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Abstract—Recurrent mechanical real-world systems
with impacts are often modelled using impact oscillators.
Near low-velocity impacts the dynamics of impact oscilla-
tors can be described by a one-dimensional map known as
the square root map. Here we will describe the complex
structure of the basins of attraction of stable periodic orbits
of the square root map and how this produces sensitivity to
the addition of small-amplitude white noise. In particular
we will focus on the effects of noise of varying amplitudes
on the square root map close to parameter values that lead
to bistability.

1. Introduction

Traditionally smooth deterministic dynamical systems
are used to model real-world phenomena. These models
present a simplified view of real-world systems where, on
one hand, the evolution of systems is always smooth and
exhibits no interruptions such as impacts, switches, slides
or jumps and, on the other hand, the future of any system is
completely determined by its present state with no uncer-
tainty (or noise) [11]. However, independently, both non-
smoothness and noise have been shown to be the drivers
of significant changes in qualitative behaviour. In nons-
mooth systems we find certain types of qualitative changes
in the behaviour of the system, known as discontinuity in-
duced bifurcations, that do not occur in the smooth setting
[2, 7]. Adding noise to smooth but nonlinear systems has
been shown to have the potential to do far more than just
blur the outcome of the system in the absence of noise, es-
pecially close to bifurcation points [9, 10, 16]. As a result,
it is therefore of particular interest to investigate and under-
stand how the inclusion of noise can effect the qualitative
dynamics of a nonsmooth system close to discontinuity-
induced bifurcations.

An impact oscillator is a forced mechanical system that
undergoes impacts at rigid stops. Many real-world mechan-
ical systems including systems arising in engineering, for
instance moored ships impacting a dock or rattling gears
are modelled using impact oscillators [3]. Due to the pres-
ence of rigid impacts in such systems they are best mod-
elled using nonsmooth dynamical systems. It is impor-
tant to understand such systems in order to avoid problems,
such as wear and noise. In particular, since real-world sys-
tems, including mechanical systems, are subject to uncer-
tainties, we must also investigate how stochastic noise can

affect such systems. In the case of impact oscillators, noise
could for instance arise due to background vibrations or
measurement errors.

In this paper we will investigate the effects of the additive
noise on the qualitative behaviour of a piecewise-smooth
map known as the square root map [1, 4, 12, 13, 14].
The map can be derived as an approximation for solutions
of a piecewise-smooth ordinary differential equation de-
scribing the dynamics of an impact oscillator near grazing
(low-velocity) impacts [12, 15] and it exhibits non-standard
qualitative behaviour as a result of a discontinuity in its first
derivative. In particular we will focus on the effect of the
introduction of noise near bifurcation points in the period-
adding cascade of the square root map, a bifurcation struc-
ture which is unique to nonsmooth systems.

2. Bistability in the Square Root Map

We will consider the one-dimensional square root map

xn+1 = S (xn) =

{
S L(xn) = µ + bxn, xn < 0,
S R(xn) = µ − a

√
xn, xn ≥ 0, (1)

where S L(x) is the linear part of the map applied on the
left-hand side when x < 0, and S R(x) is the square root part
applied on the right when x ≥ 0. Here we will assume that
a > 0 and 0 < b < 1

4 . For values of b in this range the
deterministic square root map undergoes a period-adding
cascade with intervals of bistability as the bifurcation pa-
rameter µ is decreased [13], this structure can be clearly
seen in Figure 1a).

We see that there are values of µ > 0 for which a stable
periodic orbit of period m with exists for each m = 2, 3, . . .,
and other values of µ > 0 such that there are two stable
periodic orbits coexisting, one of period m and the other of
period m + 1. These are the only possible attractors except
at bifurcation points. We denote the interval of µ values for
which a period-m orbit exists as an attractor (µs

m, µ
e
m).

Note that all attractors have symbolic codes of the form
(RLn)∞ meaning that they have exactly one iterate on the
right (R) and the remaining n iterates are on the left (L).

