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Problem Description

Introduction

This project was concerned with studying the properties of matrices
over a finite field.

The main theme is an extension and reinterpretation of a method
that was presented by Crabb (2003) for counting the number of
nilpotent n × n matrices over a finite field with specified order.

Crabb establishes a bijective correspondence between the set of
nilpotent matrices in Mn(Fp) and the set of sequences of length n − 1
of vectors of length n over Fp. He used this to deduces that the
number of nilpotent matrices is pn(n−1).

We generalise Crabb’s construction to a bijection involving all
elements of Mn(Fp) and show how it can be used to count the
numbers of matrices with specified stable rank and rank power
sequence.
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Problem Description

We begin with some definitions:

The rank of an n × n matrix M is the number of linearly independent
rows or columns of the matrix.

The stable rank of an n × n matrix M is the rank of Mn.

The index of an n × n matrix M is the lowest natural number k for
which rank(Mk) = rank(Mn).

An n × n matrix M is nilpotent if some power of M is the zero matrix.

Note: A matrix is nilpotent if its stable rank is zero
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Problem Description

Examples

A =


0 1 3 6
0 0 1 2
0 0 0 4
0 0 0 0

 is nilpotent, as A4 = 0

B =


1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 is not nilpotent

B3 = B4 = ... =


1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 so B has stable rank 1
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Problem Description

Crabb’s Algorithm

Let M be an n × n nilpotent matrix of index k . Let V0, V1, ... , Vk be
ordered bases of the column spaces of M0, M1, ... ,Mk .Let V = V0 and
“adapt” the basis V as follows. Starting with i = 1:

Let Wi be the matrix that has the jth vector of Vi as its jth row, over
basis V . Reduce this to row echelon form.

Let c be the number of columns in Wi , and p be the number of
pivots. Let the first c − p elements of the adapted basis V ′ be the jth
element of V , where j takes the values of the columns without pivots.
Then let the remaining elements be the sum of the jth entry in a row
multiplied by the jth entry in V , for j = 1, 2, ..., n

Then let V = V ′, and repeat the process for the next value of i , until
i = k .

Now V has been fully adapted. Finally, multiply each vector in V on the
left by M, and these are the entries in the tuple.
(National University of Ireland, Galway) Counting Matrices October 7th, 2016 5 / 8



Extending the Algorithm

Extending the Algorithm

We extended this algorithm to apply to all n × n matrices. In the extended
algorithm, each n × n matrix has a corresponding n-tuple, instead of an
(n − 1)-tuple. We were then able to use this tuple to look at interesting
properties of matrices, over a finite field of order p. For example, we were
able to derive a formula to count the number of n × n matrices over a field
of order p, with rank r and stable rank s. In order to do this, we needed to
define a few more terms:

The rank array of an n × n matrix M is a non-decreasing sequence of
integers. The kth value of the rank array is the dimension of the span
of the last k entries in the tuple corresponding to M.

The power sequence of an n × n matrix M is a strictly increasing
sequence of integers [rank(Mk), rank(Mk−1), ..., rank(M2), rank(M),
rank(In)], where k is the index of M.
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Results

Proposition

While examining this extended algorithm, we discovered the following:

An n × n matrix M is nilpotent if the first entry in the rank array is zero.
Otherwise, the stable rank is the first repeated entry in the rank array.
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Results

Formulae

This led us to the derivation of two formulae:

The number M1 of n × n matrices over the finite field of order p with
rank r , and stable rank s is as follows:

M1(n,p, r, s) = p(n−r)s
(
n− s− 1

r − s

)
p

r−1∏
i=0

(pn − pi)

The number M2 of n × n matrices over the finite field of order p with
rank r , stable rank s, and power sequence L = [s = l1, l2, ..., lk−1 =
r, lk = n] is as follows:

M2(n,p, r, s,L) = ps
r−1∏
i=0

(pn − pi)
k−2∏
j=1

plj+2−2lj+1+lj

(
lj+2 − lj+1

lj+1 − lj

)
p
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