
Mo
de
lli
ng

Re
se
ar
ch

Gr
ou
p

Noise and Bistability in the Square Root Map

Eoghan J. Staunton, Petri T. Piiroinen
eoghan.staunton@nuigalway.ie

School of Mathematics, Statistics and Applied Mathematics

4 September 2018

Eoghan Staunton (NUIG) NOLTA 2018 September 2018 1 / 15

eoghan.staunton@nuigalway.ie


Noise and Nonsmoothness in Dynamical Systems
Both noise and nonsmoothness have been shown to independently be the
drivers of significant changes in qualitative behaviour.

Nonsmooth systems - qualitative changes in the behavior of the
system under parameter variation that do not occur in the smooth
setting.

Adding noise to (smooth) systems - does more than just blur the
outcome of the system in the absence of noise

Figure: From [CONG94]. Figure: Adapted from [LL86].
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The Square Root Map

Many impacting systems, including rattling gears, moored boats impacting
docks, Braille printers, percussive drilling and atomic force microscopes are
described by a 1-D map known as the square root map near grazing
impacts.

xn+1 = S(xn) =

{
µ+ bxn if xn < 0,
µ− a√xn if xn ≥ 0,

where a > 0 and b > 0.

A forced impact oscillator.
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Symbolically, if xn < 0 it is
represented by an L and if
xn > 0 it is represented by an R.
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The Period Adding Cascade
Here we will assume that the parameter b (the slope of the linear part) is
such that 0 < b < 1/4. For values of b in this range the deterministic
square root map undergoes a period-adding cascade with intervals of
bistability as the bifurcation parameter µ is decreased.

These periodic orbits take the form (RLm)∞ for m = 1, 2, 3, . . .. This
means they consist of one iterate on the right (> 0) followed by m iterates
on the left (< 0).
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Riddled Basins of Attraction

On regions of bistability the basins of attraction of the two periodic
attractors have a complex riddled structure.
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The Square Root Map With Additive Noise

In [SHK13] Simpson, Hogan and Kuske show that white noise in the
piecewise smooth flow translates to additive white noise in the square root
map. This noise formulation may be sensible to model systems where the
forcing term or external fluctuations represent a significant source of
uncertainty.

The square root map with additive Gaussian white noise is given by

xn+1 = Sa(xn) =

{
µ+ bxn + ξn if xn < 0
µ− a√xn + ξn if xn ≥ 0,

(1)

where ξn are identically distributed independent normal random variables
with mean 0 and standard deviation ∆, ξn ∼ N(0,∆2).
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Noisy Bifurcation Diagrams
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Noise Amplitude and Proportions of Periodic Behaviour
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Inducing Bistability

We have previously seen that noise of an appropriate
amplitude also has the potential to induce bistability in
regions close to, but outside, intervals of bistability.

In the numerical simulations we have found that noise-induced transitions
from period-3 to period-2 behaviour in regions where period-2 behaviour is
unstable display certain similarities. In particular, we have observed that
the transitions tend to take the following symbolic form

RLLRLL . . . RLLRLRRLRL . . . RLRL. (2)

The significant feature of the symbolic representation of the transition
above is the repeated R, corresponding to repeated iteration on the
right-hand side of the square root map, i.e. repeated low-velocity impacts
in the physical system.
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Noise and Deterministic Structures
We note that the set of initial values that are on the right which remain
on the right after iteration by the deterministic square root map are given
by the interval

ARR =
(
0, (µ/a)2

)
. (3)

We also note that the last left iterate of the period-3 orbit is very close to
0 for values of µ close to the interval of bistability.

Therefore, it is not hard to see that noise has the potential to push the
last left iterate of a period-3 orbit into ARR inducing repeated R’s or
repeated grazing impacts.
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Generalising to Higher Periodicities
The features of this transition are repeated as we look at transitions from
RLm behaviour to RLm−1 behaviour for increasing m. In particular we
observe transitions of the form

RLmRLm . . . RLmRLm−1RLk−2RLm−1RLm−1 . . . . . . RLm−1 (4)

for µ in a neighbourhood of µsm such that µ < µsm and k ∈ {2, 3, . . . ,m}.

The most significant feature of this transition is the sequence RLk−2R for
k ∈ {2, 3, . . . ,m}, corresponding to iterations on the right-hand side of
the map being repeated more quickly than is usual for a settled system
with µ < µsm.
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Conclusions

Additive noise has a complex nonmonotonic effect on the proportion
of iterates spent in coexisting periodic behaviours on intervals of
bistability.

Noise can
I significantly shift the proportion of iterates spent in each behaviour
I effectively destroy one of the attractors

The relationship observed is highly dependent on the value of the
bifurcation parameter µ.

Additive noise has the potential to induce bistability outside such
intervals.

Repeated low-velocity impacts play an important role in noise-induced
transitions from stable to unstable periodic behaviour.

This behaviour can be generalised to higher periodicities.

The effect of the addition of noise on intervals of bistability of
increasing minimal periodic orbit obeys a scaling law.
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