H(S1, S2, . . .) = {H(si) : si ∈ Si}.

2.7.3 Identification of Hyperfunctions

Again when giving the definition for a hyperfunction we wish for it to be consis-
tent with the definition of equality that we have given above. Although we have
omitted the proof, the following definition of a hyperfunction is consistent with
that definition of equality.
Given an infinite sequence of functions (f1, f2, . . .) with fi : X → Yi, we let
H(f1, f2, . . .) : H(X1, X2, . . .)→ H(Y1, Y2, . . .) be the function defined by

H(fi)(H(xi)) = H(fi(xi)).

Our focus will be on hyperfunctions of the form ∗f = H(f, f, f, . . .) where
f : R→ R. This is known as the ∗-transform of f . We note that since
∗f : ∗R → ∗R we have that ∗f 6= f . However, ∗f is an extension of f . We should
also note that since a sequence (xn) of real numbers is simply a special type of
function x : N→ R where x(n) = xn we use the same rules as we use for functions
to generate hypersequences. Again we will be most interested in the ∗-transform
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of a sequence which is a function ∗x : ∗N→ ∗R which we will denote ∗(xn). When
referring to the mth term of the ∗-transform of a sequence (xn) we will simply
write xm. Our meaning will be clear from the context but in any case of possible
ambiguity a note will be included for clarity.

2.8 The ∗-transform

For any classical constant w the ∗-transform of w is the hyperconstantH(w,w,w, . . .)
generated by the infinite sequence (w,w,w, . . .). We denote this hyperconstant ∗w.
Note that as shown above in the case of a function from R to R, ∗w is not necessar-
ily equal to w. Another example is the ∗-transform of the set of natural numbers
∗N, since the hyperlarge number H(1, 2, 3, . . .) ∈ ∗N we have that ∗N 6= N . How-
ever it is also true that the two can be equal. Consider for example a real number
x or a finite set of real numbers A, then ∗x = x and ∗A = A.

2.9 Internal vs. External constants

Later when dealing with the transfer principle it will be important to distinguish
between two types of constants in our nonstandard system. We define an internal
constant to be any constant that is an element of a some set ∗X where ∗X is the
∗-transform of the classical set X. We will see that these internal constants will
behave “well” i.e. in a manner very similar to classical constants. We will find on
the other hand that external constants i.e. constants which are not internal, can
behave very unpredictably. Our focus will be on results for internal constants and
we will be careful to avoid the problems introduced by external constants.

2.9.1 Some Important Examples

1. Every hyperreal number is internal.
This is immediately clear since ∗R is the ∗-transform of R.

2. P(∗A) \ ∗P(A) are the external subsets of ∗A.
Clearly every element of ∗P(A) is internal since P(A) is a classical set. Now
it remains to show that P(∗A) ⊇ ∗P(A). Let X ∈ ∗P(A) then X = H(Si)
for Si ⊆ A, so

X = H(Si) = {H(si) : si ∈ Si} ⊆ ∗A,

and so X ∈ P(∗A) as required.

This inclusion is strict if and only if the set A is infinite [30] and so ∗A has
external subsets if and only if A is infinite. In fact if A is an infinite set then
A is an external subset of ∗A.

2.10 Infinitesimals and Hyperlarge numbers in ∗R

Theorem 2.10.1. Hyperlarge numbers and non-zero infinitesimals exist in ∗R.

Proof. First we will prove the existence of non-zero infinitesimals. Consider the
hyperreal number H(1, 12 ,

1
3 , . . .). Clearly 0 < H(1, 12 ,

1
3 , . . .) since {i : 0 < 1

i } = N.
Now let x ∈ R be positive. ∃M ∈ N : ∀n > M : 1

n < x. Since {1, 2, 3, . . . ,M} is
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finite it is not an element of U but its complement {M + 1,M + 2, . . .} is. This
implies that {i : 1

i < x} ∈ U ⇒ H(1, 12 ,
1
3 , . . .) < H(x, x, . . .) = x. So H(1, 12 ,

1
3 , . . .)

is a non-zero infinitesimal. Recall we denote this H(1, 12 ,
1
3 , . . .) ∼ 0.

Similarly, H(1, 2, 3, . . .) is hyperlarge since ∀x ∈ R : ∃M ∈ N : ∀n > M : x <
n⇒ {i : x < i} = {M + 1,M + 2, . . .} ∈ U . Recall we denote this H(1, 2, 3, . . .) ∼
∞.

Theorem 2.10.2. Every infinite sequence of positive real numbers converging to
zero generates a positive infinitesimal.

Proof. Let (xi) be a sequence of positive real numbers converging to zero. For
any ε > 0, ε ∈ R there exists M ∈ N s.t. ∀n > M : 0 < xn < ε. Now since
{1, 2, 3, . . . ,M} is finite it is not an element of U but its complement {M + 1,M +
2, . . .} is. This implies that {i : xi < ε} ∈ U ⇒ 0 < H(x1, x2, . . .) < H(ε, ε, . . .) =
ε. So H(x1, x2, . . .) is a positive infinitesimal.

Corollary 2.10.3. Every infinite sequence of negative real numbers converging to
zero generates a negative infinitesimal.

Corollary 2.10.4. Every infinite sequence of real numbers with a finite number
of nonpositive terms which converges to zero generates a positive infinitesimal.

Corollary 2.10.5. Every infinite sequence of real numbers with a finite number
of nonnegative terms which converges to zero generates a negative infinitesimal.

Theorem 2.10.6. An infinite sequence of real numbers generates an infinitesimal
for some ultrafilter U0 if and only if it has a infinite subsequence converging to
zero.

Proof. Let (xi) be a sequence of real numbers with an infinite subsequence (xin)
converging to zero. Now since A = {i1, 12, . . .} is an infinite set, there is some
ultrafilter U0 such that A ∈ U0. (For proof that such an ultrafilter exists we refer
to Theorem 1.16.1 of [30].) Now for any ε ∈ R, ε > 0, we have |xin | < ε for all but
finitely many in ∈ A, and so

B = {in ∈ N : |xn| < ε} ∈ U0.

This implies that H(x1, x2, . . .) < H(ε, ε, . . .) = ε, for our chosen ultrafilter U0 and
since ε was an arbitrary positive real number we have that H(x1, x2, . . .) ' 0.

Conversely suppose (xi) be a sequence of real numbers with no infinite subse-
quence (xin) converging to zero. Then ∃ε ∈ R, ε > 0 such that the set

C = {i ∈ N : xi < ε}

is finite. Since C is finite it cannot be in any ultrafilter U . This implies that
H(x1, x2, . . .) ≥ H(ε, ε, . . .) = ε for any ultrafilter U .
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2.10.1 Some examples

1. Addition and hyperlarge numbers
What happens when we add two positive hyperlarge numbers? Can we say
that the resulting number is also hyperlarge? What about when we add a
hyperlarge number to a positive classical real number?

Consider first an example of the second case:
H(1, 2, 3, . . .) + 1 = H(1, 2, 3, . . .) + H(1, 1, 1, . . .) = H(2, 3, 4, . . .). Which is
a hyperlarge number by the same argument as used in our theorem above.
In fact it is true in general for any H(xi) ∼ ∞ and positive real number y
since ∀i : xi + y > xi.

Now consider an example of the first case:
H(1, 2, 3, . . .)+H(2, 4, 6, . . .) = H(3, 6, 9, . . .). Which is a hyperlarge number
by the same argument as used in our theorem above. Clearly it is also true
in general for any H(xi), H(yi) ∼ ∞ since if A,B ∈ U then A ∩B ∈ U .

2. Subtraction and hyperlarge numbers
What happens if we subtract one positive hyperlarge number from another?
What can we say about subtracting a positive classical real number from a
positive hyperlarge number?

Again we will look at an example of the second case first:
H(1, 2, 3, . . .) − 1 = H(1, 2, 3, . . .) −H(1, 1, 1, . . .) = H(0, 1, 2, . . .). Which is
a hyperlarge number by the same argument as used in our theorem above.
In fact it is true in general for any H(xi) ∼ ∞ and positive real number y
since if ∀x{i : x < xi} ∈ U then {i : x+ y < xi} ∈ U .

