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What is an ASM?

An alternating sign matrix, or ASM, is an n × n matrix that contains
only the numbers 0, 1, and −1, subject to the following constraints:

The sum of each row and column must be 1
The non-zero entries in each row must alternate between 1 and −1
The non-zero entries in each column must alternate between 1 and −1

ASMs are an extension of the permutation matrices.

The number of n × n ASMs is 1!4!7!...(3n−2)!
n!(n+1)!(n+2)!...(2n−1)! .
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Examples

 0 1 0
1 0 0
0 0 1

 0 1 0
1 −1 1
0 1 0




0 0 1 0
0 1 0 0
1 0 −1 1
0 0 1 0




0 1 0 0
1 −1 1 0
0 1 −1 1
0 0 1 0
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Alternating Signed Bipartite Graphs

Associated to each ASM is an alternating signed bipartite graph. This
graph has a vertex for each row and column of the matrix. Vertex ri
is connected to vertex cj by a positive edge (represented in blue) if
there is a 1 in position (i , j) of the matrix, and by a negative edge
(represented in red) if there is a −1 in position (i , j).
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Identifying ASBGs

What criteria must a graph meet in order to be isomorphic to an
ASBG?

The graph must be bipartite.
The graph must be balanced.
degb(vi ) = degr (vi ) + 1, ∀i = 1, 2, . . . , 2n.
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Motivating Counter Example
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ASBG Core

When trying to determine if a graph is isomorphic to an ASBG, it is
useful to define the core of a graph. The core of a graph is the
subgraph that remains after removing leaves from the graph. There
are restrictions on what the core of an ASBG can be:

The red core need only be bipartite.
The blue core must be bipartite, and it must be possible to embed it in
a plane in bipartite form so that no vertex is connected to two vertices
that are consecutive in the embedding.
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Separation Graphs

Representing the blue core so that no vertex is connected to two
consecutive vertices can be recharacterised using its separation graphs.
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