Alternating Sign Matrices and Their Corresponding Bipartite Graphs

Cian O'Brien
Rachel Quinlan and Kevin Jennings
Postgraduate Modelling Research Group
National University of Ireland, Galway
c.obrien40@nuigalway.ie

October 20th, 2017

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.

What is an ASM?

An alternating sign matrix, or ASM, is an $n \times n$ matrix that contains only the numbers 0,1 , and -1 , subject to the following constraints:

- The sum of each row and column must be 1
- The non-zero entries in each row must alternate between 1 and -1
- The non-zero entries in each column must alternate between 1 and -1

ASMs are an extension of the permutation matrices.
The number of $n \times n$ ASMs is $\frac{1!4!7!\ldots(3 n-2)!}{n!(n+1)!(n+2)!\ldots(2 n-1)!}$.

Examples

$$
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

Examples

$$
\begin{gathered}
\left(\begin{array}{lll}
0 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{rrr}
0 & 1 & 0 \\
1 & -1 & 1 \\
0 & 1 & 0
\end{array}\right) \\
\left(\begin{array}{rrrr}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
1 & 0 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)\left(\begin{array}{rrrr}
0 & 1 & 0 & 0 \\
1 & -1 & 1 & 0 \\
0 & 1 & -1 & 1 \\
0 & 0 & 1 & 0
\end{array}\right)
\end{gathered}
$$

Alternating Signed Bipartite Graphs

Associated to each ASM is an alternating signed bipartite graph. This graph has a vertex for each row and column of the matrix. Vertex r_{i} is connected to vertex c_{j} by a positive edge (represented in blue) if there is a 1 in position (i, j) of the matrix, and by a negative edge (represented in red) if there is a -1 in position (i, j).

Alternating Signed Bipartite Graphs

Associated to each ASM is an alternating signed bipartite graph. This graph has a vertex for each row and column of the matrix. Vertex r_{i} is connected to vertex c_{j} by a positive edge (represented in blue) if there is a 1 in position (i, j) of the matrix, and by a negative edge (represented in red) if there is a -1 in position (i, j).
$\begin{array}{ll}\left(\begin{array}{lll}0 & 1 & 0 \\ 0 & 0 & 1 \\ 1 & 0 & 0\end{array}\right) & \left(\begin{array}{lll}0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0\end{array}\right) \\ \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right) & \left(\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1\end{array}\right) \\ \left(\begin{array}{lll}0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right)\end{array}$

Identifying ASBGs

What criteria must a graph meet in order to be isomorphic to an ASBG?

Identifying ASBGs

What criteria must a graph meet in order to be isomorphic to an ASBG?

- The graph must be bipartite.

Identifying ASBGs

What criteria must a graph meet in order to be isomorphic to an ASBG?

- The graph must be bipartite.
- The graph must be balanced.

Identifying ASBGs

What criteria must a graph meet in order to be isomorphic to an ASBG?

- The graph must be bipartite.
- The graph must be balanced.
- $\operatorname{deg}_{b}\left(v_{i}\right)=\operatorname{deg}_{r}\left(v_{i}\right)+1, \forall i=1,2, \ldots, 2 n$.

Motivating Counter Example

ASBG Core

When trying to determine if a graph is isomorphic to an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

ASBG Core

When trying to determine if a graph is isomorphic to an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.

ASBG Core

When trying to determine if a graph is isomorphic to an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.
- The blue core must be bipartite, and it must be possible to embed it in a plane in bipartite form so that no vertex is connected to two vertices that are consecutive in the embedding.

ASBG Core

When trying to determine if a graph is isomorphic to an ASBG, it is useful to define the core of a graph. The core of a graph is the subgraph that remains after removing leaves from the graph. There are restrictions on what the core of an ASBG can be:

- The red core need only be bipartite.
- The blue core must be bipartite, and it must be possible to embed it in a plane in bipartite form so that no vertex is connected to two vertices that are consecutive in the embedding.

Separation Graphs

Representing the blue core so that no vertex is connected to two consecutive vertices can be recharacterised using its separation graphs.

Separation Graphs

Representing the blue core so that no vertex is connected to two consecutive vertices can be recharacterised using its separation graphs.

Separation Graphs

Representing the blue core so that no vertex is connected to two consecutive vertices can be recharacterised using its separation graphs.

Separation Graphs

Representing the blue core so that no vertex is connected to two consecutive vertices can be recharacterised using its separation graphs.

Separation Graphs

Representing the blue core so that no vertex is connected to two consecutive vertices can be recharacterised using its separation graphs.

Rachel Quinlan, Alternating Sign Matrices and Related Things, Irish Mathematical Society Presentation, Trinity College Dublin, 2016

Richard A. Brualdi, Kathleen P. Kiernan, Seth A. Meyer, Michael W. Schroeder, Patterns of Alternating Sign Matrices, Department of Mathematics University of Wisconsin, 2011
(James Propp, The Many Faces of Alternating-Sign Matrices, Discrete Mathematics and Theoretical Computer Science Proceedings, 2001
回 David Bressoud, Proofs and Confimations, Cambridge University Press, 1999