Now consider an example of the first case:
H(1, 2, 3, . . .) − H(0, 1, 2, . . .) = H(1, 1, 1, . . .) = 1. So by subtracting one
hyperlarge number from another we get a finite real number, but we can’t
say this is true in general since: H(2, 4, 6, . . .)−H(1, 2, 3, . . .) = H(1, 2, 3, . . .)
which is again a hyperlarge number and H(2, 5/2, 10/3, . . .)−H(1, 2, 3, . . .) =
H(1, 1/2, 1/3, . . .) which is an infinitesimal.

3. Addition and Subtraction of non-zero infinitesimals
What happens when we add two positive non-zero infinitesimals? What
happens when we subtract one non-zero infinitesimal from another?

First, consider an example of the first case:
H(1, 1/2, 1/3, . . .)+H(2, 1/4, 1/6, . . .) = H(3, 3/4, 3/6, . . .) which is again an
infinitesimal. This is again true in general.

Now consider an example of the second case:
H(2, 1/4, 1/6, . . .)−H(1, 1/2, 1/3, . . .) = H(1, 1/2, 1/3, . . .) which is again an
infinitesimal. This is again true in general since if xi, yi > 0 then |xi − yi| <
max{xi, yi}.

4. The ∗-transform of a function evaluated at an infinitesimal
What happens when we evaluate the ∗-transform of a function at a non-zero
infinitesimal?
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Let’s take for example the ∗-transform of sin(x), ∗ sin(x), evaluated at an
infinitesimal. Since sin(x) is continuous and is positive on (0, π) with sin(0) =
0 we would expect ∗ sin(δ) where δ is a positive infinitesimal to also be a
positive infinitesimal.

Let δ = H(1, 1/2, 1/4, . . .) then ∗ sin(δ) = H(sin(1), sin(1/2), . . .). Now ∀x ∈
(0, 1) : sin(x) > 0, so (sin(1), sin(1/2), . . .) is a sequence of positive real
numbers. We also have that sin(x) is continuous with sin(0) = 0 and so
(sin(1), sin(1/2), . . .) converges to zero. Now by Theorem 1.8.2 above we
have that ∗ sin(δ) is a positive infinitesimal.

In general we can apply Theorem 2.10.6 to prove that ∗ sin(δ) ' 0 for any
δ ' 0. We have only to notice that if any infinite subsequence (xin) converges
to zero so too does the sequence (sin[xin ]).

3 The Transfer Principle

3.1 History and Importance

This section brings us finally to the transfer principle. The transfer principle
is the powerful “black box” that allows us to use the methods of non-standard
analysis to prove results in standard analysis. Essentially it provides a ‘bridge’
between nonstandard analysis and classical mathematics. We will interpret the
term classical to mean ‘not involving any nonstandard mathematical ideas’. It
is therefore, in my opinion, the most important result pertaining to nonstandard
analysis. It gives us one of our greatest motivations to study the area. It is as a
result of the transfer principle that non-standard methods are powerful tools, tools
that we can use to help our understanding of other areas of mathematics.

Being able to transfer reasoning from a system of numbers that included in-
finitely large and small numbers to a system which does not such as the real
numbers was naturally of great interest to the founders of calculus. Since Leibniz
and Newton both used such infinitely small and large numbers when developing
calculus the validity of these results depended on such a principle. The idea was
described by Leibniz and given the name the “Law of Continuity”.

In a 1702 letter to the French Mathematician Pierre Varignon, Leibniz formu-
lated the Law of Continuity as follows:

“. . . et il se trouve que les règles du fini réussissent dans l’infini comme sil y
avait des atomes (c’est à dire des éléments assignables de la nature) quoiquil ny en
ait point la matière étant actuellement sousdivisée sans fin; et que vice versa les
régles de l’infini réussissent dans le fini, comme s’il y’avait des infiniment petits
métaphysiques, quoiqu’on n’en n’ait point besoin; et que la division de la matière ne
parvienne jamais à des parcelles infiniment petites: c’est parce que tout se gouverne
par raison, et qu’autrement il n’aurait point de science ni règle, ce qui ne serait
point conforme avec la nature du souverain principe” [24].

Many academics including Robinson identify this passage as a formulation of
the law of continuity, which can be summarized as follows: “the rules of the finite
succeed in the infinite, and conversely” [21]. This principle was a forerunner to
the transfer principle that we will discuss in this section. It is a consequence of
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a theorem proved by the Polish mathematician Jerzy  Loś in 1955 [29]. Before we
tackle  Loś’ Theorem we will first give a quick outline of some ideas in mathematical
logic.

3.2 Mathematical Logic

3.2.1 Atomic Statements

Atomic relations are simple mathematical relations that don’t contain either logical
connectives or quantifiers such as =, <,> and ∈. A relation on n arguments is
called n-ary. An n-ary relation can be thought of as a function R : X1 × X2 ×
. . .×Xn → B. Where B is the set of Boolean constants B = {TRUE,FALSE}.
For example (−1 ∈ N) ≡ FALSE and (1 < 2) ≡ TRUE. Since = is one of
our atomic relations for clarity we will always use ≡ to denote equivalence. For
example (0 = 1) ≡ FALSE and (1 = 1) ≡ TRUE. An atomic statement is a
statement given by applying atomic relations to suitable arguments.

We define ∗TRUE ≡ TRUE and ∗FALSE ≡ FALSE. Note that since B is
finite ∗B ≡ {∗TRUE, ∗FALSE} ≡ {TRUE,FALSE} ≡ B. Now since we have a
correspondence between these relations R and functions it follows intuitively that
our corresponding relation ∗R in non-standard analysis is given by:

H(xi)
∗RH(yi) ≡ H(xiRyi)

where by definition H(xiRyi) ≡ ({i : xiRyi} ∈ U), so

H(xi)
∗RH(yi) ≡ TRUE⇔ {i : xiRyi ≡ TRUE} ∈ U.

Lemma 3.2.1. (A Special Case of  Loś’ Theorem)
Let R be a binary relation R : X×Y → B. Then ∗[xRy] ≡ xRy for x ∈ X, y ∈ Y .

Proof. ∗[xRy] ≡ ∗x∗R∗y ≡ ({i : xRy} ∈ U) Note that xRy does not depend on
i so either {i : xRy} = N ∈ U if xRy ≡ TRUE or, {i : xRy} = ∅ /∈ U if
xRy ≡ FALSE. So we have that ∗[xRy] ≡ ∗x∗R∗y ≡ xRy as required.

This is an example of a transfer principle for simple atomic statements. Al-
though not very powerful it is an interesting result that lets us know that if the
atomic statement ∗x∗R∗y is equivalent to the classical statement xRy. For example
the statement

(∗f(∗x∗y) < ∗x∗y∗z) ≡ TRUE⇔ (f(xy) < xyz) ≡ TRUE.

3.2.2 Arbitrary Statements

Building on the notion of atomic statements, an arbitrary statement is one which
is made up of a finite number of atomic relations, logical connectives, quantifiers,
constants, free variables and bound variables. using these we can construct more
complex mathematic statements.

Logical connectives
Given two basic statements P and Q we can combine them with logical connectives
to construct a more complex statement. The basic logical connectives are:
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1. Negation (“not”), denoted q.
Not P has the opposite Boolean value to P .

2. Conjunction (“and”), denoted ∧.
P and Q is true only when both P and Q are both true.

3. Disjunction (“or”), denoted ∨.
P or Q is true only when either one or both of P and Q are true.

4. Conditional (“if-then” or “implication”), denoted ⇒.
P implies Q is true unless P is true and Q is false.

5. Biconditional (“if and only if” or “double implication”), denoted ⇔.
P ⇔ Q is true when P andQ are both true or both false but is false otherwise.

Quantifiers
Quantifiers are used in statements containing variables. There are two quantifiers:

1. The universal quantifier (“for all”), denoted ∀.

2. The existential quantifier (“there exists”), denoted ∃.

Constants, free variables and bound variables
Apart from relations, logical connectives and quantifiers, each statement also con-
tains a number of variables and constants.

