Computations Induced (Co)homology homomorphism

Daher Al Baydli

Department of Mathematics National University of Ireland, Galway

Feberuary, 2017

- Resolution
- Chain and cochain complex
- homology
- cohomology
- Induce (Co)homology homomorphism

ъ.

Definition

Let G be a group and \mathbb{Z} be the group of integers considered as a trivial $\mathbb{Z}G$ -module. The map $\epsilon : \mathbb{Z}G \longrightarrow \mathbb{Z}$ from the integral group ring to \mathbb{Z} , given by $\Sigma m_g g \longmapsto \Sigma m_g$, is called the *augmentation*.

Definition

Let *G* be a group. A free $\mathbb{Z}G$ -resolution of \mathbb{Z} is an exact sequence of free $\mathbb{Z}G$ -modules $R^G_* : \cdots \longrightarrow R^G_{n+1} \xrightarrow{\partial_{n+1}} R^G_n \xrightarrow{\partial_n} R^G_{n-1} \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} R^G_1 \xrightarrow{\partial_1} R^G_0 \xrightarrow{\epsilon} R^G_{-1} = \mathbb{Z} \longrightarrow 0$ with each R^G_i a free $\mathbb{Z}G$ -module for all $i \ge 0$.

Chain and cochain complex

Given a ZG-resolution R^G_{*} of Z and any ZG-module A we can use the tensor product to construct an induced chain complex R^G_{*} ⊗_{ZG} A of abelian groups: R^G_{*} ⊗_{ZG} A :··· → R^G_{n+1} ⊗_{ZG} A ^{∂_{n+1}}/_A R^G_n ⊗_{ZG} A ^{∂_n}→ R^G_{n-1} ⊗_{ZG} A ^{∂_{n-1}}/_A → R^G_{n-1} ⊗_{ZG} A ^{∂_{n-1}}/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A^{∂_{n-1}}/_A ∧ A^{∂_{n-1}</sub>/_A ∧ A[∂]}}}}}}}}}}}}}</sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup></sup>

Chain and cochain complex

Given a ZG-resolution R^G_{*} of Z and any ZG-module A we can use the tensor product to construct an induced chain complex R^G_{*} ⊗_{ZG} A of abelian groups: R^G_{*} ⊗_{ZG} A :··· → R^G_{n+1} ⊗_{ZG} A ^{∂n+1}→ R^G_n ⊗_{ZG} A ^{∂n}→ R^G_{n-1} ⊗_{ZG} A ^{∂n-1}→ ··· ^{∂2}→ R^G₁ ⊗_{ZG} A ^{∂1}→ R^G₀ ⊗_{ZG} A
We can also construct an induced cochain complex Hom_{ZG}(R^G_{*}, A) of

abelian groups:

$$Hom_{\mathbb{Z}G}(R^{G}_{*}, A) : \dots \longleftarrow Hom_{\mathbb{Z}G}(R^{G}_{n+1}, A) \stackrel{\delta_{n}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{n}, A) \stackrel{\delta_{n-1}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{n-1}, A) \stackrel{\delta_{n-2}}{\longleftarrow} \dots \stackrel{\delta_{1}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{1}, A) \stackrel{\delta_{0}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{0}, A)$$

Chain and cochain complex

- Given a $\mathbb{Z}G$ -resolution R^G_* of \mathbb{Z} and any $\mathbb{Z}G$ -module A we can use the tensor product to construct an induced chain complex $R^G_* \otimes_{\mathbb{Z}G} A$ of abelian groups: $R^G_* \otimes_{\mathbb{Z}G} A : \cdots \longrightarrow R^G_{n+1} \otimes_{\mathbb{Z}G} A \xrightarrow{\partial_{n+1}} R^G_n \otimes_{\mathbb{Z}G} A \xrightarrow{\partial_n} R^G_{n-1} \otimes_{\mathbb{Z}G} A \xrightarrow{\partial_{n-1}} \cdots \xrightarrow{\partial_2} R^G_1 \otimes_{\mathbb{Z}G} A \xrightarrow{\partial_1} R^G_0 \otimes_{\mathbb{Z}G} A$
- We can also construct an induced cochain complex $Hom_{\mathbb{Z}G}(R^G_*, A)$ of abelian groups:

$$Hom_{\mathbb{Z}G}(R^{G}_{*}, A) : \dots \longleftarrow Hom_{\mathbb{Z}G}(R^{G}_{n+1}, A) \stackrel{\delta_{n}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{n}, A) \stackrel{\delta_{n-1}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{n-1}, A) \stackrel{\delta_{n-2}}{\longleftarrow} \dots \stackrel{\delta_{1}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{1}, A) \stackrel{\delta_{0}}{\longleftarrow} Hom_{\mathbb{Z}G}(R^{G}_{0}, A)$$

