Counting Matrices with a Given Rank and Stable Rank over $M_{n}\left(\mathbb{F}_{p}\right)$

Cian O'Brien Supervisor: Rachel Quinlan

Summer Internship

October 7th, 2016

Introduction

- This project was concerned with studying the properties of matrices over a finite field.

Introduction

- This project was concerned with studying the properties of matrices over a finite field.
- The main theme is an extension and reinterpretation of a method that was presented by Crabb (2003) for counting the number of nilpotent $n \times n$ matrices over a finite field with specified order.

Introduction

- This project was concerned with studying the properties of matrices over a finite field.
- The main theme is an extension and reinterpretation of a method that was presented by Crabb (2003) for counting the number of nilpotent $n \times n$ matrices over a finite field with specified order.
- Crabb establishes a bijective correspondence between the set of nilpotent matrices in $M_{n}\left(\mathbb{F}_{p}\right)$ and the set of sequences of length $n-1$ of vectors of length n over \mathbb{F}_{p}. He used this to deduces that the number of nilpotent matrices is $p^{n(n-1)}$.

Introduction

- This project was concerned with studying the properties of matrices over a finite field.
- The main theme is an extension and reinterpretation of a method that was presented by Crabb (2003) for counting the number of nilpotent $n \times n$ matrices over a finite field with specified order.
- Crabb establishes a bijective correspondence between the set of nilpotent matrices in $M_{n}\left(\mathbb{F}_{p}\right)$ and the set of sequences of length $n-1$ of vectors of length n over \mathbb{F}_{p}. He used this to deduces that the number of nilpotent matrices is $p^{n(n-1)}$.
- We generalise Crabb's construction to a bijection involving all elements of $M_{n}\left(\mathbb{F}_{p}\right)$ and show how it can be used to count the numbers of matrices with specified stable rank and rank power sequence.

We begin with some definitions:

- The rank of an $n \times n$ matrix M is the number of linearly independent rows or columns of the matrix.

We begin with some definitions:

- The rank of an $n \times n$ matrix M is the number of linearly independent rows or columns of the matrix.
- The stable rank of an $n \times n$ matrix M is the rank of M^{n}.

We begin with some definitions:

- The rank of an $n \times n$ matrix M is the number of linearly independent rows or columns of the matrix.
- The stable rank of an $n \times n$ matrix M is the rank of M^{n}.
- The index of an $n \times n$ matrix M is the lowest natural number k for which $\operatorname{rank}\left(M^{k}\right)=\operatorname{rank}\left(M^{n}\right)$.

We begin with some definitions:

- The rank of an $n \times n$ matrix M is the number of linearly independent rows or columns of the matrix.
- The stable rank of an $n \times n$ matrix M is the rank of M^{n}.
- The index of an $n \times n$ matrix M is the lowest natural number k for which $\operatorname{rank}\left(M^{k}\right)=\operatorname{rank}\left(M^{n}\right)$.
- An $n \times n$ matrix M is nilpotent if some power of M is the zero matrix.

We begin with some definitions:

- The rank of an $n \times n$ matrix M is the number of linearly independent rows or columns of the matrix.
- The stable rank of an $n \times n$ matrix M is the rank of M^{n}.
- The index of an $n \times n$ matrix M is the lowest natural number k for which $\operatorname{rank}\left(M^{k}\right)=\operatorname{rank}\left(M^{n}\right)$.
- An $n \times n$ matrix M is nilpotent if some power of M is the zero matrix. Note: A matrix is nilpotent if its stable rank is zero

Examples

$$
A=\left(\begin{array}{llll}
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \text { is nilpotent, as } A^{4}=0
$$

Examples

$$
\begin{aligned}
A & =\left(\begin{array}{llll}
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \text { is nilpotent, as } A^{4}=0 \\
B & =\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \text { is not nilpotent }
\end{aligned}
$$

Examples

$$
\begin{gathered}
A=\left(\begin{array}{llll}
0 & 1 & 3 & 6 \\
0 & 0 & 1 & 2 \\
0 & 0 & 0 & 4 \\
0 & 0 & 0 & 0
\end{array}\right) \text { is nilpotent, as } A^{4}=0 \\
B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right) \text { is not nilpotent } \\
B^{3}=B^{4}=\ldots=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \text { so B has stable rank 1 }
\end{gathered}
$$

Crabb's Algorithm

Let M be an $n \times n$ nilpotent matrix of index k. Let $V_{0}, V_{1}, \ldots, V_{k}$ be ordered bases of the column spaces of $M^{0}, M^{1}, \ldots, M^{k}$. Let $V=V_{0}$ and "adapt" the basis V as follows. Starting with $\mathrm{i}=1$:

- Let W_{i} be the matrix that has the j th vector of V_{i} as its j th row, over basis V. Reduce this to row echelon form.
- Let c be the number of columns in W_{i}, and p be the number of pivots. Let the first $c-p$ elements of the adapted basis V^{\prime} be the j th element of V, where j takes the values of the columns without pivots. Then let the remaining elements be the sum of the j th entry in a row multiplied by the j th entry in V, for $j=1,2, \ldots, n$
- Then let $V=V^{\prime}$, and repeat the process for the next value of i, until $i=k$.