1. Constants
Specified or unspecified fixed numbers, n-tuples, sets and functions.

2. Free variables
If replacing any variable occurring in a statement by some constant leads
to another meaningful statement that variable is called a free variable with
respect to the statement.

3. Bounded variables
A variable that is not free is called a bounded or dummy variable.

Notation and conventions for arbitrary statements
While it was useful to write an atomic statement derived from the binary relation
R as xRy above we now write this statement as R(x, y) and a general atomic state-
ment as (P (x, x′, . . .) where P is an atomic relation and x, x′, . . . is an expression
of constants and free variables. We assume that arbitrary statements are in their
prenex normal form2 are free variables with all logical connectives to the right of
the quantifiers. Every statement of first-order logic can be converted to an equiv-
alent statement in prenex normal form [34]. It is also assumed that each bound
variable occurs to the left of the ∈ relation, helping us to ensure that each bound
variable is internal.

Now instead of regarding a statementR as a function of substatements P (s, s′, . . .),
Q(t, t′, . . .), S(u, u′, . . .), . . ., and of setsX,X ′, . . ., required in the quantifications we

2For example the following statement where P (a, b, . . . , q, r, . . . , xyz) is a statement containing
no quantifiers, a, b, . . . are constants and q, r, . . . are free variables is in its prenex normal form:
∀x : ∃y : ∃z : P (a, b, . . . , q, r, . . . , xyz).
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can regard it simply as a function of the constants and free variables X,X ′, X ′′, . . . ;
s, s′, s′′, . . . , . We will write a general arbitrary statement with a finite number of
constants or free variables X,X ′, X ′′, . . . ; s, s′, s′′, . . . , and a finite number of logical
connectives and quantifiers as,

R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .), .

Here X,X ′, X ′′, . . . are the sets required to formulate the quantifications properly;
that is to say that X must occur in ∃x ∈ X or in ∀x ∈ X, for some suitable bound
variable x, and similarly for X ′, X ′′, . . . and that conversely each quantification is
taken care of this way.

3.3  Loś’ Theorem

In this section we will present  Loś’ Theorem which is also sometimes known as The
Fundamental Theorem of Ultraproducts. This name reflects its significance in our
study of non-standard analysis. In essence the Theorem tells us that a first-order
statement is true in the ultraproduct if and only if the set of indices for which
the formula is true is an element of our ultrafilter U . A proof consistent with our
approach can be found in [30]. We give its formal statement below.

Theorem 3.3.1. ( Loś’ Theorem)
Let any classical statement,

R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .),

with a finite number of constants or free variables X,X ′, X ′′, . . . ; s, s′, s′′, . . . , and a
finite number of logical connectives and quantifiers be given. X,X ′, X ′′, . . . are the
sets required to formulate the quantifications properly; that is to say that X must
occur in ∃x ∈ X or in ∀x ∈ X, for some suitable bound variable x, and similarly
for X ′, X ′′, . . . and that conversely each quantification is taken care of this way.
Then,

H[R(Xi, X
′
i, X

′′
i , . . . ; si, s

′
i, s
′′
i , . . .)] ≡

R(H(Xi), H(X ′i), H(X ′′i ), . . . ;H(si), H(s′i), H(s′′i ), . . .)

3.4 The Transfer Principle

The transfer principle comes as a direct consequence of  Loś’ Theorem.

Theorem 3.4.1. (Transfer Principle)
Let any classical statement,

R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .),

with a finite number of constants or free variables X,X ′, X ′′, . . . ; s, s′, s′′, . . . , and a
finite number of logical connectives and quantifiers be given. X,X ′, X ′′, . . . are the
sets required to formulate the quantifications properly; that is to say that X must
occur in ∃x ∈ X or in ∀x ∈ X, for some suitable bound variable x, and similarly
for X ′, X ′′, . . . and that conversely each quantification is taken care of this way.
Then,

R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .) ≡ R(∗X,∗X ′,∗X ′′, . . . ;∗ s,∗ s′,∗ s′′, . . .)
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Proof. Taking Xi = X and si = s for every i and similarly for X ′i, s
′
i, . . . etc. and

applying  Loś’ Theorem we get that

∗[R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .)] ≡ H[R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .)] ≡

R(H(X), H(X ′), H(X ′′), . . . ;H(s), H(s′), H(s′′), . . .) ≡

R(∗X,∗X ′,∗X ′′, . . . ;∗ s,∗ s′,∗ s′′, . . .).

But, we also have that

∗[R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .)] ≡ R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .).

And so

R(X,X ′, X ′′, . . . ; s, s′, s′′, . . .) ≡ R(∗X,∗X ′,∗X ′′, . . . ;∗ s,∗ s′,∗ s′′, . . .).

The transfer principle in this formulation tells us that any classical statement
is equivalent to the non-standard statement we get by replacing everything by its
∗-transform except the bound variables in the statement. This is so important,
we do not think of real numbers as infinite Cauchy sequences and now we no
longer need to think of hyperreal numbers as infinite sequences of real numbers.
Instead we can treat them in a similar way as we treat the real numbers. It is this
transfer principle, that acts like a “bridge” between analysis in R and analysis in
∗R, that makes our study of nonstandard analysis so useful. Consider the following
examples.

Theorem 3.4.2. (The Archimedean Law)
Let x be a real number. Then there exists a natural number n that is greater than
x.

We can write this statement using the tools of mathematical logic as follows:

∀x ∈ R : ∃n ∈ N : n > x.

Now applying the transfer principle given in Theorem 1.4.1 above we get that this
is equivalent to:

∀x ∈ ∗R : ∃n ∈ ∗N : n > x.

So for any hyperreal number x there exists a hypernatural number n that is greater
than x. Obviously this is not true if we replace ∗N with N or the word hypernatural
with the word natural in the statement above.

Theorem 3.4.3. Let n be a natural number that is greater than 1. Then n has at
least one prime factor.

Let P = {P ∈ N : p is prime}. We can now write this statement using the tools
of mathematical logic as follows:

∀n ∈ N : n > 1 : ∃p ∈ P : n/p ∈ N.
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Now applying the transfer principle given in Theorem 1.4.1 above we get that this
is equivalent to:

∀n ∈ ∗N : n > 1 : ∃p ∈ ∗P : n/p ∈ ∗N.

So every hypernatural number greater than 1 has at least one hyperprime factor.
We will use this result in section 3.6 to give an elegant proof that P is an infinite
set.

Theorem 3.4.4. Let p and q be real numbers and let q be greater than p. Then
there is a real number r that is greater than p but less than q. (i.e. The real
numbers are dense.)

We can write this statement using the tools of mathematical logic as follows:

∀p, q ∈ R : p < q : ∃r ∈ R : p < r < q.

Now applying the transfer principle given in Theorem 1.4.1 above we get that this
is equivalent to:

∀p, q ∈ ∗R : p < q : ∃r ∈ ∗R : p < r < q.

In other words the hyperreal numbers are also dense.

Theorem 3.4.5. (Dedekind Completeness of the Real Numbers)
Let X be a non-empty subset of R that has an upper bound b ∈ R, then X has a
least upper bound β ∈ R.

We can write this statement using the tools of mathematical logic as follows:

∀X ∈ P(R) : {x 6= ∅ ∧ [∃b ∈ R : ∀x ∈ X : x ≤ b]} ⇒

∃β ∈ R : [∀x ∈ X : x ≤ β] ∧ [∀ε ∈ R, ε > 0 : ∃x ∈ X : x > β − ε],

Now applying the transfer principle given in Theorem 1.4.1 above we get that this
is equivalent to:

∀X ∈ ∗P(R) : {x 6= ∅ ∧ [∃b ∈ ∗R : ∀x ∈ X : x ≤ b]} ⇒

∃β ∈ ∗R : [∀x ∈ X : x ≤ β] ∧ [∀ε ∈ ∗R, ε > 0 : ∃x ∈ X : x > β − ε].

In other words if X is an internal subset of ∗R that is bounded above by some
hypperreal number b, which could be hyperlarge or indeed an infinitesimal, then
there is a hyperreal number β that is a least upper bound for X. (Again this could
be hyperlarge or indeed an infinitesimal).