3. The Stochastic Square Root Map

Hogan, Simpson and Kuske [17] have shown that the
square root map in two dimensions with additive Gaus-
sian white noise arises when the source of uncertainty in



a) b) c) d)

Figure 1: Bifurcation diagrams for the deterministic square root map, S , with a = 0.5, b = 0.2. a) The period adding
cascade of attractors (RLm)∞ for m ∈ {1, . . . , 10}. On the intervals of µ where (RLm−1)∞ and (RLm)∞ coexist as attractors
the iterates of (RLm−1)∞ are marked in red. A symmetric logarithmic transformation [20] has been applied to the x-axis in
order to clearly show the structure of the period adding cascade. b) The coexistence of attractors (RL)∞ and (RLL)∞ for
µ about the interval (µs

2, µ
e
3). The period-2 (RL)∞ orbit is coloured red on the interval of bistability. c) & d) Bifurcation

diagrams for the square root map with additive Gaussian white noise (2) for µ in a neighbourhood of the coexistence
interval (µs

2, µ
e
3). The deterministic values of µs

2 and µe
3 are indicated by dashed lines. Where the two periodic behaviours

coexist the iterates of period-2 are marked in red. In c) the noise amplitude ∆ = 4 × 10−5 while in d) ∆ = 1 × 10−4

the full system is practically independent of the state of the
system. With this in mind, we will consider small ampli-
tude, additive, Gaussian white noise in the one-dimensional
square root map. The square root map with additive Gaus-
sian white noise is given by

xn+1 = S a(xn) =

{
µ + bxn + ξn, xn < 0,
µ − a

√
xn + ξn, xn ≥ 0,

ξn ∼ N(0,∆2), (2)

where ξn are identically distributed independent normal
random variables with mean 0 and standard deviation or
amplitude ∆.

4. Numerical Observations

The effect of noise on the dynamics of a system with
multiple coexisting attractors has long been of interest [5,
6, 8]. In this paper we focus on phase-space sensitivity
for values of the bifurcation parameter µ close to intervals
where period-m and period-(m + 1) attractors coexist [18,
19]. We see in Figure 1 b)-d) that the relationship between
noise amplitude and the behaviour of the system in these
regions is complex and non-monotonic.

For example, for fixed µ close to µs
2 it appears that with

increasing noise amplitude we will first see a decrease in
the probability of being in period-2 behaviour to some min-
imum followed by an increase in this probability as ∆ in-
creases further. We can confirm this relationship by exam-
ining Figure 2 which shows the changing proportion of it-
erates spent by 1000 orbits with linearly spaced initial con-
ditions in each of the two periodic behaviours after discard-
ing transients when µ = 0.00637. We see that beyond some
threshold noise amplitude there is a significant shift in the
proportion of iterates from period-2 behaviour to period-
3 behaviour until almost all behaviour is period-3, however
increasing the amplitude further we see a return of period-2
behaviour.

Figure 2: Bar chart showing the changing proportion of
time spent in period-2 and period-3 behaviour for increas-
ing amplitude of additive noise ∆, where a = 0.5, b = 0.2
and µ = 0.00637. The amplitude ∆ ranges from 0 (deter-
ministic square root map) to 2 × 10−4.

5. Results

The relationships between noise amplitude and periodic
behaviour observed are highly dependent on the bifurca-
tion parameter µ. In order to explain the observed relation-
ships we examine how noise interacts with the determin-
istic structures of the map. In particular, we examine how
approximations for the distribution of steady-state trajec-
tory deviations resulting from the addition of noise to the
system derived in [18] can be related to the basins of attrac-
tion of coexisting attractors in regions of bistability, and to
relative levels of contraction and expansion experienced by
trajectories close to, but outside these regions.