Now V has been fully adapted. Finally, multiply each vector in V on the left by M, and these are the entries in the tuple.

Extending the Algorithm

We extended this algorithm to apply to all $n \times n$ matrices. In the extended algorithm, each $n \times n$ matrix has a corresponding n-tuple, instead of an ($n-1$)-tuple. We were then able to use this tuple to look at interesting properties of matrices, over a finite field of order p. For example, we were able to derive a formula to count the number of $n \times n$ matrices over a field of order p, with rank r and stable rank s. In order to do this, we needed to define a few more terms:

Extending the Algorithm

We extended this algorithm to apply to all $n \times n$ matrices. In the extended algorithm, each $n \times n$ matrix has a corresponding n-tuple, instead of an ($n-1$)-tuple. We were then able to use this tuple to look at interesting properties of matrices, over a finite field of order p. For example, we were able to derive a formula to count the number of $n \times n$ matrices over a field of order p, with rank r and stable rank s. In order to do this, we needed to define a few more terms:

- The rank array of an $n \times n$ matrix M is a non-decreasing sequence of integers. The k th value of the rank array is the dimension of the span of the last k entries in the tuple corresponding to M.

Extending the Algorithm

We extended this algorithm to apply to all $n \times n$ matrices. In the extended algorithm, each $n \times n$ matrix has a corresponding n-tuple, instead of an ($n-1$)-tuple. We were then able to use this tuple to look at interesting properties of matrices, over a finite field of order p. For example, we were able to derive a formula to count the number of $n \times n$ matrices over a field of order p, with rank r and stable rank s. In order to do this, we needed to define a few more terms:

- The rank array of an $n \times n$ matrix M is a non-decreasing sequence of integers. The k th value of the rank array is the dimension of the span of the last k entries in the tuple corresponding to M.
- The power sequence of an $n \times n$ matrix M is a strictly increasing sequence of integers $\left[\operatorname{rank}\left(M^{k}\right), \operatorname{rank}\left(M^{k-1}\right), \ldots, \operatorname{rank}\left(M^{2}\right), \operatorname{rank}(M)\right.$, $\left.\operatorname{rank}\left(I_{n}\right)\right]$, where k is the index of M.

Proposition

While examining this extended algorithm, we discovered the following:
An $n \times n$ matrix M is nilpotent if the first entry in the rank array is zero. Otherwise, the stable rank is the first repeated entry in the rank array.

Formulae

This led us to the derivation of two formulae:

Formulae

This led us to the derivation of two formulae:

- The number M_{1} of $n \times n$ matrices over the finite field of order p with rank r, and stable rank s is as follows:

$$
M_{1}(\mathbf{n}, \mathbf{p}, \mathbf{r}, \mathbf{s})=\mathbf{p}^{(\mathbf{n}-r) s}\binom{n-s-1}{r-s} \prod_{p} \prod_{i=0}^{r-1}\left(p^{n}-p^{i}\right)
$$

Formulae

This led us to the derivation of two formulae:

- The number M_{1} of $n \times n$ matrices over the finite field of order p with rank r, and stable rank s is as follows:

$$
M_{1}(n, p, r, s)=p^{(n-r) s}\binom{n-s-1}{r-s} \prod_{p}^{r-1}\left(p^{n}-p^{i}\right)
$$

- The number M_{2} of $n \times n$ matrices over the finite field of order p with rank r, stable rank s, and power sequence $L=\left[s=I_{1}, I_{2}, \ldots, I_{k-1}=\right.$ $\left.r, I_{k}=n\right]$ is as follows:

$$
M_{2}(n, p, r, s, L)=p^{s} \prod_{i=0}^{r-1}\left(p^{n}-p^{i}\right) \prod_{j=1}^{k-2} p^{l_{j+2}-2 I_{j+1}+I_{j}}\binom{l_{j+2}-I_{j+1}}{I_{j+1}-I_{j}}_{p}
$$

Crabb, M.C., Counting nilpotent endomorphisms, Finite Fields and Their Applications 12(151-154), 2005

回 Weisstein, Eric W., q-Binomial Coefficient, http://mathworld.wolfram.com/q-BinomialCoefficient.html