Note that it is important that X is an internal set, for example the statement
above is not true for the set of real numbers R since R is external. Suppose β was
a least upper bound for R in ∗R, then the β is a hyperlarge number but β − 1 is
also hyperlarge and so is also an upper bound for R which is a contradiction since
β was our least upper bound for R. So ∗R is not Dedekind complete3.

3This it turns out is a major relief since every Dedekind complete ordered field is isomorphic
to R.
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3.5 Definitions

Nonstandard analysis can be used to give simplified, elegant definitions of many
concepts in classical mathematics. It is especially useful to give intuitive alterna-
tive definitions of things that are defined using ε’s and δ’s in classical mathematics.
Such definitions are often found to be very difficult and unintuitive for many un-
dergraduate mathematicians. I have tried to include some nonstandard definitions
that are not easily found in the literature.

Since Weierstrass developed the concept of a limit to eliminate the need to
use infinitesimals in calculus before a valid model of nonstandard analysis was
developed, it makes sense to first give a nonstandard version of the ε− δ definition
of a limit. As an added bonus the definition we will give is a very intuitive definition
of a concept so many undergraduates find difficult to grasp when starting their
studies.

Definition (Nonstandard Definition of a Limit)
Let f : R→ R and let a, l ∈ R then we say that “the limit of f as x tends to a is
l” and write lim

x→a
f(x) = l if and only if

∀δ ∈ ∗R, δ ∼ 0 : ∗f(a+ δ)− l ' 0.

In other words if and only if ∀δ ∼ 0 : l = st(∗f(a+ δ)).

This can be read as “The limit of the function f at a is l if and only if the value
of the function when we are infinitesimally close to a is infinitesimally close to l.”,
which is the intuitive way that many people think of a limit.

Analogously we can give the following definition of one-sided limits.

Definition (Nonstandard Definition of One-sided Limits)
Let f : R→ R and let a, l+, l− ∈ R. Then lim

x→a+
f(x) = l+ if and only if

∀δ, δ > 0, δ ∼ 0 : ∗f(a+ δ)− l+ ' 0,

and lim
x→a−

f(x) = l− if and only if

∀δ, δ > 0, δ ∼ 0 : ∗f(a− δ)− l− ' 0.

Theorem 3.5.1. The nonstandard definition of a limit given above is equivalent
to the classic “ε− δ” definition of a limit:

∀ε ∈ R, ε > 0 : ∃δ ∈ R, δ > 0 : ∀x ∈ R, 0 < |x− a| < δ : |f(x)− l| < ε.

Proof. By the transfer principle the statement above is equivalent to

∀ε ∈ ∗R, ε > 0 : ∃δ ∈ ∗R, δ > 0 : ∀x ∈ ∗R, 0 < |x− a| < δ : |∗f(x)− l| < ε,

and this can be simplified to

∀δ ∈ ∗R, δ ∼ 0 : ∗f(a+ δ)− l ' 0.
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From this nonstandard definition of a limit the following two intuitive nonstan-
dard definitions of continuity and differentiability quickly follow.

Definition (Nonstandard Definition of Continuity)
Let f : R→ R and let a ∈ R. Then f is continuous at a if and only if,

∀δ ∼ 0 : ∗f(a+ δ)− f(a) ' 0.

“A function f is continuous at a if and only if the value of the function infinitesi-
mally close to a is infinitesimally close to f(a).”

Theorem 3.5.2. The nonstandard definition of continuity given above is equiva-
lent to the classic definition of continuity:
f : R→ R is continuous at a ∈ R if and only if

lim
x→a

f(x) = f(a).

Proof. By our nonstandard definition of a limit

lim
x→a

f(x) = f(a)⇔ ∀δ ∼ 0 : ∗f(a+ δ)− f(a) ' 0.

Definition (Nonstandard Definition of Differentiability)
Let f : R→ R and let a, d ∈ R. Then f is differentiable at a if and only if,

∀δ ∼ 0 :
∗f(a+ δ)− f(a)

δ
' d = f ′(a).

And so f ′(a) = st[
∗f(a+δ)−f(a)

δ ].

“The derivative of the function f at a is the slope of the line between f(a) and f
evaluated at a point infinitesimally close to a.”

The fact that this is equivalent to the classic definition of differentiability again
follows directly from our nonstandard definition of a limit.

Definition (Nonstandard Definition of a Convergent Sequence)
Let (xn) be an infinite sequence of real numbers then the sequence converges to
l ∈ R (xn → l) if and only if

∀N ∈ ∗N, N ∼ ∞ : xN − l ' 0.

In other words st(xN ) = l. (Here xN is the N th element of ∗(xn).)

“The sequence (xn) converges to l if and only if for infinitely large values of n, xn
is infinitesimally close to l.”

Definition (Nonstandard Definition of a Cauchy Sequence)
Let (xn) be an infinite sequence of real numbers then the sequence is a Cauchy
sequence if and only if

∀N,M ∈ ∗N, N,M ∼ ∞ : xN − xM ' 0.

(Here xN is the N th and xM is the M th element of ∗(xn).)
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“The sequence (xn) is Cauchy if and only if for infinitely large values of n the
terms of the sequence are infinitesimally close.”

Theorem 3.5.3. The nonstandard definition of a Cauchy sequence given above is
equivalent to the standard definition of a Cauchy sequence:

∀n ∈ N : ∃k ∈ N : ∀N,M ∈ N, N,M > k : |xN − xM | < 1/n. (∗)

Proof. Fixing n ∈ N and k ∈ N the statement

∀N,M ∈ N, N,M > k : |xN − xM | < 1/n

by the transfer principle is equivalent to the statement

∀N,M ∈ ∗N, N,M > k : |xN − xM | < 1/n

Now letting N,M ∼ ∞, then ∀k ∈ N : N,M > k so the statement

∀n ∈ N : ∃k ∈ N : ∀N,M ∈ ∗N, N,M > k : |xN − xM | < 1/n

can be simplified to the statement

∀N,M ∈ ∗N, N,M ∼ ∞ : ∀n ∈ N : |xN − xM | < 1/n

which is equivalent to

∀N,M ∈ ∗N, N,M ∼ ∞ : xN − xM ' 0. (∗∗)

Conversely if we consider the negation of (∗)

∃n ∈ N : ∀k ∈ N : ∃N,M ∈ N, N,M > k : |xN − xM | ≥ 1/n

Fixing n ∈ N the statement

∀k ∈ N : ∃N,M ∈ N, N,M > k : |xN − xM | ≥ 1/n

by the transfer principle is equivalent to the statement

∀k ∈ ∗N : ∃N,M ∈ ∗N, N,M > k : |xN − xM | ≥ 1/n

now fixing k ∼ ∞ we have that N,M ∼ ∞ and so the negation of (∗) implies that

∃N,M ∈ ∗N, N,M ∼ ∞ : ∃m ∈ N : |xN − xM | ≥ 1/n

which is equivalent to the negation of (∗∗);

∃N,M ∈ ∗N, N,M ∼ ∞ :q[xN − xM ' 0].

Definition (Nonstandard Definition of Uniform Convergence)
Let (fn) be a sequence of functions with fn : R → R. Then (fn) converges
uniformly to the function f : R→ R on R if and only if

∀x ∈ ∗R : ∀N ∈ ∗N, N ∼ ∞ : ∗f(x)− ∗fN (x) ' 0.
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“The sequence of functions (fn) converges uniformly to f on R if and only if for
an infinitely large N , ∗fN is infinitesimally close to ∗f at all points of ∗R”

Theorem 3.5.4. The nonstandard definition of uniform convergence given above
is equivalent to the classical definition given by:

∀ε ∈ R, ε > 0 : ∃N ∈ N : ∀n ∈ N, n > N : ∀x ∈ R : |fn(x)− f(x)| < ε.

Proof. Suppose (fn) converges to the function f uniformly on R then by the trans-
fer principle the statement

∀ε ∈ R, ε > 0 : ∃N ∈ N : ∀n ∈ N, n > N : ∀x ∈ R : |fn(x)− f(x)| < ε

is equivalent to

∀ε ∈ ∗R, ε > 0 : ∃N ∈ ∗N : ∀n ∈ ∗N, n > N : ∀x ∈ ∗R : |∗fn(x)− ∗f(x)| < ε

Now letting N be hyperlarge we must have that ε is infinitesimal and hence

∀n ∈ ∗N, n ∼ ∞ : ∀x ∈ ∗R : ∗f(x)− ∗fn(x) ' 0.