Definition

Let $C = (C_n, \partial_n)_{n \in \mathbb{Z}}$ be a *chain complex* of \mathbb{Z} -modules. For each $n \in \mathbb{Z}$, the *nth homology module* of C is defined to be the quotient module

$$H_n(C) = \frac{Ker\partial_n}{Im\partial_{n+1}}$$

Induce (Co)homology homomorphism

Definition

Given a chain complex and a group G, we can define the cochains C_n^* to be the respective groups of all homomorphisms from C_n to G: $C_n^* = Hom(C_n, G)$. We define the coboundary map $\delta_{n-1} : C_{n-1} \longrightarrow C_n$ dual to ∂_n . we can define the *nth* cohomology group as the quotient:

$$H^n(C_n^*)=\frac{\ker\delta_n}{\operatorname{Im}\delta_{n-1}}.$$

 Let C and D be chain complexes and let f : C → D be a chain homomorphism. The commutativity of the diagram

$$\begin{array}{ccc} C_n & \stackrel{\partial}{\longrightarrow} & C_{n-1} \\ f_n \downarrow & & \downarrow f_{n-1} \\ D_n & \stackrel{\partial}{\longrightarrow} & D_{n-1} \end{array}$$

implies that f_n restrict to maps from $Z_n(C)$ into $Z_n(D)$ (where Z_n is cycle) and $B_n(C)$ into $B_n(D)$ (where B_n is boundary). Hence it induces a homomorphism, $f_* : H_n(C) \longrightarrow H_n(D)$ Then f_* is called the induced homomorphism on homology groups. • Let f' be the dual cochain homomorphism from C^* to D^* . As in the case of chain homomorphism, that we have a commutative diagram

$$egin{array}{ccc} C^n & \stackrel{\delta}{\longrightarrow} & C^{n+1} \ f^n \downarrow & & \downarrow f^{n+1} \ D^n & \stackrel{\delta}{\longrightarrow} & D^{n+1} \end{array}$$

which implies f'^n restricts to maps from $Z^n(C)$ and $B^n(C)$ into $Z^n(D)$ and $B^n(D)$ (where Z^n is cocycle and B^n is coboundary), respectively, and so induces a homomorphism $f^* : H^n(C) \longrightarrow H^n(D)$ Then f^* is called the induced homomorphism on cohomology groups.

Theorem

Let R_* be a free $\mathbb{Z}G$ -resolution of \mathbb{Z} . Let A be a $\mathbb{Z}G$ -module. There is an isomorphism $R_n \otimes_{\mathbb{Z}G} A \cong \underbrace{A \times A \times \cdots \times A}_{r_n} = A^{r_n},$ where $r_n = \operatorname{rank}_{\mathbb{Z}G}(R_n)$.

Example

Consider the symmetric group $G = S_4$ and the identity map $\phi : \mathbb{Z}_4 \longrightarrow \mathbb{Z}_4$. The following commands then compute the homology homomorphism

$$H_3(S_4,\mathbb{Z}/4\mathbb{Z}) \xrightarrow{H_3(\phi)} H_3(S_4,\mathbb{Z}/4\mathbb{Z})$$

and determine that the kernel of this homomorphism has Size 1.

ELE NOR

Example

GAP session

$$\begin{array}{l} gap > G := SymmetricGroup(4);;\\ gap > a := AbelianGroup([4]);;\\ gap > b := a;;\\ gap > ahomb := GroupHomomorphismByFunction(a, b, x- > x);;\\ gap > A := TrivialGModuleAsGOuterGroup(G, a);;\\ gap > B := TrivialGModuleAsGOuterGroup(G, b);;\\ gap > phi := GOuterGroupHomomorphism();;\\ gap > phi!.Source := A;;\\ gap > phi!.Source := B;;\\ gap > phi!.Mapping := ahomb;;\\ gap > Hphi := HomologyHomomorphism(phi, 3);;\\ gap > Size(KernelOfGOuterGroupHomomorphism(Hphi));\\ 1\end{array}$$

- We devise and implement an algorithm for computing the induced homology homomorphism $H_n(\phi) : H_n(G, A) \longrightarrow H_n(G, B)$.
- We devise and implement an algorithm for computing induced cohomology homomorphism Hⁿ(φ) : Hⁿ(G, A) → Hⁿ(G, B).

ELE NOR

1-Hatcher, Allen, Algebraic topology, Cambridge University Press, New York, NY, USA.

2- Brown, Kenneth S., Cohomology of Groups, Graduate Texts in Mathematics, 87, Springer, 1994.

3-Graham Ellis, HAP - Homological Algebra Programming, Version 1.11.3, 2015.

ELE SQC