In regions of multistability we focus on three features
of the relationship between the noise amplitude ∆ and the
proportion of iterates spent in period-m and period-(m + 1)
behaviour for a given value of µ. First, we identify the
minimum noise amplitude required to induce a significant
shift in the proportions spent in either behaviour compared
to the deterministic case. Next, we identify the noise am-



plitude required for the effective destruction of one of the
periodic attractors, i.e. the noise amplitude required to have
less than .01 per cent of iterates spent in the destroyed be-
haviour. Finally we identify the noise amplitude required
for the reversal of relationships between the noise ampli-
tude and the proprtions, i.e. if increasing noise amplitude
initially resulted in an increase (decrease) in the proportion
of iterates spent in period-m behaviour this is the noise am-
plitude required for this proportion to decrease (increase)
once more.

Let % denote the ratios between the minimum distance
from each iterate of the periodic orbits to the boundary of
their corresponding basins of attraction and the standard
deviation of the steady state deviation distribution associ-
ated with that iterate. In Figure 3 we plot the threshold
% ratios associated with each of the three features we are
interested in. We observe that at each end of the interval
each feature is associated with an approximately constant
value of % for the attractor whose proportion is decreas-
ing. This shows the importance of the interaction between
the steady-state deviation distributions and the determinis-
tic structures of the map, namely its basins of attraction. In
a small region a higher noise amplitude and hence a lower
% ratio is required to induce each of the three features. This
is due to the fact that in this small region the noise ampli-
tude required to push orbits out of their basins of attraction
at a significant rate is similar for both attractors. As a result
an even higher amplitude is required for one effect to dom-
inate the other and produce a significant overall change in
proportions.

Outside regions of multistability we focus on the po-
tential for noise to induce transitions from period-(m + 1)
to period-m behaviour in regions close to µs

m but where
µ < µs

m, i.e. in regions where the period-m orbit is un-
stable and the period-(m + 1) orbit is a global attractor in
the deterministic system. We find that such transitions take
the symbolic form

RLmRLm · · ·RLmRLk−2RLm−1RLm−1 · · ·RLm−1, (3)

where R denotes an iterate on the right, L denotes an iterate
on the left and 2 ≤ k ≤ m. The most significant feature
of this transition is the underlined portion RLk−2R which
represents repeated iteration on the right over a smaller
number of iterates than in period-(m + 1) behaviour or in
period-m behaviour. Here period-(m + 1) behviour is the
only stable behaviour in the deterministic system for this
value of µ and period-m behaviour is stable for nearby val-
ues of µ. We find that the initial conditions which produce
such a sequence under iteration by the squre root map (1)
are the intervals

ARR =

(
0,

(
µ

a

)2
)

(4)

for k = 2 and

ARLk−2R =


µa

k−3∑
i=0

b−i


2

,

µa
k−2∑
i=0

b−i


2 (5)

for k ∈ {3, 4, . . . ,m}. These sets are located just to the right
of zero, as a result, a small positive deviation due to low
amplitude noise could push settled RLm dynamics into one
of these sets. The image of these intervals after the se-
quence RLk−2R are concentrated around the first left iterate
of the unstable period-m orbit due to repeated iteration by
the square root part of the map on the right over a small
number of iterates. Orbits with initial conditions close to
the unstable period-m orbit can take a significant number
of iterates to transition back to period-(m + 1) behaviour in
the deterministic system and indeed in the system with low
amplitude noise. As a result we can see why noise induced
transitions from period-(m + 1) to period-m behaviour take
the form given in (3).

6. Conclusion

Our approach shows us the importance of the relation-
ships between the deterministic structures of the square
root map that arise from its nonsmoothness and steady state
deviation distributions in determining the overall effect of
the addition of low amplitude noise. In particular, exam-
ining the period-adding bifurcation cascade and the struc-
ture of the basins of attraction of the deterministic square
root map allows us to understand the relationships between
noise amplitude and periodic behaviour observed on inter-
vals of bistability while we also see the importance of the
square root singularity to noise-induced transitions to un-
stable periodic behaviour outside such intervals. We find
that there is a complicated nonmonotonic relationship be-
tween noise amplitude and the proportion of iterates spent
in each periodic behaviour on intervals of bistability and
that noise can effectively stabilise unstable periodic be-
haviour outside these intervals.
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