Conversely suppose that

∀n ∈ ∗N, n ∼ ∞ : ∀x ∈ ∗R : ∗f(x)− ∗fn(x) ' 0.

Then for taking N such that N ∈ ∗N, N ∼ ∞ fixing any ε ∈ R, ε > 0 we have that

∀n ∈ ∗N, n > N : ∀x ∈ ∗R : |∗fn(x)− ∗f(x)| < ε

in other words

∃N ∈ ∗N : ∀n ∈ ∗N, n > N : ∀x ∈ ∗R : |∗fn(x)− ∗f(x)| < ε

which by the transfer principle is equivalent to

∃N ∈ N : ∀n ∈ N, n > N : ∀x ∈ R : |fn(x)− f(x)| < ε

and since epsilon was an arbitrary positive real number we have that

∀ε ∈ R, ε > 0 : ∃N ∈ N : ∀n ∈ N, n > N : ∀x ∈ R : |fn(x)− f(x)| < ε.

3.6 Nonstandard Analysis as a Tool in Classical Mathematics

Many classical theorems and many classical problems can also be proved in a very
elegant way using nonstandard analysis. Again in this section I’ve tried to include
some nice illustrative examples that are not easily found in the literature available
on the subject. The first proof is simple and uses our new nonstandard definitions
of both differentiability and continuity.

Theorem 3.6.1. Let f : R→ R be differentiable at a ∈ R. Then f is continuous
at a.
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Proof. Suppose f is not continuous at a. Then

∃δ ∼ 0 : ∗f(a+ δ)− f(a) = k 6' 0.

Where k is either appreciable or hyperlarge. Recall a hyperreal number x is ap-
preciable if it is neither an infinitesimal nor hyperlarge. So

∃δ ∼ 0 :
∗f(a+ δ)− f(a)

δ
' d ∼ ±∞.

This is a contradiction and so f must be continuous at a.

An extremely elegant proof that a sequence of real numbers converges if and
only if it is a Cauchy sequence comes as a result of our alternative nonstandard
definitions of convergent sequences and Cauchy sequences given above. It is shorter
and in my opinion more intuitive than the usual classical proof which can be widely
found in introductory real analysis textbooks.

Theorem 3.6.2. A sequence of real numbers (xn) is convergent if and only if it
is Cauchy.

Proof. Suppose (xn) converges to l ∈ R then ∀N ∈ ∗N, N ∼ ∞ : xN ' l and so
∀N,M ∈ ∗N, N,M ∼ ∞ : xN − xM ' l − l = 0.

Conversely suppose (xn) is a Cauchy sequence. Suppose for some hyperlarge
number N , xN is hyperlarge, then ∀m ∈ N : xN > xm + 1 and so ∃M ∈ {n ∈ ∗N :
n < N} that is the greatest number such that : xN > xM +1. This number cannot
be limited, but neither can it be hyperlarge since that would imply that xM 6' xN .

So we have that for every hyperlarge N xN is limited. Since the sequence is
a Cauchy sequence ∀N,M ∼ ∞ : st(xN ) = st(xM ) = l ∈ R and our sequence
converges to l.

The following proof exploits our intuitive nonstandard definitions of limits and
continuity, allowing us to prove that the limit of a uniformly convergent sequence
of continuous functions is again continuous without having to use any classical
ε− δ arguments.

Theorem 3.6.3. Let f : X → Y be the limit of a uniformly convergent sequence
of continuous functions (fn), where fn : X → Y , X,Y ⊆ R. Then f is continuous.

Proof. Let N ∈ ∗N, N ∼ ∞. Then since (fn) converges to f uniformly on X we
have that ∀x ∈ X : fN (x) − f(x) ' 0 (∗). We also have that ∀δ ∼ 0 : ∀x ∈ X :
∗fN (x + δ) − ∗f(x + δ) ' 0 (∗∗). Furthermore since fn is continuous for every
n ∈ N we have that ∀δ ∼ 0 : ∗fN (x+ δ)− fN (x) ' 0 (∗ ∗ ∗). Putting (∗), (∗∗) and
(∗ ∗ ∗) together gives ∀δ ∼ 0 : f(x)− ∗f(x+ δ) ' 0 and so f is continuous.

This final proof concerning the prime numbers is an interesting example of how
useful and elegant using nonstandard analysis to prove classical theorems can be.
The example is quite different to the others we have presented in this section in
that we are not using infinitesimals or giving a nonstandard proof that involves the
use of limits in its classical formulation. It is a slightly more surprising application
of nonstandard analysis to give a neat proof of a result in number theory. This is
perhaps an area of mathematics you may not expect to have much cause to apply
nonstandard analysis to.
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Theorem 3.6.4. The set of all primes, P, is infinite.

Proof. Showing that P is infinite is equivalent to showing that ∗P contains non-
standard elements. Let n ∈ ∗N be divisible4 by every natural number. For example
one such n could be H(1!, 2!, 3!, . . .). Next, consider the hyperprime number p ∈ ∗P
that divides n+ 1. This number exists by a result of section 3.4. Then p must be
nonstandard; if it was not it would divide n and then since p would then divide n
and n + 1, it would also divide their difference, 1, which is not true for standard
primes.

4 The History of Infinitesimals

The concept of an infinitesimal has a long and rich history. For centuries before
the rigorous formulation of nonstandard analysis, presented by Robinson in 1961,
the idea of an infinitesimal was used by leading mathematicians from Archimedes
to Leibniz. The intuitive nature of the use of infinitesimals can explain their
popularity, however their use was always controversial and had many outspoken
critics due to its lack of a rigorous footing.

4.1 Use in Ancient Greek Mathematics

The use of the intuitive notion of an infinitesimal goes back at least as far as the
Ancient Greek mathematicians. They were used to find the area and volume of
curved surfaces such as the circle. Antiphon of Athens, who was born around 480
B.C.E., used the idea of infinitesimals in an attempt to square a circle by inscribing
a polygon with sides so small that the polygon would be indistinguishable from
the circle [26]. Ponstein cites this as perhaps the first time infinitesimals were
contemplated by a mathematician [30]. The idea is also known to have used by
the Greek atomist philosopher Democritus around 450 B.C.E., it was however dis-
missed by Eudoxus as a rigorous concept around 350 B.C.E. [3] when he presented
the Theorem of Eudoxus5. The idea was essentially banished as a rigorous concept
from Greek mathematics when the standard was set in Euclid’s Elements around
250 B.C.E.. In Elements Euclid included a version of the Theorem of Eudoxus:
“Two quantities are said to have a ratio, the one to the other, when, if multiplied,
they can override themselves.” [26]

Mathematical rigour was very important to ancient Greek mathematicians and
they made extensive use of Eudoxus’ method of exhaustion and proof by contra-
diction in order to ensure rigour. Later mathematicians were frustrated by ancient
Greek proofs such as the proofs of Archimedes which utilised these methods. Al-
though they cannot be faulted on the grounds of rigour, how the theorems had
been conceived seemed to be almost deliberately omitted. However the discovery
of the Archimedes palimpset in the 20th century gave some clues as to how he
conceived his theorems [36]. It seems the intuitive notion of an infinitesimal was
still used by Archimedes but he was well aware that the concept was not rigorous.

4By divisible here we mean that ∀m ∈ N : n/m ∈ ∗N.
5This is also commonly known as the Archimedean property of the real numbers, which

Archimedes credited to Eudoxus.
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Indeed Archimedes is quoted of saying of one of his results proven using infinites-
imals “. . . this has not therefore been proved, rather a certain impression has been
created that the conclusion is true” [10]. It was not until after he had applied Eu-
doxus’ method of exhaustion and proof by contradiction that Archimedes accepted
the conclusion as fact.

4.2 Geometers of the 17th century and Indivisibles

In the 1620’s the idea of infinitely small numbers was again explored and exploited
by mathematicians to achieve some remarkable results. Rather than infinitesimals
as we have introduced them they thought about indivisibles. These were numbers
so small they could not conceivably be divided any further. The most influential
theory of indivisibles was published by Bonaventura Cavalieri in his Geometria
indivisibilibus continuorum nova quadam ratione promota in 1635 [36]. Again
Cavalieri was aware of the problems that arose when dealing with infinitely small
quantities, he made great efforts to deal with these problems by adding precise
rules to his work.

Many of those who worked to add to Cavalieri’s new results were far less careful.
In the early 1650’s John Wallis used the method of indivisibles and had no problem
with using infinitely small and large numbers. He thought of areas as infinite
sums of lines and volumes as infinite sums of planes. He also introduced the
symbol ∞ to denote the number of them [36]. His work however was doubted
and criticised by many due to the use of indivisible. Chief among these critics
was Thomas Hobbes who had a problem with the fact that Wallis considered “an
infinitely little Altitude” to be “both nothing and something and an aliquot part.”
[18]. He finished his stinging attack by stating that “All this proceeds from not
understanding the grounds of your Profession.” [18].

4.3 The Development of Calculus

One of the most often cited, intuitive and important historical uses of infinitesimals
was their use in the development of calculus. Calculus was developed independently
by Isaac Newton in the 1660s and Gottfried Wilhelm Leibniz in the 1670s. Both
used the concept of an infinitesimal in their development of calculus. Newton used
“fluents”, “fluxions” and “vanishing increments” in his developments and Leibniz
considered dx and dy as infinitesimals.

Their work allowed them to produce extraordinary results in the areas of dif-
ferentiation and integration that proved extremely useful in many areas including
physics and engineering. The use of infinitesimals in the formative years of calculus
lacked rigour however and Leibniz in particular remained uneasy about his own
use of infinitesimals stating:
“In any supposed transition, which ends up in a final result, it is admissible to
develop a general argument [concerning the transition] such that it comprises also
the final result” [26].
Their use was also criticised by the Irish philosopher George Berkeley among oth-
ers [44]. In 1734 Berkeley published The Analyst, the piece was addressed To an
Infidel Mathematician. In it he provided a sophisticated and powerful critique of
infinitesimals and their use in the calculus being developed. His attitude is summed
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up by this ‘axiom’ from Philosophical commentaries (no. 354):
“Axiom. No reasoning about things whereof we have no idea. Therefore no rea-
soning about Infinitesimals.” [21]. In fact in 1821 Augustin Cauchy provided
damning evidence of the problems associated with the use of infinitesimals. He
used infinitesimals to prove a result that Abel showed by counter-example in 1826
could not be logically correct [16].

Despite the fact that there were huge problems with the use of infinitesimals in
calculus the amazing results and sheer usefulness helped meant that it continued
to progress. However efforts were made by many, especially those who were highly
critical about this use of infinitesimals, to establish a rigorous method. One such
critic was Georg Cantor he described infinitesimals as “castles in the air, or rather
just nonsense” his opposition to their use was such that he described them as the
“cholera-bacilli of mathematics” [3]. Cantor’s work to eliminate the infinitesimals
was based on attempting to establish mathematical analysis on the basis of number
alone, to ‘arithmetize’ it — in effect, to replace the continuous by the discrete.
Instead of presupposing the existence of real numbers he based their definition
on sequences of rational numbers. It was Cantor’s work along with the work of
mathematicians such as Augustin Cauchy, Bernard Bolzano, Richard Dedekind
and Karl Weierstrass who formulated the ‘ε − δ’ definition of a limit that gave a
rigorous fondation for calculus. This led to the idea of an infinitesimal in calculus
to be abandoned for some time until our modern concept of nonstandard analysis
began to form in the late 1950s.

4.3.1 An Example from Newton’s Calculus

In this section we present a proof from Newton’s De analysi per aequationes numero
terminorum infinitas (On Analysis by Infinite Series) [28].The proof was provided
by Newton almost as an afterthought for an “attentive reader”. Throughout New-
ton extensively uses his intuitive but imprecise notion of an infinitesimal. The
proof is essentially a proof of the fundamental theorem of calculus. Below is the
translation given in [28] of the original proof, omitting the numerical example first
given by Newton.

Quadrature as the inverse of fluxions
Rule 1. The quadrature of simple curves: If y = axm/n is the curve AD, where a
is a constant and m and n are positive integers, then the area of region ABD is
z(x) = [n/(m+ n)]ax(m+n)/n.

Taken from Newton’s attempt to construct a unitary view of mathematics [11].
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Proof. Let any curve ADδ have base AB = x, perpindicular ordinate BD = y and
area ABD = z. Take Bβ = o, BK = v and the rectangle BβHK(ov) equal to the
space BβδD. It is therefore, Aβ = x+ o and Aδβ = z+ ov. With these premisses,
from any arbitrarily assumed relationship between x and z I seek y in the way you
see following. . . . (numerical example omitted) . . .

Or in general if [n/(m + n)]ax(m+n)/n = z, that is by setting na/(m + n) = c
and m+n = p, if cxp/n = z or cnxp = zn, then when x+ o is substituted for x and
z + ov (or, what is its equivalent z + oy) for z there arises cn(xp + poxp−1 . . .) =
zn + noyzn−1 . . ., omitting the other terms, to be precise, which would ultimately
vanish. Now, on taking the equal terms cnxp and zn and dividing the rest by o,
there remains cnpxp−1 = nyzn−1(= nyzn/z) = nycnxp/cxp/n. That is, on dividing
by cnxp, there will be px−1 = ny/cxp/n or pcx(p−n)/n = y; in other words, by
restoring na/(m + n) for o and m + n for p, that is, m for p − n and na for
pc , there will come axm/n = y. Conversely therefore if axm/n = y, then will
[n/(m+ n)]ax(m+n)/n = z as was to be proved.

Below is a version of the proof written in a rigorous way using modern nonstan-
dard analysis, but remaining as true as possible to Newton’s original proof. We
have used some more modern language throughout and attempted to present the
ideas Newton used in a more clear manner. We have also added to the proof notes
to highlight the key differences between our proof and Newton’s original, and the
flaws in Newton’s argument.

Theorem 4.3.1. (A Modern Rewriting)
Suppose the area under the continuous curve y(x), is given by z(x) = [n/(m +
n)]ax(m+n)/n. Then y(x) = z′(x) = axm/n.

Proof. Let y(x) be the curve as shown above, with AB = x0 ∈ R, BD = y(x0) and
area under the curve ABD = z(x0). Let Bβ = o where o ∈ ∗R, o ∼ 0. Now the area
Aβδ = ∗z(x0 + o). Construct a rectangle BβHK of height BK = βH = v ∈ ∗R
such that the area BβHK is exactly equal to the area under the curve BβδD.
Hence ∗z(x0 + o) = z(x0) + ov.

For notational ease let na/(m + n) = c and m + n = p so that z(x) = cxp/n
and [z(x)]n = cnxp. Now we have that [∗z(x0 + o)]n = [z(x0) + ov]n = cn(x0 + o)p.
Expanding we have that

[z(x0)]
n +

(
n

1

)
[z(x0)]

n−1ov +

(
n

2

)
[z(x0)]

n−2o2v2 + . . .+ onvn

= cnx0
p +

(
p

1

)
cnx0

p−1o+

(
p

2

)
cnx0

p−2o2 + . . .+ op.

Now since [z(x0)]
n = cnx0

p these two terms cancel, dividing by o we find that

n[z(x0)]
n−1v +

(
n

2

)
[z(x0)]

n−2ov2 + . . .+ on−1vn

= pcnx0
p−1 +

(
p

2

)
cnx0

p−2o+ . . .+ op−1. (∗)
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In Newton’s proof he now simply disregards all of the terms containing o by setting
o = 0, however this would mean that in hs previous step Newton could not have
possibly divided by o. In this step he also sets v = y without any justification. We
will instead take a rigorous, modern nonstandard approach.

Since we have chosen v to be the height of the rectangle with equal area to
the area underneath the curve y(x) of the same base o we have that v = ∗y(x) for
some x ∈ [x0, x0 + o]. And now since y(x) is continuous we have that ∀δ ∈ ∗R, δ ∼
0 : st[∗y(x0 + δ)] = y(x0) and so st(v) = y(x0). Recall also that st(δ) = 0 for any
infinitesimal δ. Now taking the standard part of both sides of (∗) we have

n[z(x0)]
n−1y(x0) = pcnx0

p−1,

substituting in our values for c and p and solving for y(x0) yields

y(x0) =
pcnx0

p−1

n[z(x0)]n−1
=

(m+ n)

[
an

m+ n

]n
x0
m+n−1

n

[
an

m+ n
x
(m+n)/n
0

]n−1 = ax0
m/n.

And since x0 was arbitrary this implies that y(x) = axm/n.
It was without further justification that Newton stated that the converse was

also true, that if the curve was given by the formula y(x) = axm/n then the area
under the curve is given by z(x) = [n/(m+ n)]ax(m+n)/n.

4.4 Modern Nonstandard Analysis

In the late 1950s and early 1960s the idea of infinitesimals and nonstandard analysis
was revisited. In 1958 Curt Schmieden and Detlef Laugwitz used a cofinite filter on
N rather than a free ultrafilter (while the cofinite filter is free it is not an ultrafilter)
to produce a weak version of nonstandard analysis [35]. It was not until 1961 that
a mathematically valid and rigorous system of nonstandard analysis was finally
presented by Abraham Robinson.

In the preface to his book Nonstandard Analysis he wrote:
“In the fall of 1960 it occurred to me that the concepts and methods of contem-
porary Mathematical Logic are capable of providing a suitable framework for the
development of the Differential and Integral Calculus by means of infinitely small
and infinitely large numbers.” [31]
His construction relied on advanced logic and was quite inaccessible. Since then
many other constructions have been presented. These include Edward Nelson’s
Internal Set Theory and Jerome Keisler’s axioms for hyperreals [27], [22].

5 Applications of Nonstandard Analysis

We have already seen that nonstandard analysis is an interesting area of study in
its own right, as Arend Heyting put it, nonstandard analysis is “a standard model
of important mathematical research” [20]. We have also briefly seen how it can
be applied to approach and solve some of the problems of classical mathematics
in an intuitive way. Despite the fact that the area is very new it has also been
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applied to many areas of science and social science with great success. Nonstandard
analysis helps us to achieve interesting and powerful results and the intuitive use of
infinitesimals can often bring an interesting philosophical dimension to our work.
In this section we will discuss some of these applications with a focus on the
applications to economics and finance.

5.1 Economics and Finance

Our focus as mentioned above will be on applications to economics and finance, an
area of particular interest due to our studies in mathematics thus far. Nonstandard
analysis has been applied in many areas of economics and finance and there is
certainly potential for the application of nonstandard analysis to economics to
become more widespread. In his piece on the subject Kumaraswamy V. Velupillai
claims that nonstandard analysis is one of the areas of mathematics that is “ more
consistent with the intrinsic nature and ontology of economic concepts” than the
standard real analysis which currently dominates in the formalization of economic
theory [41].

In the introduction to his book on the applications of nonstandard analysis
to economics Robert Anderson attributes the fact that nonstandard analysis is
not used to a greater extent in economics to the limited number of economists
trained in nonstandard analysis. As a consequence he notes that the papers using
the methodology of nonstandard analysis are “necessarily restricted to a small
audience” and that “the use of nonstandard methods in economics has been largely
limited to certain problems in which the advantages of the methodology are greatest”
[2].

Some of the mathematics used in the applications we shall discuss is beyond
the scope of the mathematics presented in our simple introduction to the area.
This section will therefore be a discussion of the applications and the economic
consequences and the ideas involved, rather than a detailed, formal, mathemati-
cal presentation. The first application that we will discuss is a model of a large
economy based on the nonstandard idea of a so-called hyperfinite set.

5.1.1 Hyperfinite Exchange Economies

In economics it is possible to represent an exchange economy by a function γ that
assigns to each agent in the economy a preference and an endowment vector.

γ : A→ P × Rk+

where A is the set of agents P is a the set of preferences and Rk+ is the commodity
space.

One of the most important areas in economics that has been explored using
nonstandard analysis is the behaviour of large economies. When analysing large
economies using standard analysis it is usual for economists to explore the prop-
erties of the limit economy µ, of the sequence of exchange economies (µn) where
µn represents the nth exchange economy µn : An → P × Rk+. Since our aim is to
investigate large economies and so we consider such sequences where the number
of agents in the economy |An| → ∞. The limit economy is then formulated as
µ : A→ P × Rk+ where A is a nonatomic measure space.
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One of the problems with this formulation is that there are some conditions
which are inherent in this measure theoretic formulation that can be looked at
as strong endogenous assumptions about out limit exchange economy µ [2]. For
this reason a nonstandard approach which allows us to construct a similar limit
economy without having to impose these strong endogenous assumptions would
be very useful. Our approach to the problem is to look at an exchange economy
which has what is called a hyperfinite set of agents.

Definition (Hyperfinite Set)
Let FP(X) denote the set of finite subsets of a set X. A hyperfinite set in ∗R is a
set F such that F ∈ ∗FP(R). Any hyperfinite set in ∗R is therefore generated by
a sequence of sets (A1, A2, . . .) where ∀n ∈ N : An ∈ FP(R).
It is also true that an internal set F is a hyperfinite set if and only if there exists
an internal bijection between F and G = {n ∈ ∗N : n ≤ g} for some g ∈ ∗N.

Hyperfinite sets share many of the properties of finite sets and so can be very
useful to work with. We use this definition of a hyperfinite set to construct a
hyperfinite exchange economy which does not have the same strong endogenous
assumptions that are inherent in the measure theoretic case automatically imposed
on it.

Definition (Hyperfinite Exchange Economy)
Let the set of agents in the economy A be a hyperfinite set. A hyperfinite economy
is an internal function µ,

µ : A→ ∗(P × Rk+).

Where P is a set of preferences and Rk+ is the commodity space.

Anderson notes in [2] that due to the endogenous assumptions inherent in
the measure theoretic formulation some phenomena that can occur in our new
formulation cannot occur in the measure theoretic formulation. These are usually
phenomena that occur when a small number of agents are endowed with, or end
up consuming most of the resources present in the economy.

One example where the use of the hyperfinite formulation is useful is when
introducing an atom into the economy. In the standard formulation, the consump-
tion set of an agent represented by an atom cannot be an element of Rk+. The limit
economy must allow consumptions infinitely large compared to other agents in the
economy. In the nonstandard formulation, we do not have this problem as our
preferences over ∗Rk+ are ‘rich’ enough to work with atoms. Anderson also com-
ments that “in the situations in which the behavior of the measure-theoretic and
hyperfinite economies differ, it is the hyperfinite economy rather than the measure-
theoretic economy which captures the behavior of large finite economies” [2].

5.1.2 The van der Pol Equation

In his piece on the subject Velupillai presents the work done using nonstandard
analysis by Mikhail Shubin and Alexander Zvonkin, to better understand the na-
ture of the van der Pol equation, as an important contribution of nonstandard
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analysis to economics and finance [41], [45]. The van der Pol equation is an ordi-
nary differential equation named after the Dutch physicist Balthasar van der Pol
who proposed the equation in the 1920s. The van der Pol equation, and its in-
tegrated form as the Rayleigh equation, played an important role in development
of the nonlinear endogenous theory of the business cycle [41]. It first appeared in
economic literature on the business cycle in a works by Hamburger [14], [15]. In
[15] the equation is given in the form

d2y

dx2
− α(1− y2)dy

dt
+ ω2y = 0.

In [45] the authors analysed the van der Pol equation rigorously using non-
standard techniques and discovered interesting phase portraits. They referred to
what they discovered as “ducks”. In their own words “Ducks are certain singular
solutions of equations with a small parameter, which are studied in the theory of re-
laxation oscillations. These solutions were first found for the van der Pol equation,
and their form resembled that of a flying duck” [45].

In relaxation oscillations, which are also known as fast-slow systems, there is an
interaction between slow and fast variables in the system. In finance we could take
for example the set of financial markets, clearing infinitely quickly and the set of
real markets, clearing relatively slowly. Because of the infinite speed of clearance of
the financial market such a system is difficult to analyse using standard techniques.
On the other hand, in the nonstandard world the use of hyperlarge and infinitesimal
magnitudes is not a problem. Velupillai notes that the possibilities given to us
by nonstandard analysis “for exploring a dynamical system with parameters and
variables taking infinitesimal and infinite values is indispensable”. This is because
it allows us to study the interaction of such markets and for example to study the
results of infinitesimal changes to parameters in turbulent financial markets.

5.1.3 The Black-Scholes Model

The final application of nonstandard analysis to finance we will discuss is its use
in the analysis of the famous Black-Scholes model. The Black-Scholes model is a
mathematical model used to value European style options6, first presented in 1973
[5]. The Black-Scholes PDE is

∂V

∂t
+

1

2
σ2S2∂

2V

∂S2
+ rS

∂V

∂S
− rV = 0

where t is time, S is the price of the underlying stock, V is the price of a derivative
(which is a function of time and stock price), r is the force of interest and σ is the
volatility of the stocks returns.

Many economists have an intuition that the Black-Scholes model has a ‘built-
in’ version of the Cox-Ross-Rubinstein (CRR) model for the valuation of options.
The CRR model is a discrete time model based on a geometric random walk and
was first introduced in 1979 [7]. In Nonstandard Methods in Option Pricing the

6In finance a European style option is a derivative instrument, a contract which offers the
buyer the right, but not the obligation, to buy or sell an underlying asset at an agreed-upon price
on a specific date.
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authors use nonstandard analysis to show that the Black-Scholes model can be
obtained as the standard part of a hyperfinite CRR model [8]. This is a formal
justification of the idea that the Black-Scholes model has a ‘built-in’ version of
the CRR model, allowing for better and clearer understanding about the nature
of both models and the link between them.

5.2 Selected Other Applications

When studying infinitesimals one is immediately struck by how natural and intu-
itive an idea they represent. In contrast to the quite complicated ‘ε− δ′ definitions
and proofs of standard real analysis, the proofs and definitions of nonstandard
analysis, as we have seen earlier, often correspond exactly to our intuitive under-
standing. It is for this reason that using nonstandard analysis and infinitesimals in
education has been explored by a number of mathematicians. Chief among these
are Keisler who published an introduction to calculus based on the infinitesimals,
Elementary Calculus: An Infinitesimal Approach [23]. The book was used by five
high schools in an experiment by one of Keisler’s PhD students with favourable
results [37]. Another advocate of the use of infinitesimals in education is David
Tall who found evidence for the existence of an intuitive notion of infinitesimals
used by students in surveys he carried out [38].

Other applications include the elimination of the need for what Tao calls “ep-
silon management”. This is the use of nonstandard analysis to simplify and shorten
proofs containing many small real quantities. He refers to one example in his own
work where a paper which he produced using a nonstandard approach came to
28 pages. He contrasted this with a similar paper he wrote before he knew of
the approach which stretched to 85 pages due to epsilon management [39]. Some
theorems relating to classical mathematics have been originally proven using non-
standard methods. It is only after this that an alternative proof using a standard
approach has been given. Without the use of nonstandard analysis these proofs
may not have been discovered for some time. One example is a nonstandard proof
by Abraham Robinson and Allen Bernstein that every polynomially compact lin-
ear operator on a Hilbert space has an invariant subspace [4]. A standard proof
was given by Paul Halmos who reinterpreted their proof after being sent a preprint
by Robinson. The proof was published in the very same issue of the same journal
[13].

There has also been success in applying nonstandard analysis to physics. The
combination of nonstandard analysis and physics is described by Sylvia Wenmack-
ers as a “natural” one [43]. This is due to the fact that physicists have continued to
speak in terms of infinitesimals despite the formal development of calculus. Non-
standard analysis has been applied to many problems in physics using differential
equations, and to quantum mechanics. One interesting example is the applica-
tion of nonstandard analysis to special and general relativity. Robert Herrmann
provides some corrections to Einstein’s original work in the area which used an
intuitive concept of an infinitesimal in [16].
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6 Appraisal and Conclusion

In this final section it remains to conclude whether or not the study of nonstandard
analysis is a worthwhile activity. We have seen the intuitive appeal of infinitesi-
mals, and a selection of the powerful applications of nonstandard analysis in our
previous sections. We must ask ourselves however, how useful nonstandard analy-
sis truly is if every nonstandard proof of a standard theorem in analysis also has a
standard proof due to the transfer principle. We must also examine the critiques
of nonstandard analysis that have emerged since Robinson’s first presentation of
the theory.

We believe that the first question is easily answered. The intuitive nature of
nonstandard proofs is enough to make them extremely worthwhile. We also believe
that it is true that mathematicians may not even discover standard proofs without
first developing a nonstandard proof. A quote from Zvonkin and Shubin whose
work we cited in our section on the applications to economics and finance: “It was
not by chance that ducks were discovered with the help of nonstandard analysis and
in connection with it. We think that the language of non-standard analysis will
make it easy for a wide circle of mathematicians to become acquainted with the
theory of ducks and with the theory of relaxation oscillations in general.” [45] sums
it up nicely. While we have also shown that in some cases nonstandard methods
have at the very least allowed mathematicians to formulate proofs quicker.

The first criticisms of the use of infinitesimals we come across are of course the
historical criticisms. Criticisms such as those by Berkeley, which were entirely valid
at the time as there was no valid rigorous footing for the use of infinitesimals. This
was until Robinson presented his version of nonstandard analysis. Once this system
was presented by Robinson all such historical criticisms had been addressed. Now
that a rigorous theory of infinitesimals had been presented we knew much about
the nature of infinitesimals and so Berkeley’s ‘axiom’ “No reasoning about things
whereof we have no idea. Therefore no reasoning about Infinitesimals.” [21] no
longer held.

There are however modern criticisms of the theory as first presented by Robin-
son. One major figure associated with the criticism of Robinson’s nonstandard
analysis is the French mathematician Alain Connes. His criticisms of Robinson’s
system of infinitesimals began in 1995 and appear in his books, research arti-
cles, interviews and a blog, describing the hyperreals as a “virtual theory” and a
“chimera” [19]. However not only does Connes’ criticism undermine some of his
own earlier work which used the ideas of Robinson’s nonstandard analysis, but
his argument also appears to be circular, relying on the transfer principle. In
Tools, objects and chimeras: Connes on the role of hyperreals in mathematics [19]
the authors provide a convincing defence of Robinson’s nonstandard analysis and
attempt to show the flaws in Connes’ arguments. This article also addresses a
critique due to Moshé Machover. Other challenges to the theory such as the those
by Adam Elga and Erret Bishop have also been addressed [17], [20].

Other criticisms of nonstandard analysis come mainly from constructivist math-
ematicians. The constructivist school of mathematics asserts that to prove that
any mathematical object exists one must first be able to ‘construct’ it. The axiom
of choice, which is required to prove the existence of an ultrafilter, which in turn
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underpins our entire theory of nonstandard analysis, is highly nonconstructive in
nature. For this reason “to some constructivists nonstandard analysis represents
the worst extreme of nonconstructive mathematics” [32]. Weak, restricted forms of
nonstandard analysis have been presented that do not require the axiom of choice,
mainly relying on the use of a cofinite filter instead of a free ultrafilter. Such
models of a hyperreal system would be far more appealing to constructivist math-
ematicians but do not have the power of the full system of nonstandard analysis
presented by Robinson. One example is the system presented by Schmieden and
Laugwitz [35] and another is discussed by Tao in a blog post [40].

We started this project with a quote from the great Kurt Gödel, “There are
good reasons to believe that non-standard analysis, in some version or other, will
be the analysis of the future” [33]. After our study of nonstandard analysis and its
applications as presented in this project, and in light of the criticisms discussed
and analysed above, we agree with this statement. However we do not believe that
nonstandard analysis will ever entirely replace standard analysis. Rather we feel
that its use will become more widespread as more mathematicians, scientists and
social scientists become familiar with its methods. We feel that more and more
work will be originally proved and presented using nonstandard analysis as time
goes on, although it may be some time before these are routinely given without an
attempt to also provide a version using standard methods.
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